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We study synchronization of a resonant limit cycle on a two-dimensional torus with an external
harmonic signal. The regime of the resonant limit cycle is realized in a system of two coupled Van
der Pol oscillators; we consider the resonances 1:1 and 1:3. We analyze the influence of coupling
strength between the oscillators. We show that the resonant limit cycle can be generally synchro-
nized on the torus through the resonance destruction followed by the locking of one and then
another one of the basic frequencies. We consider the bifurcational mechanism of the synchroniza-
tion effect. © 2008 American Institute of Physics. �DOI: 10.1063/1.2949929�

Quasiperiodic oscillations represent stable solutions of
dynamical systems that depend on a finite number of pe-
riodic functions �k„�kt…, k=1,2 , . . . ,n, with the period
Tk=2� Õ�k in each argument. Quasiperiodic solutions de-
scribe complex oscillating processes with several frequen-
cies that are generally independent natural frequencies of
interacting subsystems. In phase space these solutions are
represented by a stable limit set (attractor) in the form of
an n-dimensional torus. The structure of phase trajecto-
ries on a torus can be ergodic (nonperiodic) or resonant
(periodic). According to the Arnold terminology, the sec-
ond type characterizes a resonant limit cycle on a torus,
resulting from mutual frequency locking within Arnold’s
“tongues.” The latter denotes synchronization regions of
oscillations on a torus. In our paper the central interest is
addressed to the study of synchronization of quasiperi-
odic oscillations by an external harmonic signal. As the
simplest and most real object for consideration we choose
two coupled Van der Pol oscillators with basic frequen-
cies mismatch. The peculiarities of synchronization of
two-frequency oscillations are studied in detail. The bi-
furcational mechanisms of synchronization are described,
and the bifurcation diagram is constructed. The synchro-
nization effects are studied for two values of the winding
number, i.e., �=1:1 and �=1:3, and the influence of
mutual coupling degree between the oscillators is ana-
lyzed. The results of the paper are in good accord with
the numerical and experimental data obtained earlier for
other dynamical systems.

I. INTRODUCTION

Research of peculiarities and properties of quasiperiodic
oscillations compose a sufficiently complex problem.1–5 One
of the important questions in that branch is the analysis of
synchronization phenomena.

The problem of synchronization of quasiperiodic mo-
tions with two independent frequencies was partly solved
first in.6,7 In Ref. 6, the winding number locking phenom-
enon was first investigated in a system of two coupled oscil-
lators of two-frequency motion. It has been established that
the regime of complete synchronization results from the con-
secutive locking of the basic frequencies of the system. In
Ref. 7, the synchronization of two-frequency resonant mo-
tions by an external harmonic signal was considered. It has
been shown that in the case of the synchronization of a reso-
nant cycle on a torus, the basic frequencies are synchronized
independently, although the resonant conditions assume the
frequencies to be rationally related. This effect was demon-
strated numerically and experimentally for the resonances
�=1:4 and �=1:3.7

In our paper we study the bifurcational mechanisms of
external synchronization of quasiperiodic oscillations by us-
ing the model of two coupled Van der Pol oscillators with
frequency mismatch. The choice of that model is substanti-
ated as follows. First, the oscillator of two-frequency oscil-
lations considered in Ref. 7 provides modulated self-
sustained oscillations with frequencies f0 and f1. Their
amplitudes are significantly different and cannot be varied in
necessary ranges. Second, the system used in Ref. 7 cannot
realize the regime of resonance 1:1, which is quite important
for understanding the bifurcational mechanisms of synchro-
nization. Finally, it is impossible to vary the internal cou-
pling between the subsystems of the oscillator considered in
Ref. 7, and this makes the observed effects very hard to
study.

Taking into account the aforementioned, we propose and
consider a different model that is more convenient and does
not have the above disadvantages. We deal with a system of
two coupled Van der Pol oscillators, where amplitudes, fre-
quencies, and coupling strength are determined by the corre-
sponding parameter values. Using that model we have con-
firmed the results obtained in Refs. 6 and 7 as well as havea�Electronic mail: wadim@chaos.ssu.runnet.ru.
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determined the bifurcational mechanism of synchronization
of a resonant limit cycle on a two-dimensional torus.

II. MUTUAL SYNCHRONIZATION OF TWO COUPLED
OSCILLATORS

Let us first consider the classical mechanism of synchro-
nization of two coupled periodic oscillators. As a partial self-
sustained oscillatory system we analyze the model of the Van
der Pol oscillator in the regime of a limit cycle, correspond-
ing to stable nearly harmonic motions:

ẋ1 = y1, ẏ1 = �m − x1
2�y1 − �1

2x1, �1�

where m is the excitation parameter, �1
2= �2�f1�2, f1=1 /T0,

f1 is the frequency, and T0 is the period of motions. As is
well known, self-sustained oscillations in system �1� appear
through the Hopf bifurcation at the point m*=0. The ampli-
tude of motions for m�m* is proportional to �m.

As the second subsystem we consider the same Van der
Pol oscillator �1� with a frequency mismatch ��2��1�. We
study the regime of self-sustained oscillations in the system
with symmetrical coupling:

ẋ1 = y1, ẏ1 = �m − x1
2�y1 − �1

2x1 + k�x2 − x1� ,

�2�
ẋ2 = y2, ẏ2 = �m − x2

2�y2 − �2
2x2 + k�x1 − x2� .

Here, k determines the coupling strength between the partial
oscillators, m has the same value for both oscillators, and the
natural frequencies �1 and �2 of the oscillators have different
but rather close values.

We consider self-sustained oscillations in system �2� for
the following parameter values: m=0.1, �1=1, and k=0.02.
We vary the parameter �2 in the range 0.98��2�1.02 to
analyze the influence of partial frequencies f1 and f2 mis-
match on the system dynamics.

Figure 1 shows the region of synchronization that corre-
sponds to the frequency locking at the basic tone. Inside the
synchronization region �region I in Fig. 1�, the first oscillator
��1=1� locks the frequency of the second one, and the fre-
quencies of the interacting oscillators become equal: f1= f2.
With this, in the region I the frequencies f2 and f1 are not
generally equal to the partial frequencies of uncoupled oscil-

lators �for k=0�. The region I plotted on the parameter plane
“coupling �k� versus mismatch ��2�” is called an Arnold’s
“tongue” with the Poincaré winding number �=1:1, and
corresponds to the synchronization at the basic tone.

Outside the region of synchronization �regions II in Fig.
1�, regimes of two-frequency motions are observed. Within
these regions the frequencies of the subsystems are not equal
�f1� f2�.

The next step is to consider the discussed effect from the
viewpoint of the qualitative theory of differential equations.

Two-frequency quasiperiodic motions are observed in
the region II, which generally corresponds to the existence of
an ergodic two-dimensional torus. When one enters the re-
gion I from the region II �by crossing the bifurcational lines
ls �Fig. 1��, a new structure appears on the surface of the
two-dimensional torus; namely, stable and saddle cycles. The
stable cycle corresponds to the regime of mutual synchroni-
zation of two oscillators. The stable periodic motions with
frequencies f1= f2 are observed in the regime of locked fre-
quencies.

That effect is illustrated in Fig. 2, in which the projection
of the two-dimensional torus T2 and the projections of stable
�L0� and saddle �L

0
*� resonant cycles on the surface of torus

T2 are shown. It is significant that the torus T2 exists in both
region II and region I! However, in the physical experiment
the stable limit cycle L0 can be only observed in the region I
because of the resonance on the torus T2. This can be dem-
onstrated by analyzing the Poincaré section with the hyper-
plane x1=0 for the regimes shown in Fig. 2. The calculation
results are presented in Fig. 3, where the closed curve l cor-
responds to the torus T2 and points P and Q correspond to
stable L0 and saddle L

0
* cycles. Unstable separatrixes of the

saddle Q come to the stable node P and form the closed
invariant curve. That curve is an image of the two-
dimensional torus inside the synchronization region. When
crossing the bifurcational lines ls �Fig. 1� from region I into
region II, the saddle Q and the node P merge and disappear
through a saddle-node bifurcation. Thus, the saddle and
stable cycles exist in the region of synchronization, and the

FIG. 1. Region of mutual synchronization of oscillators �2� for m=0.1, �1

=1. “I” denotes the region of the resonant limit cycle existence with winding
number �=1:1, and “II” is the region of quasiperiodic motions.

FIG. 2. Three-dimensional projection of the two-dimensional torus T2 out-
side the resonant region �gray�, L0 is the stable cycle and L

0
* is the saddle

cycle on the torus inside the resonant region.
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saddle-node bifurcation of these cycles destroys the synchro-
nization regime.

According to the aforesaid, we can draw the following
conclusions that are necessary for understanding the results
presented further in the current paper:

�1� The stable limit cycle lying on the surface of the two-
dimensional torus corresponds to the synchronization re-
gime.

�2� That limit cycle is not an image of motions realized in
the subsystems, but results from interaction of the partial
oscillators.

In conclusion, it should be specified that the above-
discussed qualitative theory of mutual synchronization of
two coupled oscillators also describes the regime of external
synchronization. The only difference is that the frequency of
synchronous �locked� motions in case of external synchroni-
zation is always equal to the frequency of the external force.
Additionally, the described mechanism of synchronization at
the basic tone ��=1:1� is qualitatively the same as for �
= p :q, where p and q are rational quantities. In that case
saddle-node bifurcations take place for more complicated
multifold �loop� cycles, but the principle remains the same.

III. INFLUENCE OF EXTERNAL PERIODIC FORCE
ON THE RESONANT LIMIT CYCLE

Now we study the influence of a periodic signal on sys-
tem �2�. We add the periodic perturbation ke sin��2�fe�t� to
the second equation of system �2�:

ẋ1 = y1, ẏ1 = �m − x1
2�y1 − �1

2x1 + k�x2 − x1� + ke sin��2�fe�t� ,

�3�
ẋ2 = y2, ẏ2 = �m − x2

2�y2 − �2
2x2 + k�x1 − x2� .

We consider the regime of motions in the system �3� for
ke=0 that corresponds to region I. The parameter values are
set as follows: m=0.1, �1=1, �2=1.0015, and k=0.02 �the
black dot in Fig. 1�. The autonomous system generates stable
periodic motions that corresponds to the existence of stable
limit cycle L0. In physical experiments one can observe an
ordinary stable periodic motion with the frequency f1, and
the power spectrum consists of odd harmonics fn

= �2n−1�f1 �n=1,2 . . . � by virtue of symmetry. Our detailed
studies have shown that the external synchronization of a
resonant limit cycle lying on the surface of a two-
dimensional torus can occur in a very different way than in
case of a nonresonant limit cycle.

In Figs. 4�a� and 4�b�, the frequency relations f1 / fe �a�
and f2 / fe �b� are shown as functions of the external force
frequency fe for ke=0.025. A dependence of the winding
number �= f1 : f2 on the external force frequency is shown in
Fig. 4�c�. One can distinguish four regions A, B, C, and D, in
which the system dynamics is qualitatively different. They
can be appropriately characterized by the spectrum of
Lyapunov exponents �Fig. 5�.

In region A, the external force frequency value is rather
far from the frequency of the limit cycle f1= f2�0.158. Qua-
siperiodic motions with frequencies fe and f1= f2 are realized

FIG. 3. Poincaré sections of the ergodic torus T2 �closed curve l� and reso-
nant cycles L0 and L

0
* �points P and Q� on it that corresponds to Fig. 2.

FIG. 4. Frequency relations f1 / fe �a�, f2 / fe �b�, and winding number �
= f1 : f2 �c� as functions of the external force frequency fe for ke=0.025.

FIG. 5. Three largest Lyapunov exponents of system �3� as functions of the
external force frequency fe for ke=0.025.
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in the system. In the phase space, a two-dimensional torus
corresponds to this regime for which two Lyapunov expo-
nents are equal to zero �Fig. 5�. The oscillators satisfy the
resonant condition in region A.

The regime of mutual synchronization in region B �Figs.
1–3� is destroyed. The frequencies f1 and f2 are different,
which is illustrated in Fig. 4�c�. As a result, the motions with
three independent frequencies f1, f2, and fe are observed in
region B. A three-dimensional torus corresponds to that re-
gime for which three Lyapunov exponents are equal to zero
�Fig. 5�. The basic frequency fe is varied, different partial
resonances in the form of T2 and even chaotic regimes can
emerge on the three-dimensional torus. However, studying
these bifurcations is not the aim of the present paper.

When reaching the region C, the following phenomenon
takes place. The basic frequency of the first oscillator be-
comes locked by the external force. For that regime fe= f1,
but f1� f2. A resonant structure in the form of a two-
dimensional torus appears on the three-dimensional torus,
and two Lyapunov exponents are equal to zero. Our compu-
tations have shown that in this case the Poincaré section
looks like a one-dimensional closed curve.

Finally, the regime of complete synchronization is real-
ized in region D. The external force locks both frequencies
of the interacting oscillators and the condition fe= f1= f2 is
satisfied. Only one Lyapunov exponent equals zero in region
D, and the phase portrait shows an attractor in the form of a
limit cycle.

The results presented above demonstrate that there is a
great difference between the synchronization of a resonant
limit cycle and the classical synchronization of periodic mo-
tions. In the resonant case, the external force first destroys
the regime of initial mutual synchronization, then one of the
basic frequencies becomes locked, and then the other one. As
a result, the complete synchronization takes place and corre-
sponds to the effect of winding number locking �Fig. 4�c�,
region D�.

IV. BIFURCATIONS OF QUASIPERIODIC REGIMES
IN NONAUTONOMOUS SYSTEM

Let now study in more detail the transition mechanisms
of the oscillatory regimes in system �3� when the external
force frequency is varied. We have calculated the bifurcation
diagram on the parameters plane “amplitude versus fre-
quency” of the external force �Fig. 6�. Figures 2 and 3 cor-
respond to the line ke=0.025 in Fig. 6. Bifurcational lines lT3

correspond to the transitions from region A to region B, lines
lp—from B to C, lines lf—from C to D. Let us consider in
more detail the bifurcational phenomena taking place on the
lines lT3, lp, and lf.

The basic oscillatory regime realized in system �3� char-
acterized by three independent frequencies fe� f1� f2 and is
observed in region B. The corresponding attractor is a three-
dimensional torus T3. All the main bifurcations leading to
initial resonant cycle synchronization are connected with the
bifurcations of regime T3.

Now we consider region B in which the stable three-
dimensional torus T3 exists. The bifurcations of the torus T3

can be analyzed by a double Poincaré section.8 In the classi-

cal Poincaré section the torus T3 has the form of a two-
dimensional torus TT3. In the double Poincaré section it cor-
responds to a closed invariant curve in the form of cycle LT3.
A fixed point on that invariant curve corresponds to a reso-
nant two-dimensional torus lying on the three-dimensional
torus T3.

Let us consider the transition from region B into region
A when crossing the line lT3 in the bifurcation diagram �Fig.
6�. The computation results in the double Poincaré section
are shown in Fig. 7. The curve LT3 corresponds to the regime
of T3 existing in region B. When reaching the bifurcation
point �crossing the line lT3 from region B into region A� on
the curve LT3, a fixed point “saddle node” appears. In region
A, that point breaks into a stable node and a saddle. In the
double Poincaré section the classical saddle-node bifurcation
takes place.

In the phase space of system �3�, the phenomenon shown
in Fig. 7 characterizes the appearance �disappearance� of a
pair of two-dimensional tori on the three-dimensional torus
T3. One of them is stable �Tn

2� and the other one is saddle
�Tns

2 �.
Now we analyze the bifurcation transition from region B

to region C when crossing the bifurcational lines lp in Fig. 6.

FIG. 6. Bifurcation diagram of system �3� on the parameter plane �fe ,ke� for
m=0.1, �1=1, �2=1.0015, k=0.02.

FIG. 7. Saddle-node bifurcation in the double Poincaré section when cross-
ing the line lT3 from region B into region A. LT3 is an invariant curve, PTn

2 is
a stable node, and QTns

2 is a saddle point. Parameters values: fe=1.482, ke

=0.025, m=0.1, �1=1, �2=1.0015, and k=0.02.
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Our computations have shown that on the line lp the same
saddle-node bifurcation takes place and in region C stable
and saddle resonant two-dimensional tori appear on the sur-
face of three-dimensional torus T3. The calculation results
are shown in Fig. 8. The Poincaré section of the three-
dimensional torus T3 is labeled as TT3. The closed invariant
curve LTp

2 in Fig. 8 corresponds to the resonant stable two-
dimensional torus existing in region C. The Poincaré section
of the stable two-dimensional torus LTn

2 existing in region A
is drawn for comparison. Saddle tori are not shown in Fig. 8.
The tori Tn

2 and Tp
2 are different as they correspond to the

different cases of partial synchronization. In region A, the
frequencies f1= f2 and fe� f1, and in the region C, fe= f1 and
f1� f2.

Finally, we consider the bifurcation transition from re-
gion C to region D when crossing the lines lf. That effect is
followed by the second frequency locking f2= fe, and results
in the regime of complete synchronization; i.e., f1= f2= fe.
The line lf corresponds to the classical saddle-node bifurca-
tion of resonant cycles lying on a two-dimensional torus. In
the bifurcation point �on the line lf� stable and saddle cycles
appear on the two-dimensional torus Tp

2 being a resonant
structure on T3 and observed in region C. In region D on the
line lf, the system demonstrates stable periodic motions cor-
responding to the regime of complete synchronization. Phase
projections of the two-dimensional torus Tp

2 �in region C� and
the stable resonant cycle Lf on it �region D� are shown in
Fig. 9.

V. SYNCHRONIZATION EFFECT ANALYSIS
FOR VARIOUS VALUES OF WINDING NUMBER �
AND COUPLING STRENGTH k

Our studies of synchronization effects have shown that
the discussed case of resonance �=1:1 is the most general
and rather complicated one from the viewpoint of the theory
of bifurcation. It is also interesting to analyze synchroniza-
tion effects for other values of the winding number corre-
sponding to resonances �=m :n, where m, n=1,2 , . . .. The
effects of synchronization in system �3� must also depend on
the coupling strength k between the oscillators. Such a de-

pendence is quite important for understanding the mecha-
nisms of synchronization of quasiperiodic oscillators in
which the coupling parameter cannot be included explicitly
or cannot be an independent parameter. In this connection we
study the peculiarities of system �3�, especially the bifurca-
tion properties for various values of parameter k.

We consider the regime of the resonant limit cycle in
system �2� with the winding number �=1:3 and synchro-
nize it with the external periodic signal �3�.

In the autonomous system �2�, the regime of mutual syn-
chronization is realized for the parameter values �1=1, �2

=0.328, m=0.1, and k=0.005. A stable resonant cycle on a
two-dimensional torus corresponds to that regime. Projection
of the phase portrait and the power spectrum of that cycle are
shown in Fig. 10. Now we add the external force to the
system and vary fe in the vicinity of f2.

The results of our computations are shown in Fig. 11.
The main difference between the resonance 1:1 and the
shown case is that the complete synchronization is not ob-
served. The second frequency is locked �fe= f2�, while the
frequency f1 does not depend on the external force. This

FIG. 8. Projections of Poincaré sections of the three-
dimensional torus TT3 �fe=0.15� and resonant two-
dimensional tori LTn

2 �fe=0.1482� and LTp
2 �fe=0.158�.

FIG. 9. Projections of phase portraits of the two-dimensional torus Tp
2 �gray�

and the resonant limit cycle Lf �black� on it for the frequency values: fe

=0.1587 �Tp
2� and fe=0.1592 �Lf�.
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result is qualitatively the same as presented in Ref. 7. Simi-
larly to the resonance 1:1 and if the frequency fe is far from
f2, there exists region A in which a resonant two-dimensional
torus Tn1:3

2 is realized on the surface of the three-dimensional

torus T3. When the resonance 1:3 is destroyed, there appears
the torus T3 that exists in region B. The transition from re-
gion B to region C results in the appearance of a resonant
two-dimensional torus Tp1:3

2 . The latter corresponds to the
regime of partial synchronization: fe= f2, f1�3f2. The region
D is not observed in the present case. The complete synchro-
nization of the resonant limit cycle can take place by apply-
ing an additional external periodic signal with a frequency
close to f1. Projections of Poincaré sections of resonant two-
dimensional tori corresponding to the regions A �Tn1:3

2 � and C
�Tp1:3

2 � �Fig. 11� in the form of cycles L are shown in Fig. 12.
These tori lie on the surface of the three-dimensional torus T3

labeled in Fig. 12 as TT3 in the Poincaré section.
The results shown in Figs. 11 and 12 confirm the data

presented in Ref. 7 and thus give evidence of their
generality.

The dependencies presented in Fig. 11 correspond to
weak internal coupling k=0.005 in system �2�. Let us clarify
how the increase of internal coupling strength affects the
synchronization phenomena in the system. The results of our
computations are shown in Fig. 13 for k=0.02. When the
internal coupling strength increases, one can observe region
D being the region of complete synchronization of the reso-
nant cycle on the torus. Our investigations have shown that
when k�0.02, region D becomes wider and the system’s
behavior is qualitatively similar to the case of the resonance
1:1 �Fig. 4�.

VI. CONCLUSIONS

Our results of numerical modeling of limit cycle syn-
chronization corresponding to the resonance on a two-
dimensional torus demonstrate the following:

�1� A limit cycle on a two-dimensional torus cannot be gen-
erally synchronized by an external harmonic force. The
influence of the external force results in the resonance
destruction and in the transition to quasiperiodic motions
with three independent frequencies �regions B in Figs. 4,
6, 11, and 13�. Each of the basic frequencies of the sys-
tem �2� then becomes successively locked.

�2� For resonances �= p :q �p=1, q�3� and weak coupling
between the oscillators, the external harmonic force syn-

FIG. 10. The limit cycle in system �2� for the resonant condition �=1:3 �a�
and the corresponding power spectrum �b� obtained for the parameters val-
ues �1=1, �2=0.328, m=0.1, and k=0.005.

FIG. 11. Frequency relations f1 / fe �a�, f2 / fe �b� and winding number �
= f1 : f2 �c� as functions of the external force frequency fe for ke=0.005 and
resonance 1:3.

FIG. 12. Projections of Poincaré sections of two-dimensional tori in the
form of cycles lying on the surface of the three-dimensional torus TT3:
3LTn1:3

2 exists in region A �Fig. 11�, fe=0.0527, and LTp1:3
2 exists in region C

�Fig. 11�, fe=0.0531
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chronizes only one of the basic frequencies of the sys-
tem �2�; i.e., f1 or f2. However, when the internal cou-
pling strength increases, both basic frequencies can be
successively locked �Fig. 13�.

�3� The resonant limit cycle on the two-dimensional torus
can always be synchronized by the external two-
frequency quasiperiodic force with a close winding
number value. In that case the effect of winding number
locking established in Ref. 6 can take place.

One of the basic frequencies of the two-frequency qua-
siperiodic motions is synchronized as a result of the saddle-
node bifurcation of stable and saddle two-dimensional tori
on a three-dimensional torus. That bifurcation is detected for
the first time and is of scientific interest for the qualitative
theory of differential equations.
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