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Preface

The Chaotic Dynamics was discovered in the scenario of a mathematical
model. Around the end of the nineteenth century, Poincaré (1908) was
working to find out whether our Solar System is stable or not. To make this
problem more mathematically tractable, he considered a special case in which
two massive particles, the primaries, move in circular orbits around their
centre of mass, while another particle with a smaller mass moves in the plane
of the primaries so that it suffers their gravitational influence but its presence
does not disturb the motion of the primaries. This is the so-called circular
restricted three-body problem. Even this simplified model represents a huge
mathematical challenge to be analysed. To overcome this challenge, Poincaré
introduced qualitative techniques of geometry and topology to understand the
global properties of the solutions. By using these techniques, he was able to
glimpse the chaotic motion that appears on complicated and apparently
unpredictable trajectories that were close to periodic orbits, but spread out in
bounded regions of the phase space. Analysing this motion, Poincaré (1908)
concluded that ‘... it may happen that small differences in the initial
conditions produce very great ones in the final phenomena. A small error in
the former will produce an enormous error in the latter. Prediction becomes
impossible, and we have the fortuitous phenomenon’. Thus, Poincaré identified
in his mathematical model the property of sensitive dependence on initial
conditions, which is the hallmark of chaos.

In the twentieth century, the studies initiated by Poincaré were further
developed by Birkhoff, Cartwright and Littlewood, Levinson, Anosov, Kolmo-
gorov, Moser, Arnold, Peixoto and Smale, and Shilnikov, among many others.
They made important contributions to understand mathematically the chaotic
behaviour. Now, it is mathematically known that any nonlinear, continuous
in-time dynamical system with more than one degree of freedom can display
chaos, and this dynamical behaviour can be present in attractive as well as non-
attractive invariant sets. The chaotic behaviour can be explained by topological
operations of stretching and folding that take place in the state space
(Smale 1967).

Despite being studied in mathematics for over a century, only in the last
couple of decades of the twentieth century has the profound impact of chaos in
science, engineering and medicine been recognized. And this recognition
happened in part as a consequence of the widespread use of powerful computers
that allow not only for extensive simulations of nonlinear models of natural
process, but also for careful analysis of the results by using properly developed
tools that require intensive graphical support. As such, there emerged a scenario
in which the chaotic behaviour was completely understood both mathematically
and in computer simulations, and also in the corresponding experimental systems
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that the simulations were trying to model. This issue of the Phil. Trans. R. Soc.
A on Experimental Chaos presents a unique collection of experimental works
whose processes are of scientific and technological importance.

The first fundamental experiment concerning the presence of chaotic dynamics
in the real world was conducted in 1975 by Gollub and Swinney in a Couette flow
cell (Gollub & Swinney 1975). The space between two concentric cylinders is
filled with a fluid, and one or both of them are rotated with a fixed angular
velocity. As the angular velocity increases, the fluid showed progressively more
complex flow patterns, with an involved time dependence. In this experiment,
they measured the velocity of the fluid at a given point. Following the
experiment, as the rotation rate is increased, they observed transitions from a
velocity that is constant in time at the beginning to a periodically varying
velocity and finally to an aperiodically varying velocity. They were interested in
characterizing how this aperiodically varying velocity, which may suggest the
presence of a chaotic dynamics, develops from the periodical one as the angular
velocity of the cylinders increases.

The mechanisms that take place in such transitions are called bifurcation
scenarios. For this experiment, the scenario is related to the presence of a
geometric structure called torus. This shape describes the motion in the phase
space of two or more independent oscillations with well-defined frequencies.
Whenever the movement of a system can be reduced in the phase space to a
torus, its dynamics is a non-chaotic one because it does not have sensitive
dependence on the initial condition, meaning that trajectories which start close
to each other remain close on average.

The experiment was conceived to determine which of the two proposed
transition scenarios may explain the onset of turbulence. In the Landau scenario
(Landau & Lifshitz 1959), proposed in 1944, turbulence appears as a consequence
of an ever higher number of oscillations that are excited as the rotation rates of
the cylinders are increased. As such, the dynamics would not be chaotic. This
scenario was challenged by Ruelle and Takens, who gave, in 1971, a
mathematical argument (Ruelle & Takens 1971) that the motion in a three- or
higher-dimensional torus is generically chaotic. The result of the experiment
showed that the Landau scenario was incomplete and that the behaviour ‘seems
to be of the general type described by Ruelle and Takens’. This remarkable
experiment opened up the way for an extensive investigation regarding all the
aspects of the phenomenon of chaotic motion in nature.

The articles that appear in this issue were selected from the lectures presented
at the IX Experimental Chaos Conference, held at the National Institute for
Space Research—INPE in São José dos Campos, Brazil, from 29 May to 1 June
2006. This is the World’s main conference on experimental chaos and is the
proper stage on which breakthrough experimental results are usually presented
for the first time. We are confident that most relevant experimental works on
chaotic dynamics are properly reported here.

As guest editors for this issue, we wish to thank all those who accepted our
invitation to submit manuscripts for consideration. Also, we would like to thank the
many individuals who served as referees. We hope that these articles can motivate
and foster further experimental work that will allow for a continuous and better
understanding of the role of chaotic dynamics in our world.
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