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Abstract We introduce two dynamical optimization coupling mechanisms for get-
ting different kinds of synchronization in adaptive complex networks. At each node
in the network there is an oscillator and the ensemble of oscillators could be ei-
ther identical or non-identical. For each oscillator, we adjust only one incoming
link’s strength in different time intervals while the otherincoming links’ strengths
remain constant. The dynamical optimization coupling mechanisms are in effect
“winner-take-all” strategies. If one incoming link for each oscillator has the maxi-
mal competition ability in different time intervals, its strength increases by a small
value. This way, we realize different kinds of synchronization in adaptive complex
networks with undelayed or delayed couplings, as well as ensure that all oscillators
have uniform intensities during the transition to synchronization. We also enhance
the synchronizability in complex networks with identical oscillators.

1 Introduction

Real-world complex networks (CNs) are interacting dynamical entities with an in-
terplay between dynamical states and interaction patterns. While topological studies
have revealed important organization principles in the structures [1-6], a more com-
plete understanding would require characterizations beyond the topology. There are
recently several approaches in this direction. Especially, (i) Intensive investigations
of synchronization dynamics in oscillatory networks [9,17-19,23-26,32-34,37-40.].
However, most of these works consider networks that do not change the topology
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with the dynamics. (ii) Growing attention on unified studiesof the coevolution of dy-
namical states and network structures [10-15,21,22,27-31,42,43]. Models of adap-
tive complex networks (ACNs) have been proposed, e.g., evolving of oscillators
due to fitness in interacting species [10], reinforcement ofconnection strength [11]
or rewiring of links [12] due to payoffs among agents playinggames; or adaptive
changes of coupling strength according to the state distance in globally coupled
chaotic maps [13] in a desynchronized regime

ACNs appear in many biological applications. They combine topological evolu-
tion of the network with dynamics in the network oscillators. Recently, Gross and
Blasius provided a survey on adaptive coevolutionary networks [15]. According to
this survey, the majority of recent studies revolve around two key questions cor-
responding to two distinct lines of research: i)what are the values of important
topological properties of a network that is evolving in time and, ii) how does the
functioning of the network depend on these properties? The first line of research is
concerned withthe dynamics of networks [15]. Here the topology of the network
itself is regarded as a dynamical system. It changes in time according to specific,
often local, rules. Investigations in this area have revealed that certain evolution
rules give rise to peculiar network topologies with specialproperties. The dynam-
ics of ACNs has been investigated in a number of parallel studies from different
fields, ranging from genomics to game theory. The second major line of network
research focuses onthe dynamics on networks [15]. Here each oscillator of the net-
work represents a dynamical system. The individual systemsare coupled according
to the network topology. Thus, the topology of the network remains static, while the
states of the oscillators change dynamically. Important processes that are studied
within this framework include synchronization of the individual dynamical systems
[9,14,17-19,21-34,37-40,42,43], and contact processes,such as opinion formation
and epidemic spreading [44-46].

As a typical dynamical regime on networks, synchronization, especially the abil-
ity of networks to obtain synchronization (synchronizability), attracts lots of inter-
ests [14,17-19,21-33,37-40,42,43]. Complete synchronization (CS) in networks of
identical oscillators [27-30] and phase synchronization (PS) in networks of non-
identical oscillators [21,22] can be ensured by introducing adaptive local couplings
between connected oscillators, or adaptive global couplings in the whole networks.
The networks due to adaptive couplings are also a kind of ACNs. Based on the local
dynamical neighborhood information in networks with identical oscillators, Zhou
and Kurths introduced an adaptive coupling scheme [27]. Forsimplicity, this method
is called the Zhou-Kurths method. Consequently, the adaptive self-organization by
the Zhou-Kurths method drives the network into the direction of a more homoge-
neous topology, ongoing with an enhanced ability for synchronization. Hence it is
possible to synchronize networks that exceed by several orders of magnitude the
size of the largest comparable random graph that is still synchronisable [15].

However, there are some shortcomings in these studies on ACNs, where the local
or global couplings are changed adaptively. The first one is that these works can not
ensure that all oscillators have uniform intensities during the transition to synchro-
nization. From the works on synchronizability in networks with a given topology,
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the synchronizability becomes optimal when the intensities become uniform in net-
works. This can be verified by the load [37,38] and degree [39]based weighted
networks. For randomly enough unweighted and weighted networks, the synchro-
nizability is controlled bySmax/Smin, whereSmax andSmin are the maximum and
minimum of intensitiesSi, defined by the sum of the couplings for oscillatori [32].
For scale-free (SF) networks [32], one getsSmax/Smin = kmax/kmin ∼ N1/2, where
kmax andkmin are the maximal and minimal degrees, respectively. For a fixed net-
work topology, the synchronizability can be enhanced if theintensities become more
homogeneous. The second problem is that these methods can not be effectively ap-
plied to networks with delayed couplings. For example, for networks with identical
chaotic oscillators, the non-uniformity of intensities does not ensure the existence
of a synchronous manifold in networks with delayed couplings. Further, there ex-
ists no unifying adaptive coupling scheme to get different kinds of synchronization.
The scheme for PS in the Kuramoto model can not be effectivelyapplied to PS in
networks with non-identical chaotic oscillators and CS in networks with identical
chaotic oscillators. The scheme for CS in networks with identical chaotic oscillators
can not be effectively applied to PS in networks with non-identical oscillators.

In this chapter we develop two adaptive coupling schemes to get different kinds
of synchronization in networks, as well as to ensure that alloscillators have uni-
form intensities during the transition to synchronization. This chapter is organized
as follows. In the next section, we consider PS in the famous Kuramoto model with
delayed couplings and external noises. By adaptively adjusting the couplings ac-
cording to thedynamical gradient network (DGN) approach [22], we ensure PS in
different variants of the Kuramoto model, as well as all oscillators have uniform
intensities. This approach can be also applied to networks with non-identical os-
cillators, provided that the definition of ‘phase’ is well-defined. Furthermore, this
approach can be extended to CS in networks with identical oscillators. In section
3, we further propose another more effective coupling mechanism, thedynamical
optimization (DO) mechanism [42,43], for realizing CS in networks with identical
oscillators. Though there exist delayed couplings in networks, we realize CS effec-
tively, as well as the intensities for all oscillators are uniform. We also discuss the
enhanced synchronizability in scale-free (SF) networks and small-world (SW) net-
works, due to the DO mechanism. This approach is also applicable to PS in networks
with non-identical oscillators. In the last section we drawup our conclusion.

2 PS in the Kuramoto model

Among many models that have been proposed to address synchronization phenom-
ena, one of the most successful models is the Kuramoto model [7-9]. It can be used
to understand the emergence of synchronization in networksof oscillators. In par-
ticular, this model presents a second-order phase transition from incoherence to syn-
chronization. For synchronization in the Kuramoto model, many works assumed that
the couplings between connected oscillators are constant [24-26]. Recently, some
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works introduced adaptive couplings in this model. Maistrenko et al. introduced
the mechanism of plasticity to study multistability, and assumed that the couplings
are varied in accordance with the spike timing-dependent plasticity [20]. Ren and
Zhao also proposed adaptive couplings by introducing continuously adaptive cou-
plings, and this can enhance the synchronization in the Kuramoto model. In this
scheme, the couplings grow stronger for pairs which have larger phase incoherence
[21].

Based on a DGN approach, we also consider synchronization inthe Kuramoto
model with adaptive couplings. This study is motivated in part by the work [35,36],
where the concept of gradient networks is introduced. Gradient networks are di-
rected subnetworks of an undirected “substrate” network inwhich each oscillator
has an associated scalar potential and one outlink that points to the oscillator with
the smallest (or largest) potential in the reunion of itselfand its neighbors on the
substrate network. The existence of gradients has been shown to play an impor-
tant role in biological transport processes, such as cell migration: chemotaxis, hap-
totaxis, and galvanotaxis. Naturally, the same mechanism will generate flows in
complex networks as well [36]. In addition, gradient networks have been already
utilized to enhance synchronization in networks [23]. A general weighted asymmet-
rical network is regarded as a superposition of a weighted symmetrical network and
a weighted gradient network. Depending on the degrees of oscillators, a weighted
coupling scheme is proposed to enhance the synchronizability in networks. How-
ever, the proposed gradient network is static, i. e., its structure is time independent.
Differing from the static gradient networks in Ref. [23], gradient networks devel-
oped in this section are dynamical, which implies that the gradient networks in dif-
ferent time intervals are different.

Here the Kuramoto model consists of a population ofN coupled oscillators where
the phaseθi(t) of thei-th oscillator evolves in time according to

dθi

dt
= wi +∑

j
Wi jAi jsin(θ j −θi), i = 1,2, · · · ,N, (1)

wherewi are natural frequencies distributed with a given probability densityg(w),
Ai j is the binary adjacency matrix representing the topology ofnetworks, and it is
not necessary symmetric. Further,Wi j ≥ 0 is the coupling strength of the incoming
link (i, j) pointing from oscillatorj to oscillatori if they are connected. DenoteKi

as the index set of neighbors of oscillatori.
The Kuramoto model (1) can be solved in terms of the order parameterr(t) that

measures the extent of synchronization as

r(t)eζΨ (t) =
1
N

N

∑
j=1

eζθ j(t), (2)

whereζ 2 = −1,Ψ (t) stands for an average phase, and the parameter 0≤ r(t) ≤ 1.
Obviously, ifr(t) = 1, PS in the Kuramoto model (1) is realized. The parameterr(t)
given by Eq. (2) has been widely used [7-9,21,25].
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We first introduce adaptive couplings into the Kuramoto model (1). In order to
do so, we segment the time interval[t0, +∞) into

[t0, +∞) =
⋃

n≥1

[tn−1, tn), (3)

wheretn = t0 + nT , t0 is the transient time, the lengthT of intervals is chosen suit-
ably. For the parameterr(t), we define one local order parameter for oscillatori in
the interval[tn−1, tn):

ri,n =
1
T

∫ tn

tn−1

ri(t)dt, (4)

with

ri(t)eζΨi(t) =
1

ki +1 ∑
j∈Ki∪{i}

eζθ j(t),

whereki is the degree of oscillatori. The parameterri,n can measure the local syn-
chronization extent among oscillatori and its neighbors. Ifri,n0 = 1 for certainn0,
oscillatori and its neighbors are locally synchronized in the interval[tn0−1, tn0).

For the network of oscillators, the extent of synchronization is to choose the order
parameterr0(n):

r0(n) :=
1
T

∫ tn

tn−1

r(t)dt. (5)

If there is an0 such thatr(n0) = 1, we conclude that synchronization in the network
is realized effectively.

Now we introduce an adaptive coupling scheme into the Kuramoto model. Our
idea to adjust the couplingWi j in the interval[tn,tn+1) is based on the concept of
gradient networks [35,36]. To define a gradient network at the instantt = tn, we
consider a network denoted byΣ = (V,En), whereV stands for the set of oscillators,
andEn denotes the set of links at the instantt = tn. Consider a field denoted by
hn = {hn

1, · · · ,h
n
N} at the instantt = tn, wherehn

i is the scalar assigned to oscillator
i. We define the gradient∇hn

i
of the fieldhn

i in oscillator i to be the directed link
∇hn

i
= (i,µn

i ), whereµn
i ∈ Ki represents one neighbor of oscillatori. At the instant

t = tn, the networkΣg = (V,∇n), where∇n is the set of the gradients∇hn
i
, is called

a gradient network. Note that at different time instants thegradient networks can
be different. In this section, this kind of gradient networks is called DGNs. In the
gradient networkΣg, the directed link(i,µn

i ) points from oscillatorµn
i , at which the

scalar field has the minimum (or maximum) value in oscillatorµn
i ∈ Ki, i.e. [36]

µn
i = arg max

j∈Ki
{−hn

j} (6)

to oscillatori. If several neighbors have the same scalar field, we choose only one
randomly. For oscillatori in the Kuramoto model (1), we choose the scalar fieldhn

i
as

hn
i = ri,n. (7)
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Denote the couplingWi j in the interval[tn−1,tn) asW n
i j. In the gradient network

composed of the gradients∇hn
i
, we adjust the couplingWiµn

i
of the incoming link

(i,µn
i ) pointing from oscillatorµn

i to oscillatori. In the interval[tn, tn+1), we adap-
tively adjust the couplingWiµn

i
of the incoming link(i,µn

i ) in the gradient network
Σg = (V,∇n) by

W n+1
iµn

i
:= W n

iµn
i
+ ε , (8)

whereε > 0 is an arbitrary small incremental coupling. When the link(i, j) does
not belong to the gradient networkΣg, its coupling satisfies

W n+1
i j := W n

i j . (9)

From Eqs. (6-9), the DGN approach is also a dynamical optimization coupling
scheme. It reflects the “winner-take-all” strategy in the sense of scale fields. For
oscillatori, the incoming link to be adjusted is always chosen as one pointing from
one neighborhood oscillator with the minimal (or maximal) field to itself. Further,
we only adjust one incoming link’s strength in different time intervals while the
other incoming links’ strengths remain constant. Here we define the intensitySi for
oscillatori asSi = ∑ j∈Ki

Wi jAi j. Note that the intensities of all oscillators in networks
are uniform, since at each step the intensity of each oscillator increases by the same
amountε.

Now we analyze the feasibility of the above coupling scheme by the linearized
dynamics of the Kuramoto model (1). When the Kuramoto dynamics is close to the
attractor, the phase differences are small, and then the sine coupling function can be
approximated linearly. Therefore, in the interval[tn,tn+1), the linearized dynamics
of oscillatori can be written in the form

dθi
dt = ∑

j
W n

i jAi j(θ j −θi)+ ε(θµn
i
−θi) . (10)

In the above equation the last termε(θµn
i
− θi) is equivalent to the term−ε(θi −

θµn
i
), which can be regarded as a negative feedback term for the unidirectional syn-

chronization from oscillatorµn
i to oscillatori. This could make the phase difference

between oscillatori and its neighborµn
i be smaller, which may result in synchro-

nization in the Kuramoto model.
The adaptive scheme (6-9) can be easily extended to Kuramotomodels with de-

layed couplings and external noise. One case is the Kuramotomodel described by
[8,24]

dθi

dt
= wi +∑

j
Wi jAi jsin(θ j −θi)+ ξi(t), i = 1,2, · · · ,N, (11)

whereξi(t) is white noise due to some complicated environment with expectation
and variance

< ξi(t) >= 0, < ξi(t)ξ j(t
′) >= 2δi jδ (t − t ′).

Another case is the Kuramoto model given by [8]
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Fig. 1 Simulation results in the Kuramoto model (1) without noise.The parameterr0(n) as a
function of the adjustment stepn (a), and the parameterr(t) as a function of the stepm for solving
the Kuramoto models (b), in SF networks (solid line:M = 3; dotted line:M = 5) and SW networks
(dashdot line:K = 2, p = 0.03; dashed line:K = 4, p = 0.03). The adjustment stepn as a function
of the sizeN in networks (c), and standard deviationEav(k) as a function of degreek in SF and SW
networks withN = 1000 (square:M = 3; diamond:M = 5; star:K = 2, p = 0.03; circle:K = 4,
p = 0.03). All estimates are the results of averaging over 50 realizations.

dθi

dt
= wi +∑

j
Wi jAi jsin(θ j,τ −θi)+ ξi(t), i = 1,2, · · · ,N, (12)

where the termθ j,τ represents the delayed phaseθ j(t − τ), andτ is a constant time
delay.

Our simulations are based on SF and SW networks. SF networks are generated
by the Barabási-Albert model [2], where the initial network is a fully connected net-
work with M oscillators, labeled byi = 1, · · · ,M. At every time step a new oscillator
is introduced to be connected toM existing oscillators. The probability that a new
oscillator is connected to oscillatori depends on the degreeki of oscillatori, namely
Πi = ki/∑ j k j. After repeating forN −M times, a SF network has a degree distrib-
ution P(k) ∼ k−3 and the minimal degreekmin = M. SW networks are generated by
the Newman-Watts model [16]. The initial network is aK−nearest-neighbor cou-
pled network consisting ofN oscillators arranged in a ring, with each oscillatori
being adjacent to its neighbor oscillatorsi±1, · · · , i±K/2, and withK being even.
Then one adds with probabilityp a connection between a pair of oscillators.

In our simulations in this section, the initial couplings for all incoming links for
each oscillator are zero, the natural frequencies of the oscillators are uniformly dis-
tributed in the interval[−1, 1], the transient time ist0 = 100s, the length of intervals
is T = 1s, and the incremental coupling isε = 0.01. The solution of networks is re-
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Fig. 2 Simulation results in the Kuramoto model (1) with noise. Theparameterr0(n) as a function
of n (a), and the parameterr(t) as a function ofm (b), in SF networks (solid line:M = 4; dotted
line: M = 6) and SW networks (dashdot line:K = 6, p = 0.01; dashed line:K = 8, p = 0.01). All
estimates are the results of averaging over 50 realizations.

solved using the Euler method and the step timeh = 0.02s, and the ending condition
for our scheme is|r(n0)−1|< 10−2 for certainn0.

We first simulate SF networks withN = 1000 and SW networks withN = 1000
andp = 0.03 in the absence of noise. We plot the local order parameterr0 as a func-
tion of the adjustment timen [Fig.1 (a)], and the global order parameterr as a func-
tion of the stepm (= n/h) for solving the Kuramoto model [Fig.1 (b)]. Obviously,
due to our coupling scheme (8,9), the Kuramoto model (1) reaches a synchronized
regime after several hundreds of adjustment steps. In everytime interval, only one
incoming link’s coupling for each oscillator is adjusted bythe same small incremen-
tal coupling, and the other incoming links’ couplings remain constant. Hence the
intensitiesSi for all oscillators are identical during the transition to synchronization.
From Fig.1(a,b), the extent of synchronization in the Kuramoto model increases
with increasing of the intensityS given byS = Si = nε. In our coupling scheme,
the intensityS is a good indicator for synchronization in the Kuramoto model. At
aboutn = 300, namelyS = 3, the Kuramoto model (1) is practically in a synchro-
nized state. However, equal intensities can not be ensured by other known adaptive
coupling schemes [21,27]. The intensities in Ref. [27] strongly depend on heteroge-
neous degrees in SF networks. The larger the degree of an oscillator is, the larger its
intensity is.

We also discuss the synchronization in SF and SW networks with different size.
Under the same ending condition, we observe that the adjustment steps needed to
synchronize SF networks with the sameM are almost identical [Fig.1 (c)]. It further
means that the time (n0T ) needed to synchronize SF networks with the sameM
is almost equal. We can also obtain similar results in SW networks with the same
K and p. The steps in SW networks with the samep and a smallK are almost
identical while the steps in SF networks with differentM are also different. This
can be in part explained by the average degree< k >≈ 2M in SF networks and
< k >≈ K +(N −1)p/2 in SW networks. When the average degree of networks is
smaller, it requires a longer time to synchronize networks.

After the ending of our scheme (8,9), we also analyze the relationship be-
tween the normalized coupling matrixG = (Gi j) with Gi j = W n0

i j Ai j/n0ε and the
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Fig. 3 Simulation results in the Kuramoto model (12) without noise. The parameterr0(n) as a
function ofn (a), and the parameterr(t) as a function ofm (b), in SF network (solid line:M = 4;
dotted line:M = 7) and SW network (dashdot line:K = 6, p = 0.02; dashed line:K = 8, p = 0.02).
All estimates are the results of averaging over 50 realizations.

coupling matrixG0 = (W ′
i jAi j) with W ′

i j = 1/ki. We compute the average error

Eav(k) = 1
γk

∑γk
q=1Eq betweenG andG0, whereγk is the number of oscillators with

the same degreek, andEq =
√

∑ j 6=i(Gi j −1/ki)2/ki if ki = k. We show thatGi j is

almost identical to the value 1/ki (or Gi j ∼ k−1
i ) [Fig.1(d)]. After the ending of our

scheme, the couplingsW n0
i j for the incoming links of oscillatori are approximately

n0ε/ki. Therefore, for SF networks with the sameM and SW networks with the
sameK andp, the maximal coupling relies on the minimal degree in networks. The
larger the degree of oscillatori is, the smaller the couplingW n0

i j is.
Even if there exists noise in the Kuramoto model (1), we can also obtain similar

results in SF networks with differentM and SW networks with differentK and p
[Fig. 2]. For the Kuramoto model (12) with delayed couplings, simulation results
are plotted in Fig. 3 (τ = 1) and Fig. 4 (τ = 3). Here we only plot figures on the
parametersr0 andr. From these figures, synchronization can be realized effectively.

Note that there are two parametersT and ε in our scheme. Due to the weak
coupling for synchronization in the Kuramoto model,ε can not be large, but the
lengthT of the intervals can be arbitrarily large. In our simulationsε can be chosen
in the interval [0.0001,0.02]. For different values ofT and ε, we obtain similar
results.

Remarks: Gómez-Gardeñeset al. proposed another order parameterrlink to mea-
sure the extent of synchronization [26], where

rlink =
1

2Nlink
∑

i
∑
j∈Ki

| lim
∆t→∞

1
∆t

∫ tr+∆t

tr
eζ [θi(t)−θ j(t)]dt|, (13)

whereNlink is the number of links,tr is a large time. The averaging time∆t is taken
large enough to obtain good measures of the degree of coherence between each pair
of physically connected oscillators. Eqs. (4,5,7) in our scheme can be replaced by

ri,n
link =

1
ki

∑
j∈Ki

|
1
T

∫ tn

tn−1

eζ [θi(t)−θ j(t)]dt|, (14)
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Fig. 4 Simulation results in the Kuramoto model (12) with noise. The parameterr0(n) as a function
of n (a), and the parameterr(t) as a function ofm (b), in SF network (solid line:M = 4; dotted
line: M = 6) and SW network (dashdot line:K = 6, p = 0.01; dashed line:K = 8, p = 0.01). All
estimates are the results of averaging over 50 realizations.

r′link(n) =
1

2Nlink
∑

i
∑
j∈Ki

|
1
T

∫ tn

tn−1

eζ [θi(t)−θ j(t)]dt|, (15)

and
hn

i = ri,n
link , (16)

respectively. One ending condition is|r′link(n0)− 1| < 10−2 for certainn0. Since
numerical results are very similar to those with respect to the parametersri,n and
r0(n) [Figs. 1-4], we omit corresponding figures.

The DGN approach can also be applied to CS in networks with identical oscilla-
tors, whose state is represented byxi. In this case, we should assign a suitable scale
field to oscillatori. Eqs. (4,5,7) in our scheme can be replaced by

ri,n
link = −

1
ki

∑
j∈Ki

1
T

∫ tn

tn−1

||xi −x j||dt, (17)

r′link(n) =
1

2Nlink
∑

i
∑
j∈Ki

1
T

∫ tn

tn−1

||xi −x j||dt, (18)

and
hn

i = ri,n
link , (19)

respectively. One ending condition isr′link(n0) < ε for certainn0, andε is arbitrary
small.

3 CS and enhanced synchronizability in ACNs

In this section, inspired by the DGN approach, we develop another more effective
optimization coupling mechanism: the DO coupling mechanism. It does not only
realize different kinds of synchronization in networks butalso leads to enhanced
synchronizability in SF and SW networks. In this section, wefirst consider CS in
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networks with undelayed or delayed couplings. Then we studyhow to enhance the
synchronizability in SF and SW networks.

3.1 CS in ACNs

Our general model for networks consisting ofN coupled identical chaotic oscillators
with a time-varying coupling matrix is given by

ẋi = F(xi)+
N

∑
j=1

Gi jH(x j,xi), (20)

wherexi is the state,F(xi) is the dynamics of the individual oscillatorxi, H(x j,xi)
is the inner coupling function,G = (Gi j) is the outer coupling matrix.Gi j = Wi jAi j,
whereA = (Ai j) is the binary adjacency matrix,Wi j is the coupling strength of the
incoming link (i, j) pointing from oscillatorj to oscillatori if they are connected,
Gii = −∑ j∈Ki

Ai jWi j, Ki is the neighbor set of oscillatori.
In this section we consider CS in network (20) in two cases. (i) One case is the

network (20) with undelayed couplings, where the functionH(x j,xi) = H0(x j)−
H0(xi), andH0 is the output function for each oscillator. (ii) The other case is the
network (20) with delayed couplings, in which the functionH(x j,xi) = H0(x j(t −
τ))−H0(xi(t)) with a time delayτ > 0.

In the above section, we have proposed a DGN approach to realize PS in the
Kuramoto model, and this approach can be also applied to CS innetworks with
identical oscillators. However, the DGN approach is very special in two aspects.
One is that it should assign a scale potential to each oscillator within any time in-
terval, which depends on the extent of the local synchronization among itself and
its neighbor oscillators. The other is that the incoming link to be adjusted by the
DGN approach is often not mostly effective. Inspired by the idea of the DGN ap-
proach [22], we have further introduced a DO mechanism to SF networks [42]. It
also reflects the “winner-take-all” strategy, where the incoming link to be adjusted is
always chosen as a pair of oscillators with the weakest synchronization. This means
that the DO mechanism is much more effective than the DGN approach.

We first introduce the idea of the DO mechanism. In the interval [tn,tn+1), the
choice of the incoming link for oscillatori is based on the maximal accumulated
synchronization error in its neighborhood, rather than depending on the scalar fields
of oscillators [22]. The DO mechanism is introduced as follows:

(i) For the incoming link(i, j) of oscillatori, we accumulate the synchronization
errors by the integral function

En(i, j) =

∫ tn

tn−1

φ(xi,x j)dt, (21)
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Fig. 5 The average synchronization errorE in SF networks with undelayed couplings as a function
of (a) timet, and (b) intensityS, by the DO mechanism. The parameters areN = 1000,M = 5,
T = 1s,ε = 0.001 andσ = 1.5.

whereφ is the error function relying on different kinds of synchronization in net-
works.

(ii) By the optimization in the neighborhood of oscillatori, we identify the in-
coming link(i, jn

max) with the index

jn
max = arg max

j∈Ki
En(i, j). (22)

(iii) We adjust the coupling strengthWi j adaptively by

{

W n+1
i jnmax

:= W n
i jnmax

+ ε
W n+1

i j = W n
i j, j 6= jn

max
(23)

Compared with the incoming link generated by the optimization scheme (6,7),
namely the DGN approach, the incoming link generated by the DO mechanism
is much more effective. Further, there is one common point: the intensities of the
oscillators in the networks are also uniform, since at each step the intensity of each
oscillator increases by the same amountε during the transition to synchronization.

Our simulations in this section are also based on SF networksgenerated by
the Barabási-Albert model [2] and SW networks generated bythe Newman-Watts
model [16]. In the following, network (1) is a network of Rössler oscillators:
xi = (xi,yi,zi), F(xi) = (−0.97yi−zi,0.97xi+0.15yi,zi(xi−8.5)+0.4), the function
H0(xi) = (xi,0,0), and the error function

φ(xi,x j) = |xi − x j|+ |yi− y j|+ |zi− z j|.

In order to verify CS, we define the average synchronization error as

E =
1
N

N

∑
i=1

||xi − x̄||,

wherex̄ = (x̄, ȳ, z̄) is the mean-field of allxi. In our simulations, the initial coupling
strengths for all incoming links are zero, the transient time ist0 = 100s, the length of
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Fig. 6 The intensitiesSi as a function of timet for arbitrarily 20 oscillators in SW networks with
undelayed couplings (a), or delayed couplings (b), by the Zhou-Kurths method. The parameters
areN = 500,K = 4, p = 0.003,γ = 0.002,τ = 0.01s.

time intervals isT = 1s, andε = 0.001. Further, initial conditions for all oscillators
are randomly chosen from the chaotic attractor. The solution of network (20) is
solved by using the Euler method with the time steph = 0.01s, and our ending
condition for the DO mechanism isE < 10−5.

For network (20) with undelayed couplings, CS is realized effectively [Fig.5].
From Eqs. (22,23), all oscillators have uniform intensities during the transition to
synchronization, regardless of heterogeneous degrees. But this is totally different
from adaptive networks [21,27]. The average intensityS(k) over oscillators with
degreek increases asS(k) ∼ kβ with β ∼ 0.5 [27].

After the adaptation, network (20) with undelayed couplings can be rewritten
as ẋi ≈ F(xi) + S0[H0(x̄i)−H0(xi)], whereS0 = εn0 is the ultimate intensity,n0

is the ending adjustment step, andx̄i = (1/ki)∑ j∈Ki
x j is the local mean field of

neighbors [32]. In randomly enough networks the local mean field x̄i of oscillators
with ki ≫ 1 can be approximated by the global mean fieldx̄i = x̄. Hence we geṫxi ≈
F(xi)+S0[H0(x̄)−H0(xi)]. Hence all oscillators are forced by a common mean field
signalH0(x̄) with the same forcing strengthS0, and all oscillators synchronize at a
similar speed to the mean activitȳx. The speed only depends on the same intensity
(i.e. the sum of input signals each oscillator receives), regardless of the network
size. The independence of the network size is not satisfied inRefs. [21,27], where
the speed strongly relies on heterogeneous intensities.

For the network (20) with undelayed couplings, the adaptivestrategies can re-
alize CS both in SF networks with undelayed couplings and in SW networks with
undelayed couplings [43]. However, even for SW networks with homogeneous de-
grees, the adaptive strategies can not ensure uniform intensities if all oscillators have
different initial conditions. We plot the intensitiesSi (i.e. Si = ∑ j∈Ki

Gi j), for 20 ar-
bitrarily chosen oscillators in SW networks according to the Zhou-Kurths method
[Fig.6(a)]. When the adaptation parameter is chosen asγ = 0.002, we find that the
Zhou-Kurths method can not ensure uniform intensities during or after the adap-
tation. Based on the DO mechanism, synchronization in SW networks is realized
effectively [Fig.7(a)], and the intensities are always uniform during the transition
to synchronization. From Fig.7(b), the intensityS = Si is also a good indicator for
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Fig. 7 The average synchronization errorE in SW networks with undelayed couplings as a func-
tion of (a) timet, and (b) intensityS, by the DO mechanism. The parameters areN = 500,K = 4,
p = 0.003,T = 1s,ε = 0.001.

synchronization in networks. AsS increases to a critical value, a network becomes
synchronous.

For the network (20) with delayed couplings, even for a smalltime delayτ (such
asτ = 0.01s), the Zhou-Kurths method can not realize synchronization in SW net-
works [Fig.8(a)]. The synchronization error between two connected oscillators is
about 10−2×500= 5 for networks withN = 500. Due to the DO mechanism, syn-
chronization can be realized effectively when the time delay τ = 2s [Fig.8(b)]. The
synchronization error is about 10−5× 500= 0.005. Hence the DO mechanism is
much more effective than the Zhou-Kurths method. The main reason is that the DO
mechanism enures that the intensities are always uniform during the transition to
synchronization. But the Zhou-Kurths method can not ensureuniform intensities
even for a small time delay [Fig.6(b)]. Though the difference of intensities between
oscillators is small initially, it becomes large as time increases. The uniformity of
intensities is a necessary condition for the existence of a synchronous manifold in
NW networks with delayed couplings. After the adaptation, the synchronous man-
ifold is given by{xi(t) = x0(t), i = 1, · · · ,N}, wherex0(t) is the solution of the
isolated dynamics

ẋ0(t) = F(x0(t))+ S0(H0(x0(t − τ))−H0(x0(t))).

Remark: The DO mechanism can be also applied to PS in networks with non-
identical oscillators, provided that the phase in networksof oscillators is well-
defined [6]. For the Kuramoto model, the accumulated synchronization error (21)
is defined by

En(i, j) =
1
T

∫ tn

tn−1

[1− rn(i, j)]dt (24)

with rn(i, j)eζΨn(i, j) = (eζθ j +eζθi)/2, where 0≤ rn(i, j) ≤ 1 measures the extent of
synchronization of oscillatorsi, j, andΨn(i, j) stands for an average phase.

For the networkṡxi = τ jFi(xi) + ∑N
j=1Gi jH(x j,xi), where the parameterτ j is

distributed uniformly in an interval[1−△τ,1+△τ] with the paprameter△τ = 0.1,
the accumulated synchronization error (21) is defined by
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Fig. 8 The average synchronization errorE in SW networks with delayed couplings as a function
of timet. (a) the Zhou-Kurths method (τ = 0.01s). (b) the DO mechanism (τ = 2s). The parameters
N = 500, p = 0.003,γ = 0.002,T = 1s,ε = 0.001.

En(i, j) =
1
T

∫ tn

tn−1

[1− rn(i, j)]dt, (25)

wherern(i, j)eζΨn(i, j) = (eζϑ j +eζϑi)/2, the phaseϑi can be simply defined byϑi =
arctan(yi/x)i) [6]. Of course, for the above two cases, we should choose suitable
ending conditions (such as Eq.(15) and|r′link(n0)−1|< 10−2).

Note that the DGN approach can be also applied to PS in networks with much
more complex non-identical oscillators, such as the networks of Rössler oscillators.
In this case, the order parametersr(t), ri(t), rlink , ri,n

link are defined according to the
phaseϑi.

3.2 Enhanced synchronizability in ACNs

We first briefly review the stability of networks with one time-invariant topology:

ẋi = F(xi)+ σ
N

∑
j=1

G0
i jH0(x j), 1≤ i ≤ N, (26)

whereσ is the overall strength,F(xi) is the dynamics of individual oscillator,H0(x j)
is the output function. For a generally asymmetric matrixG0 = (G0

i j) with G0
i j =

W 0
i jAi j, the variational equation for the synchronous state{xi = s, ∀ i} is

ξ̇i = [DF0(s)−σλlDH0(s)]ξi, (27)

whereD is the Jacobian operator,λl are the complex eigenvalues of the Laplacian
matrix L (= −G0), satisfying Re(λ1) ≤ Re(λ2) ≤ ·· · ≤ Re(λN). The largest Lya-
punov exponent (LLE),Λ(α,β ), of

η̇ = [DF0(s)− (α + iβ )DH0(s)]η (28)
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CS in network (26) withG0 = G; dotted line:Ropt. Inset: the stationary ratio. The parameters are
N = 1000,M = 5, T = 1s andε = 0.001.

is a function ofα andβ , which is the master stability function (MSF) [17,18]. Let
R be the region in the complex plane where the MSF provides a negative LLE. The
condition for CS in network (26) is that the set{σλl, ∀ l} is entirely contained in
R [17]. Here we only consider the case where the regionR is bounded. Then, a
better synchronizability is achieved if simultaneously the ratio Re(λN)/Re(λ2) and
max|Im(λi)| are minimized [33,38].

For SF networks, the DO mechanism realizes CS in network (20)effectively.
During the transition to synchronization in network (20), the ratio Re(λN)/Re(λ2)
in network (26) withG0 = G approaches the optimal synchronizabilityRopt = 3.8
[Fig. 9]. The valueRopt is determined by the coupling matrixG′(α) = (G′

i j(α))
with G′

i j(α) = (kik j)
α/∑ j∈Ki

(kik j)
α andG′

ii(α) =−1, which extends the couplings
in networks [39]. Whenα = 0, the eigenratio of the Laplacian matrix ofG′(0) is
minimal and the synchronizability in network (26) withG0 = G′(0) is optimal [39].
From Eqs. (21-23), the incoming link to be adjusted for each oscillator is always
chosen to be the pair of oscillators with the maximal synchronization difference in
the previous time interval, which substantially decreasesthe ratio Re(λN)/Re(λ2).
From Fig. 9, this is a dynamical process towards the optimal synchronizabilityRopt.

Here we assign the coupling matrixG0 in network (26) by

G0 = Gnorm = Gend/S, (29)

where Gend is the coupling matrix of network (20) after the adaptation.Since
all oscillators have uniform intensities, the Laplacian matrices ofGnorm andGend

have equal ratios Re(λN)/Re(λ2). The ratio Re(λN)/Re(λ2) in network (26) with
G0 = Gnorm is shown by the stationary value [Fig.9: Inset]. Whenσ = 1.5, all
nonzero eigenvalues of the Laplacian matrix ofσGnorm are located in a very narrow
region around the real axes in the regionR, and the absolute values of imaginary
parts are sufficiently small [Fig.10]. Hence the ratio Re(λN)/Re(λ2) is a good indi-
cator for the synchronizability in network (26). In this section the synchronizability
in network (26) withG0 = Gnorm is quasi-optimal, compared with the optimal syn-
chronizability [39].
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Fig. 11 (a,b) The ratio Re(λN)/Re(λ2) for differentT (a) andε (b), in SF networks withN = 1000,
M = 5. Solid line: CS in network (26) withG0 = Gnorm; dotted line:Ropt. All the estimates are
averaged over 20 realizations of networks.

We discuss the effect of the parametersT andε on the synchronizability in net-
work (26) with G0 = Gnorm [Fig.11]. The valueε can be chosen in a wide range,
and the lengthT can be arbitrary large. In our simulationsε is from [0.0001,0.005].
From Fig.11, the ratio Re(λN)/Re(λ2) is almost independent of the values ofT and
ε.

The ratio Re(λN)/Re(λ2) in network (26) withG0 = Gnorm increases slightly
with increasing network sizeN, and can be well-fitted by a power-law dependence,
i.e. the synchronizability decreases slightly [Fig.12]. From the fitting, we find that
the network (26) is still synchronizable tillN ≈ 1011. In this section, the size of the
network (26) that is synchronizable exceeds by several orders of magnitude the size
of unweighted networks (≈ 103) and networks with adaptive couplings (≈ 8×105)
[27]. Obviously, this is a great enhancement of the synchronizability in networks,
compared with unweighted networks and networks with adaptive couplings [27]. It
should be pointed out that for different size of networks, max |Im(λi)| is sufficiently
small (the maximal value is less than 0.06).

The above result can be ensured by the Gerschgorin disk theorem [41]. For the
coupling matrixG0 = Gnorm, all eigenvalues are fully contained within the unit cir-
cle centered at 1. So 0≤ Re(λl)≤ 2, |Im(λl)| ≤ 1, and the largest Re(λN) will never
diverge, independently of the network sizeN [38]. During the transition to synchro-
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nization in network (20),Smax/Smin always equals to 1. In Refs. [27,32], the syn-
chronizability decreases with the increasing ofSmax/Smin, but Smax/Smin increases
with the increasing of the sizeN. Hence the synchronizability here is better than
the synchronizability in Ref. [27], whose main aim is to reduce the heterogeneity of
intensities adaptively.

From the above analysis, we find that the DO mechanism resultsin a better syn-
chronizability in SF networks, compared with unweighted networks and adaptive
networks. Now we also discuss the synchronizability in SW networks due to the
DO mechanism.

Obviously, the synchronization in SW networks can be realized by the DO mech-
anism. Similarly, we assign the coupling matrixG0 in SW networks by Eq.(29), after
the adaptation. In order to enhance synchronizability in SWnetworks, we compare
the synchronizability in the unweighted network (26) (typeI network:W 0

i j = 1), the

degree based weighted network (26) (type II network:W 0
i j = 1/ki), network (26)

with adaptive couplings by the Zhou-Kurths method (type IIInetwork), and net-
work (26) with the coupling matrix being designed by network(20) with undelayed
couplings (type IV networks).

We find that for a fixed small probabilityp (such asp = 0.003) for adding long-
range connections, the synchronizability in type III networks is better than that in
type I networks, but it is worse than that in type II networks,no matter how large
the sizeN of the networks is [Fig.13(a)]. However, we find that type IV networks
have a better synchronizability than both type II and type III networks when the
size is not too large. Of course, the smaller the probabilityp is, the larger is the
size of type IV networks with better synchronizability thanboth type II and type III
networks. For the fixed sizeN = 500, we observe similar results in a certain range
of the probabilityp [Fig.13(b)]. From Fig.13, we see that the synchronizability in
type IV networks is better than those in type II networks and type III networks in
some cases. It is reasonable that type IV networks have better synchronizability than
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Fig. 13 For SW networks, the ratio Re(λN)/Re(λ2) as a function of the network sizeN for a fixed
probability p = 0.003 (a), and the probabilityp for a fixed sizeN = 500 (b). Yellow line (square):
type I networks; green line (diamond): type II networks; blue line (circle): type III networks; red
line (big triangle up): type IV networks; black dashed line:the maximal ratioRe(λN )

Re(λ2) in the region
R. The parameters areK = 4, γ = 0.002,T = 1s,ε = 0.001. All the estimates are averaged over
20 realizations of networks.

type III networks. This is because the DO mechanism ensures uniform intensities
of all oscillators in type IV networks. Now we further analyze the reason why type
IV networks have better synchronizability than type II networks in a certain range
of the probabilityp.

In order to do so, we slightly modify SW networks. The initialnetwork is a
K−nearest-neighbor coupled network consisting ofN oscillators arranged in a ring,
with each oscillatori being adjacent to itsK neighbor oscillatorsi±1, · · · , i±K/2,
and withK being even. Then one adds with probabilityp a long-range connection
between a pair of oscillators with indices satisfying

n1 ≤ min{|i− j|, N −|i− j|} ≤ n2, (30)

where 0≤ n1, n2 ≤ N/2 are two positive integers. This kind of networks is called
type V networks. Based on type V networks, we adjust the coupling strengths by the
DO mechanism. After the adaptation, we define the average coupling strength〈Wv〉
over thekW links having the samev = min{|i− j|, N −|i− j|}:

〈Wv〉 =
1

kW
∑Gi j. (31)

Further, for unweighted type V networks, the average load〈Lv〉 over thekL links
having the samev is given by

〈Lv〉 =
1
kL

∑Li j, (32)

where the loadLi j of the link connecting oscillatorsi and j quantifies the traffic of
the shortest paths passing that link. Here the size of type V networks isN = 300 and
the probabilityp = 0.2. For differentn1 andn2, we plot the relationship between
〈Wv〉 andv [Fig.14(a,d,g)], and the relationship between〈Lv〉 andv [Fig.14(b,e,h)],
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respectively. From these subfigures, we conclude that〈Wv〉 has a similar dependence
onv as〈Lv〉, which is further verified by the relationship〈Wv〉 ∼ 〈Lv〉 [Fig.14(c,f,i)].
This implies that the adaptation due to the DO mechanism may lead to a similar
synchronizability as the load based weighted networks. This may in part explain
why type IV networks have a better synchronizability than type II networks in a
certain range of the probabilityp for adding long-range connections.

Remarks: From the above subsection, we can extend the DO mechanism to CS
in network (20) with the coupling functionH(x j,xi) = H(x j(t − τ0))−H(xi) and a
small delay timeτ0 (such asτ0 ≤ 2). The DO mechanism ensures that all oscillators
have uniform intensities, which leads to the existence of a synchronous manifold in
network (20). However, it can not be realized by the dynamical mechanism proposed
in Ref. [27]. Due to the DO mechanism, we can also obtain a better synchronizability
in SF and SW networks due to CS in networks with delayed couplings. Here we omit
the corresponding results.

From the DGN approach and the DO mechanism, the two coupling schemes
are “winner-take-all” strategies. This implies that the intensitySi for oscillatori in-
creases to infinity as the adjustment timen tends to infinity. Hence there is one short-
coming: we should choose suitable conditions to end the adaptation of the above two
mechanisms. In fact, this shortcoming can be overcome by slightly modifying the
adjustment (8,9) for the DGN approach and the adjustment (23) for the DO mech-
anism. Here the adjustment of couplings for the incoming link with the maximal
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competition ability is modified as follows:

W n+1
iµn

i
:= W n

iµn
i
+ εe−n/k0 (33)

for the DGN approach, and

W n+1
i jnmax

= W n
i jnmax

+ εe−n/k0 (34)

for the DO mechanism, wherek0 is a suitable positive integer. From Eqs. (33,34),
the intensitySi still increases, and all oscillators have uniform intensities. However,
the intensitySi for each oscillator can not increase to infinity, and can be bounded
by the limit S̄ = limn→∞Si for all oscillators, where

S̄ = εe−1/k0/(1−e−1/k0). (35)

Obviously, we can adjust the ultimate intensity for all oscillators by a suitable pa-
rameterk0. Whenk0 is larger, the intensitȳS is larger; whenk0 is smaller, the in-
tensity S̄ is also smaller. It should be noted that we obtain similar results if we
choose the parametersk0 = 500, ε = 0.01 for PS in the Kuramoto models and
k0 = 1000, ε = 0.001 for CS in networks of Rössler oscillators, respectively.

4 Conclusions

In this chapter, we introduce two dynamical optimization coupling mechanisms for
getting different kinds of synchronization in adaptive complex networks, whose os-
cillators could be either identical or non-identical. For each oscillator, we adjust only
one incoming link’s strength in different time intervals while the other incoming
links’ strengths remain constant. The dynamical optimization coupling mechanisms
are in effect “winner-take-all” strategies. If one incoming link for each oscillator
has the maximal competition ability in its neighborhood in different time intervals,
its strength increases by a small value. We realize different kinds of synchroniza-
tion in adaptive complex networks with undelayed or delayedcouplings, as well as
ensure that all oscillators have uniform intensities during the transition to synchro-
nization. We also enhance the synchronizability in complexnetworks with identical
oscillators.
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