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Recently, the phase-flip bifurcation has been described as a fundamental transition in time-delay
coupled, phase-synchronized nonlinear dynamical systems. The bifurcation is characterized by a
change of the synchronized dynamics from being in-phase to antiphase, or vice versa; the phase-
difference between the oscillators undergoes a jump of 7 as a function of the coupling strength or
the time delay. This phase-flip is accompanied by discontinuous changes in the frequency of the
synchronized oscillators, and in the largest negative Lyapunov exponent or its derivative. Here we
illustrate the phenomenology of the bifurcation for several classes of nonlinear oscillators, in the
regimes of both periodic and chaotic dynamics. We present extensive numerical simulations and
compute the oscillation frequencies and the Lyapunov spectra as a function of the coupling strength.
In particular, our simulations provide clear evidence of the phase-flip bifurcation in excitable laser
and Fitzhugh—Nagumo neuronal models, and in diffusively coupled predator-prey models with
either limit cycle or chaotic dynamics. Our analysis demonstrates marked jumps of the time-delayed
and instantaneous fluxes between the two interacting oscillators across the bifurcation; this has
strong implications for the performance of the system as well as for practical applications. We
further construct an electronic circuit consisting of two coupled Chua oscillators and provide the
first formal experimental demonstration of the bifurcation. In totality, our study demonstrates that
the phase-flip phenomenon is of broad relevance and importance for a wide range of physical and

natural systems. © 2008 American Institute of Physics. [DOI: 10.1063/1.2905146]

The spontaneous onset of synchronization in coupled
nonlinear oscillators is a remarkable and ubiquitous phe-
nomenon. In recent years there has been much effort to
explore various types of synchronization, including phase
synchronization, when the dynamics is correlated in
phase but uncorrelated in amplitude. Phase synchroniza-
tion has been increasingly studied in the context of poten-
tial applications in disciplines ranging from physics and
chemistry to biology and medical sciences. It was found
that the degree of synchronization can be an important
part of the function or malfunction of a given system, and
in many cases synchronization in phase turned out to be
undesirable. In mechanical systems synchronization may
result in dangerous jams or overloads. Similarly, several
neurological disorders such as epileptic seizures or Par-
kinson’s disease are associated with synchronized firings
of neurons, while in ecological systems, the synchroniza-
tion of populations is often seen as detrimental because it
enhances the chances of global species extinctions. These
findings highlight the need to explore reliable methods
for preventing the formation of phase synchronization in
coupled oscillatory systems. One such possibility was re-
cently identified if the coupling between the subsystems
allows for time delay. In this case the system can undergo
a phase-flip bifurcation,l’2 where the coupled oscillators
alternate from a state of in-phase to antiphase, with the
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emergence of large phase differences between the inter-
acting systems. Here we demonstrate that the phase-flip
bifurcation occurs in a wide and important class of sys-
tems, including excitable dynamics, that apply in laser
and neuronal systems, and regular and chaotic cycling
ecological models. Further we provide the first explicit
experimental verification of this bifurcation in coupled
electronic circuits. Taken together, our results suggest the
phase-flip bifurcation to be a general and important
property of time-delay coupled nonlinear systems.

I. INTRODUCTION

Consider coupled nonlinear oscillators which are identi-
cal or nearly identical. It is well known that under certain
circumstances weak coupling suffices to synchronize the os-
cillators, namely causing them to oscillate in unison.® A va-
riety of coupling scenarios have been extensively investi-
gated in recent years and now fairly general prescriptions are
available that will ensure synchronous dynamics regardless
of the nature of the motion itself. The possibility of having
synchronous chaotic motion,”* in particular, has been a dis-
covery of considerable potential significance. Depending on
the nature and the strength of the coupling the synchronous
oscillation can be similar to the isolated dynamics of one of
the oscillators or it can be quite distinct.

© 2008 American Institute of Physics

Downloaded 05 May 2008 to 193.174.246.182. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp


http://dx.doi.org/10.1063/1.2905146
http://dx.doi.org/10.1063/1.2905146
http://dx.doi.org/10.1063/1.2905146

023111-2 Prasad et al.
a) n
Ao
0
p
b)

p

FIG. 1. Schematic figure for phase-flip bifurcation showing the variation of
(a) phase difference and (b) frequency as a function of system parameter p.

When physically coupling two systems, it is often nec-
essary to consider time delays. These arise, for example,
when the interaction between the systems is effected by
transmitted signals of finite velocity, as is common in a va-
riety of practical situations. In biological, ecological or social
systems time-delayed coupling typically arises from diffu-
sive or migratory processes which are not instantaneous.
Since the interaction frequently acts over time scales that are
comparable to any intrinsic time scales in the system, time
delay is an essential property of the coupling which cannot
be neglected. The synchronization of time delay coupled os-
cillators has been investigated in a number of studies. ™ It
was found that the systems in the presence of time delay
continue to show synchronization, although new dynamical
phenomena such as amplitude death'?’ also become pos-
sible.

The phase-flip bifurcation is a phenomenon that has
been recently observed in such systems, in the synchronized
dynamics of time delay coupled oscillators. In this bifurca-
tion the relative phase between the oscillators jumps from
zero to 7 or vice versa as the coupling parameters or time
delay is varied. A schematic of this bifurcation is shown in
Fig. 1. The phase-flip is also accompanied by a discontinu-
ous change in the frequency of the synchronized oscillators
[see Fig. 1(b)], as well in a spectrum of Lyapunov exponents
which measure the stability of the system.l’2 A detailed study
of this bifurcation in coupled Landau—Stuart oscillators has
been presented in Ref. 1. It was shown analytically that there
was a discontinuity in the frequency, which could also be
estimated.

In the present paper, we extend these previous works and
investigate the phenomenology of the phase-flip bifurcation
by exhaustive numerical simulations in a general model for
time-delayed coupled nonlinear oscillators,

x=F(x) + egly(t - 7).x(1)],
(1)
y=F'(y) + eg[x(t - 7),y(1)].

Here x and y denote the variables of the two n-dimensional
subsystems. The dynamical equations are specified by F and
F’ (the prime denoting that the parameters of the two sys-
tems could be different), and g specifies the manner in which
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the subsystems are coupled. The parameters € and 7 are the
coupling strength and the time delay, respectively, and we
have considered the case when the coupling is symmetric.
Earlier studies have examined the cases of coupled limit-
cycle oscillators® and Réssler chaotic dynamical systems.1

We believe the bifurcation should be easy to detect and
that this effect should be observed in any dynamical, oscil-
latory system. Our main motivation in the present work is
thus to show this bifurcation in some important paradigmatic
classes of systems, and we begin in Sec. II by exploring the
phase-flip bifurcation in excitable systems. Two models we
consider are an excitable laser system and the Fitzhugh—
Nagumo model of a neuron. Similarly, in Sec. III we inves-
tigate two different ecological predator-prey models where
the bifurcation manifests itself. Our analysis is comple-
mented by a calculation of the fluxes between the two popu-
lations. This measure is useful in estimating the potential of
a rescue effect, namely the chance that immigration from
neighboring populations may help prevent species extinction.
As mentioned in the abstract, being able to change the rela-
tive phase between two oscillating populations may have po-
tentially important practical applications. An experimental
verification of the bifurcation in two coupled Chua circuits is
then presented in Sec. IV, and the paper concludes with a
discussion and summary in Sec. V.

Il. EXCITABLE SYSTEMS

Many physical and physiological systems are
excitable®'? namely, when an external perturbation is below
a threshold, the dynamics remains in a quiescent state, with
drastically different dynamics results when the perturbation
is above the threshold. The nature of the dynamics in excit-
able systems is intrinsically different from that in nonlinear
oscillators owing to the two time scales that are present in
the motion."" A variety of accessible experimental systems
(such as semiconductor lasers”'' or neuronal systemslo’“)
are properly described through excitable models.

Consider for instance the equations which mimic the dy-
namics of low-frequency fluctuations in semiconductor laser
with optical feedback,’

X] =X,

. _ 3 2

Xy = X1 =Xy = X] + XX+ By + Box].

Now we couple two such laser systems with delay,
x(1) = x,,

. 3 2
.X2(t) =X —X—X +X1X2+B1 +,32x1

+ e yy(t=7) = x(1)],
()
yi(t) =y,,

Yo =y1 =Yy = ¥1 +y1va+ B + Box]
+elx(t—7) = y2(0)].
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FIG. 2. (Color online) (a) Spectrum of Lyapunov exponents for the excitable
laser model, Eq. (2): \; (black), \, (black-overlapped), and A5 (red) with
time delay, 7, at fixed coupling strength e=3 (for 8,=0.08 and 3,=1). In the
amplitude death region all Lyapunov exponents are negative and \;=X\,. (b)
Frequency () as a function of time-delay, 7. (c) In- and (d) out-of-phase
motion before and after the bifurcation at 7=0.7 and 7=0.75, respectively.

Each of the (uncoupled) oscillators has three fixed points: a
saddle, an unstable focus, and a stable node (for details, see
Refs. 9 and 11). The unstable manifold of the saddle termi-
nates in a stable node, while the stable manifold of the saddle
connects to the coexisting unstable focus. Since the only at-
tractor is the stable node, any trajectory that is made to cross
the stable manifold of the saddle by a perturbation necessar-
ily makes a long excursion to reach the attractor. This dy-
namical behavior, which is independent of the strength of the
perturbation so long as it is above the threshold, makes this
system excitable. In the coupled system, Eq. (2), the pertur-
bation itself is introduced via the time-delayed coupling.
When the coupling is instantaneous, namely, 7=0, the dy-
namical system has dimension 4, while with time-delay in
the coupling the system is infinite-dimensional. Numerical
simulations are performed for a (sufficiently) high-order dis-
cretization of these equations, and can be carried out by
adapting standard numerical techniques.12

From the spectrum of the Lyapunov exponents13 the
phase-flip bifurcation point is indicated (see the arrow) by a
discontinuity in the slope of the Lyapunov exponents [Fig.
2(a)] and in the frequency of oscillation [Fig. 2(b)]. Trajec-
tories before and after the bifurcation are shown in Figs. 2(c)
and 2(d), respectively. These findings clearly confirm the ex-
istence of a phase-flip bifurcation in this system.

Neurons, wherein the dynamics exhibits spikes are an-
other important example of excitable systems, and a widely
used mathematical description is provided by the simplified
van der Pol—Fitzhugh—Nagumo10 excitable neuronal model.
Consider two such neurons which are delay-coupled,
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FIG. 3. (Color online) (a) Spectrum of Lyapunov exponents for coupled
FHN oscillators, Eq. (3): A, (black) and \, (red, dashed) as a function of the
time delay, 7, at fixed @=0.2, ©=0.001 and €=0.3. (b) Average frequency ()
of oscillator 1 as a function of 7. (c) In- and (d) out-of-phase dynamics
before and after the bifurcation at 7=0.6 and 7=0.7, respectively.

3
X —x7/3—-x
xl(t)=—] : 2,

X(t) =x + a+ dy,(t—7) - x(1)],
(3)

’;
. Yi—=y1/3-»
yl(t): ! s
u

Yot) = vy + a+ exy(t = 7) = y,(1)].

The fast variable x; corresponds to the membrane potential
and the variable x, is related to recovery or refractoriness.
Here the parameters p and « represent the square root of the
quotient inductance/capacitance and the potential supplied to
the membrane, respectively. This system has a fixed point
which is stable for «>1 and an unstable focus for a<<1,
which gives rise to limit cycle oscillations. A finite perturba-
tion in & near =1 shows the excitability. Shown in Fig. 3(a)
are the largest two Lyapunov exponents for «=0.2. The dis-
continuity in \,, indicated by the arrow in Fig. 3(a), locates
the bifurcation, which here lies in the region of periodic
motion."’ Typical trajectories, before and after the bifurca-
tion are shown in Figs. 3(c) and 3(d): in- and out-of-phase
motions. The clear characteristic jump in the oscillation fre-
quency €(7) is shown in Fig. 3(b) which confirms this bifur-
cation.

Phase synchronized oscillations in neuronal ensembles
are a topic of considerable current interest in neurobiology.
For instance, in a recent study of induced focal epilepsy Li et
al."* have observed both in- and out-of-phase oscillations in
spatially separate regions of a rat brain. Since the time-delay
in the information transmission between different brain re-
gions will depend on their spatial separation, the phase-flip
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bifurcation may prove useful in understanding the detailed
mechanism of dynamical diseases such as epilepsy, or other
neurological disorders that are associated with synchronized
regions in the brain such as Parkinson’s disease.

lll. ECOLOGICAL SYSTEMS

An important issue in modeling ecological systems is
understanding the behavior of interacting populations. A
standard approach in studying extended systems is to inves-
tigate metapopulations, namely, an ensemble of local popu-
lations which are coupled by diffusive migration of individu-
als. Since the individuals need a time span 7 to disperse to
the other population, such systems naturally involve time
delays depending on the spatial separation between the two
populations and the migration velocity.

We first consider the predator-prey model introduced by
Rosenzweig and MacArthur' which is known to exhibit
limit-cycle oscillations (and has played an important role in
studying phenomena such as the so-called paradox of enrich-
ment). In order to investigate the time-delayed synchroniza-
tion in such systems we study two predator-prey populations
which are coupled in the following manner:

%1(8) = x, (1 = x1/by) = byxixo/ (b3 + X)),

Ko(t) = bax xy/ (b3 + x1) = bsxy + € y,(t = 7) = x,(1) ],

4)
V1(0) =y1(1 = y1/by) = byy yo/ (b3 +yy),

V2(t) = byy1yo/ (b3 + y1) = bsy, + € x,(t = 7) = y,(1)].

Here x; and x, represent the population densities of the prey
and predator species, b, is the carrying capacity for the prey,
b, is the maximum rate at which an individual predator can
consume prey, bs is the predator’s half-saturation constant,
b, is the conversion ratio of prey eaten to predator reproduc-
tion, and bs is the predator mortality. The populations are
diffusively coupled by migration of the predator species over
a time span 7.

The parameters are fixed in the limit-cycle regime of the
model at b;=1, b,=0.05,b3=0.5, b;=0.5, and b5=0.1.
Shown in Fig. 4(a) is the spectrum of Lyapunov exponents,
where the discontinuous change in the second Lyapunov ex-
ponent clearly predicts the phase-flip bifurcation. This is
confirmed by the sudden increase of the oscillation fre-
quency (7) which jumps by a factor of about 3, from ()
=~0.1 to 1=0.3 at the bifurcation [see Fig. 4(b)]. The
change in the dynamics across this transition is depicted in
Figs. 4(c) and 4(d). Prior to the bifurcation for time delays
7<7,, both predator-prey systems oscillate in perfect syn-
chrony, while for 7> 7, the oscillations are changed to an-
tiphase synchronization. The population maxima of the first
species arise during the troughs of the second species and
vice versa. These results provide an univocal confirmation
for the presence of the phase-flip bifurcation in this system.
Note that the period length T=27/€) is much larger than the
critical time delay at the bifurcation, 7> r.,.

The difference in the populations is an estimate of the
migration flux. Shown in Figs. 5(c) and 5(d) are the time
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FIG. 4. (Color online) (a) Spectrum of Lyapunov exponents for the ecologi-
cal model, Eq. (4): \; (solid black line) and N\, (dashed red line) as a
function of the time-delay 7 at fixed coupling strength €=0.6. (b) Frequency
of oscillation () as a function of the time delay 7. Trajectories of the oscil-
lators 1 (solid line) and 2 (dashed line) with periodic motion at (¢) 7=8 (in
phase) and (d) 7=10 (out-of-phase).

delayed population fluxes |x;(f)—y;(t—7)| for the prey abun-
dances between the two populations, corresponding to the in-
and out-of-phase motions of Figs. 5(a) and 5(b). It can be
seen that the flux reaches a minimum near each extremum of
the prey. Similar behavior [Figs. 5(g) and 5(h)] is also ob-
served for the predators with abundances as shown in Figs.
5(e) and 5(f). Note that the flux in Figs. 5(d), namely the
prey flux when the motion is in antiphase, takes particularly
small values. This is quite remarkable since the two popula-
tion are coupled by migration of the predator species.

To obtain more insight into the migration process in the
time-delay coupled populations, we take time-averages.
Shown in Fig. 6 is the quantity {|x,(t)—y,(t—7)|), i.e., the
7-delayed average of prey or predator fluxes as a function of
the delay time 7. As can be seen in Fig. 6(a), there is a
noticeable jump in this quantity at the bifurcation 7=r7,. For
the predator species (i=2) the flux increases somewhat
across the bifurcation (and is decreasing only for larger val-
ues of 7), while the averaged flux for the prey (i=1) de-
creases at the bifurcation. In contrast the averaged instanta-
neous flux increases drastically at the bifurcation; see
Fig. 6(b).

Numerous predator-prey model have been studied over
the past few decades, and one that has been recently intro-
duced as a “minimal” model that describes realistic
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FIG. 5. (Color online) Change of the time-delayed population-fluxes at the
phase-flip bifurcation. The left panel corresponds to in-phase synchronized
dynamics (7=8) and the right panel to antiphase synchronized dynamics
(7=10) in the ecological model, Eq. (4). Other details remain the same as in
Fig. 4(a). Shown in (a) and (b) is the time course of the prey-species, for
population x;(7) (solid line) and population y,(r) (dashed line). Panels (c)
and (d) show the absolute values of the corresponding time-delayed fluxes
{|x,(t)=y,(t=7)|). Similarly, panels (e) and (f) depict the time course of the
predators [x,(¢) and y,(7)], and (g) and (h) show the time-delayed predator
fluxes {|xy(1) =y, (t=7)|).

population oscillations with chaotic amplitudes but uniform
phase evolution'® is a three-level vertical food chain: vegeta-
tion is consumed by a herbivore which in turn is preyed upon
by the top predator. Consider two such coupled systems,
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FIG. 6. (Color online) Change of the averaged 7-delayed fluxes
{|x{(t)=y(t= 7)) as a function of the time-delay 7. Shown are (a) the average
delayed flux and (b) the average instantaneous flux for both prey i=1 (solid
line) and predators i=2 (dashed line).
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FIG. 7. (Color online) (a) Spectrum of Lyapunov exponents for the ecologi-
cal model, Eq. (5): N, (solid black line) and \, (solid red line), N5 (solid
green line) and N, (dashed blue line) as a function of the time-delay 7 at
fixed coupling strength €=0.01, and (b) variation of the frequency with time
delay. Trajectories of oscillators 1 (solid line) and 2 (dashed line) when the
dynamics is chaotic at (c) 7=3 (nearly in-phase) and at (d) 7=4 (nearly
out-of-phase).

xl(l‘) =X — 1.5 —0.1x1x2,

XZ([) =- 0945)C2 + O.I.XIXZ - 0.6)C2X3
+elyy(t— 1) —x(1)],

X3(t) =- 10)('3 +0.1+ 0.6X2.X3,

(5)
yi(t) =y, = 1.5-0.1y,y,,

¥2(t) == 0.945y, + 0.1y, y, — 0.6y,y;
+ ey (t— 1) = y,(1)],

y3(t) =— 10y3 +0.1+ 06y2y3

X1,y are vegetation variables, x,,y, are herbivores, and
X3,y are the top predators. Details of the parameters and the
specific choices for the values above can be found in Ref. 16.
The two systems are time-delay coupled via the migration of
the two herbivore species.

This model is able to produce several dynamical re-
gimes, such as limit-cycle oscillations and a period-2 cascade
towards phase coherent chaos.'® In all these dynamical re-
gimes of the model we have observed the phase-flip bifurca-
tion to arise naturally for sufficient time delay 7. An example
is shown in Fig. 7, where both before and after the transition
the dynamics is chaotic. All the characteristic hallmarks of
the phase-flip bifurcation, namely the change in the spectrum
of Lyapunov exponents [Fig. 7(a)] and of the oscillation fre-
quency Q(7) [Fig. 7(b)] are evident here. The fourth largest
Lyapunov exponent is discontinuous at the transition, in con-
trast to the examples studied above.
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While further studies certainly are required in order to
properly model actual field data, it should be pointed out that
existing ecological data frequently show antiphase dynamics,
similar to that exhibited in Figs. 4(d) and 7(d). One promi-
nent example arises in the dynamics of epidemic outbreaks
of measles, which appear to show two forms of synchroni-
zation: the number of cases of measles in neighboring cities
in the UK are either in-phase (e.g., Birmingham and New-
castle) or out-of-phase (e.g., Cambridge and Norwich); see
Fig. 1 of Ref. 17. Such different forms of synchronization are
not only of academic interest, but are of utmost practical
importance and there has been some indication that differen-
tial phase behavior can be of use in population control. For
instance, it is believed that for interacting populations, the
out-of-phase behavior is beneficial since it promotes species
conservation. The reason is that asynchrony enhances the
global persistence of a population through the rescue effect,
even when there are local extinctions. In contrast, in-phase
dynamics usually are thought to promote species extinction
because the rescue effect is then not effective. It is likely that
a detailed analysis of the phase-flip bifurcation in oscillating
predator-prey metacommunities will be of much interest in
this context.

IV. EXPERIMENT: COUPLED CHUA OSCILLATORS

In this section we present experimental evidence of the
phase-flip bifurcation in an electronic circuit implementation
of two delay-coupled Chua oscillators. The two oscillators
are only approximately identical since in reality it is not

FIG. 8. Circuit of two delay coupled
Chua oscillators: the oscillators are
drawn inside dotted boxes labeled 1
and 2. Delay networks D; and D, are
separately drawn with capacitors Cs
=36.7 nf and C4=10 nf, respectively.

possible to ensure that the parameters are exactly equal. Fur-
ther, unlike the model systems discussed above, the coupling
is asymmetric, and the time-delays are not equal. However,
this does not appear to affect the phase-flip phenomenon.
The coupled circuit is shown in Fig. 8.

Each Chua oscillator'™'® consists of a passive resistor
R 10, two capacitors C; 3 and C, 4 and inductors L, with
leakage resistance R,q. The piecewise linear function f is
simulated by using two op-amp U,-U, (or U,-U,) and as-
sociated resistances. All component values are noted in the
circuit diagram.

The op-amp Us is used for unidirectional current flow
from the node of the C; capacitor of one oscillator (say II) to
the node of the C, capacitor of another oscillator (I). The RC
network D, (a combination of resistor R,, and capacitor Cs)
with a series resistance R;; is used to introduce delay cou-
pling from oscillator II to oscillator I. The resistor R,, is
tuned to control the time delay 7; while R;; controls the
coupling strength €. Similarly, the op-amp Uy allows unidi-
rectional current to flow from the node of the C; capacitor of
oscillator I to the node of the C; capacitor of oscillator II via
another RC network D, (a combination of resistor R,; and
capacitor Cg) and the series resistance R;g. Accordingly, the
resistor R,; controls the delay time 7, and R;g controls the
coupling strength €,. A bidirectional delay coupling is thus
established between the two Chua oscillators using delay
networks (D;,D,) and resistances (R;7,R,g).

In the experiment, we adjust the dynamical state of the
two uncoupled Chua oscillators by fixing the resistances R;
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FIG. 9. (Color online) (a) Phase difference and (b) average oscillation fre-
quency of an individual circuit as a function of the time delay 7. The
experimental time series of the voltages V¢, (solid line) and V3 (dashed
line) for (c) in-phase dynamics at R»,=394 () and (d) out-of-phase dynamics
at Ry,=402 Q.

=1525 (), so that oscillator I is in the period-2 regime, and
Rp=1507 Q, so that oscillator II is in period 4. After cou-
pling, we fix the coupling strength €;=1/R; and e,=1/R3
by appropriate selection of the resistances R;;=21.36 kQ)
and R;3=65.2 kQ) and also fix one of the time delays 7,
=R,,C¢ by the choice of Ry;=523 ) and C¢=1008 nf. The
delay 7;=R»,Cj5 is only varied by varying R,, while keeping
the capacitor C5=36.7 nf fixed. The voltage VC; and VC; at
capacitor nodes C; and Cj, respectively, are monitored using
a 2-channel digital oscilloscope (Tektronix, TDS 220,
100 MHz) with a maximum sampling rate of 1.0 GS/s and
record length of 2500 data points in each snapshot. The in-
stantaneous phases ¢,(f) of the measured oscillatory volt-
ages, VC, and VC;, are estimated using the Hilbert
transform®’ separately. The resulting phase difference A ¢(r)
of the coupled oscillators is then plotted with delay time 7,
as shown in Fig. 9(a) which reveals a sharp transition from 0
to 7 as indicated by the discontinuity of the line plot with
solid black circles. This transition is accompanied by a sharp
increase in the frequency of the coupled system as shown in
Fig. 9(b). The frequency is estimated from the average rate
of change in instantaneous phase (Ad(r)/dr).

Our experimental results, shown in Fig. 9, confirm the
existence of the phase flip bifurcation as defined in the pre-
vious sections. In fact, the Chua oscillators become chaotic
under bidirectional coupling with small time delay, however,
the coupled oscillators move to a periodic state when the
delay time 7 is increased. The coupled Chua oscillators re-
main periodic with increase in delay 7, and maintain in-
phase synchrony until the switch to antiphase synchrony
above a critical time delay. The measured voltage time series
of VC, and VCj are plotted in Fig. 9(c) in solid and dotted
lines, respectively, for 7,=14.46 us (Ry,=394 ). The two
circuits show in-phase synchrony, but they switch over to
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antiphase (or out-of-phase) behavior for 7,=14.75 us (Ry,
=402 ) as shown in Fig. 9(d). The phase flip bifurcation,
the sharp transition from in-phase to antiphase, occurs above
a critical time delay of 7,=14.64 us (Ry»»=399 (}) as shown
in Fig. 9.

V. SUMMARY AND DISCUSSION

When systems that are spatially separated are coupled, it
is natural to introduce time delays in the interactions to ac-
count for the finite velocity with which signals are transmit-
ted between them. In the present paper, we have shown that
such systems, when synchronized, can undergo a bifurcation
that affects their relative phases while not otherwise influ-
encing the dynamics in any significant manner.

Time delay appears to be necessary for this bifurcation,
although it is clearly not sufficient. The nature of the cou-
pling and of the nonlinearity is crucial for effecting
synchrony.l’2 Indeed, when systems are coupled via conju-
gate or dissimilar variables some effects similar to those ob-
served in time-delay coupled systems can occur.”! In earlier
work we have discussed the phenomenology of the phase-
flip bifurcation in coupled Landau—Stuart limit cycle oscilla-
tors and demonstrated this bifurcation within different types
of dynamics in chaotic systems such as coupled Rossler os-
cillators. This transition can be from in-phase motion to out-
of-phase motion or vice versa, and typically, the pattern re-
peats with increasing delay. At each phase flip though, the
oscillator frequency always appears to increase. Further, the
bifurcation is robust with respect to additive random noise
(results not shown here).

It is important to note that this bifurcation occurs in any
dynamical regime. Since the only change is one of relative
phase, the actual dynamics can be periodic (see Figs. 3, 4,
and 9), or even chaotic (Fig. 7), in addition to the case of
amplitude death (Fig. 2). What distinguishes these cases is
the spectrum of the Lyapunov exponents. When the dynam-
ics is attracted to fixed points, all Lyapunov exponents are
negative. When the motion is periodic the largest Lyapunov
exponent is zero, when quasiperiodic Refs. 1 and 2 (not
shown here) the largest two exponents are zero, and when
the motion is chaotic the largest two Lyapunov exponents are
positive.

In the present paper we have extended these previous
findings to different classes of oscillators, including excitable
dynamics such as laser or neuronal models, and periodic and
chaotic ecological models. The occurrence of the phase-flip
bifurcation in a wide class of systems suggests that these
effects can be of consequence; earlier experimental results on
time-delay coupled lasers appear to have probed the dynam-
ics on either side of the bifurcation point.7 Here, we have
implemented time-delay coupling in a model electronic cir-
cuit and have been able to give a clear experimental evidence
for the phase-flip bifurcation. Note that transitions to an-
tiphase synchronization in two coupled Chua circuits have
been reported before.”” Even though these studies did not
involve time delays, it was found that the transition to an-
tiphase always goes together with an increase in the oscilla-
tion frequency.
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Exploration of the dynamics of spatially extended delay-
coupled systems wherein we expect that new effects will
arise from the interaction of phase and relay
synchronization23 are currently underway.24
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