
September 2008

EPL, 83 (2008) 50003 www.epljournal.org

doi: 10.1209/0295-5075/83/50003

Predicting phase synchronization of non–phase-coherent chaos
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Abstract – A new approach is presented for the reconstruction of phase synchronization
phenomena from measurement data of two coupled chaotic oscillators. The oscillators are assumed
to be non–phase-coherent, making the synchronization analysis extremely difficult. To deal with
such non–phase-coherent systems, a CPR index has been recently developed based on the idea of
recurrence plot. The present study combines a nonlinear modeling technique with the CPR index
to recover the synchronization diagram of non–phase-coherent oscillators. Lyapunov exponents
are also utilized to locate the onset point of synchronization. This allows the prediction of the
regime of phase synchronization as well as non-synchronization in a broad parameter space of
coupling strength without further experiments. The efficiency of this technique is demonstrated
with simulated data from two coupled Rössler oscillators as well as with experimental data from
electrochemical oscillators.

Copyright c© EPLA, 2008

Introduction. – Synchronization is a fundamental
phenomenon of coupled nonlinear oscillators, which
are common in nature and engineering. Based on the
type of the element, the studies of synchronization can
be classified mainly into coupled limit cycle oscillators
and coupled chaotic oscillators. For limit cycle oscilla-
tors, there exists a standard methodology to analyze
the coupled system. The famous example is the phase
reduction theory of weakly coupled limit cycles [1].
Theoretical and experimental investigations have been
also made on the coupled chaotic oscillators. Up to date,
four basic types of synchronization have been found,
namely, complete synchronization [2,3], generalized
synchronization [4,5], phase synchronization [6], and lag
synchronization [7]. Phase synchronization (PS) has found
many applications including laboratory experiments as
well as natural systems [8,9]. For wider applications
to real-world problems, the next important step is to
analyze the PS phenomena from time series data observed
from experimental or natural systems. So far, several
techniques have been developed to detect PS in the
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underlying coupled nonlinear systems from bivariate or
multivariate data [8,10–12]. Although such techniques
have been shown to be quite efficient even for noisy
and non-stationary data, the problem of modeling the
synchronization phenomena from data remains open.
By using such models, it is of special interest to infer a
synchronization diagram, which yields the regimes of PS,
non-PS, and borderlines between them, which are depen-
dent upon the system parameters such as the coupling
strength and the parameter mismatch. By recovering such
a synchronization diagram from a few sets of experimental
data, a deeper insight into the underlying coupled systems
can be gained. This problem formulation is quite practical
in situations, under which an extensive synchronization
experimentation is not possible or very expensive and only
limited data sets can be recorded. Parkinson tremor [11]
and Epileptic seizure [13] are the good examples, since
conditions on the strong synchrony induced within
neuronal elements should be predicted a priori to prevent
the diseases. Another interesting example is the structural
engineering problem, well known as the crowd synchrony
of the London Millennium Bridge [14]. On the opening
day of the bridge, unexpected swaying motion has been
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induced by the collective motion of the massive crowds
walking on the bridge. Prior detection of such coherent
motion is desired for the stable bridge design.
To retrieve the synchronization regime, the construc-

tion of a nonlinear model, which is parameterized by
a forcing condition such as the coupling strength, from
the recorded data is required. In a recent study, we have
introduced a basic approach for constructing such a para-
meterized family of models based on nonlinear prediction
technique [15]. This approach has the important practical
advantage that no prior knowledge of the parameterized
family of the underlying dynamics is necessary. Our
technique has been successfully applied to prototypical
PS models and to experimental data from a paced plasma
discharge tube [15] and from a chaotic CO2 laser [16].
It is important, however, to note that these studies have
dealt only with phase-coherent chaotic systems, whose
phase can be easily computed due to the existence of a
unique rotation center of the dynamics. This cannot be
always expected for real-world systems, which typically
give rise to more complicated dynamics often associated
with non–phase-coherent property. Hence the aim of the
present letter is to develop a novel technique to recover the
synchronization diagrams of non–phase-coherent systems.
Although it is in general not straightforward to extract

phase for non–phase-coherent systems, there exist some
methods to detect PS without directly computing the
phases. One approach is to utilize the Lyapunov expo-
nents, one of which turns from zero to negative value at
the onset of PS [8,17]. As another index for detecting
the PS, we focus on a synchronization index (CPR),
which has been newly developed based on recurrence
probabilities of recurrence plot [18]. The use of the
CPR index is promising, since the computational proce-
dure is relatively simple and it has been shown to be
applicable quite well to non–phase-coherent systems even
with noisy and instationary data. By combining the
nonlinear modeling technique with the CPR index, we
show that the synchronization diagrams of the coupled
non–phase-coherent chaos can be well reconstructed.

Problem and method. – Consider two diffusively
coupled nonlinear oscillators

ẋ1,2 = f1,2(x1,2)+ c (x2,1−x1,2), (1)

where f1,2 and x1,2 represent dynamics and state vector
of the first or second oscillator, respectively. The coupling
matrix c is composed of ci,j =C (i= j = 1); 0 (otherwise),
whose strength is controlled by the constant para-
meter C. Without the coupling (C = 0), each oscilla-
tor f1,2 is assumed to give rise to non–phase-coherent
chaotic dynamics. Suppose that from the two oscillators,
bivariate time series {ξ1(t), ξ2(t)} are obtained using
the first component of the state vector, i.e. ξi = Ixi
(I= [1, 0, · · ·, 0]). For simplicity, we restrict our problem
to the situation that the dynamical variable involved in
the coupling C(x2,1−x1,2) is observed as the time series,

since this fits to many practical experiments. More general
case of observing an arbitrary dynamical variable has been
studied in [15], to which our framework can be extended.
The sampling interval is denoted as ∆t. Depending upon
the coupling strength, the coupled oscillators can generate
a PS as well as a non-PS regime. The bivariate time
series are measured under a few conditions associated
with different coupling strengths Ci (i= 1, · · ·,M). Our
task is to infer a synchronization diagram, which classifies
the parameter space of the coupling strength into regimes
of PS and non-PS, only from such a few measurement
data. Our primary assumptions are: i) the underlying
dynamical equations (1) are unknown but the system
is known to be diffusively coupled, ii) the dynamical
variables involved in the diffusive coupling are measured
as the time series, and iii) the coupling constants Ci
associated with the measurements are known and they
are taken from a non-synchronous regime.
Now we describe our modeling technique. First, we

embed the bivariate time series {ξ1(t), ξ2(t)} into delay
coordinates X1(t) = {ξ1(t), ξ1(t− τ), . . ., ξ1(t− (d− 1)τ)},
X2(t) = {ξ2(t), ξ2(t− τ), . . ., ξ2(t− (d− 1)τ)} (d: embed-
ding dimension, τ : time lag) and suppose according to the
embedding theorem [19] that the original coupled oscilla-
tors of eq. (1) are transformed into the following dynamics:

Ẋ1,2(t) =F1,2(X1,2(t), C (X2,1(t)−X1,2(t))). (2)

Note that this transformation cannot be assumed if the
condition ii) does not hold. The main point of our model-
ing is to construct a set of nonlinear functions F̃1,2, that
approximate eq. (2). If the original dynamics (1) is well
embedded in the delay coordinate space and the embed-
ded dynamics is precisely modeled, the synchronization
structure of the original dynamics can be predicted by
analyzing the model F̃1,2.
For the construction of the nonlinear models, there exist

various functional systems that approximate the nonlinear
dynamics, such as polynomial functions [20], radial basis
functions [21], artificial neural networks [22], and local
linear models [23]. The local models are not suitable for the
modeling of global dynamics such as bifurcations due to
their inherent local property. Global functional models are
preferred here. As one of the most typical global models,
this study exploits the neural network. It should be noted
here that the other global models can be also utilized
for the present study and our purpose is not to develop
an application specific to neural networks. Our modeling
procedure consists of the following main steps.
(P1) The embedding dimension d and the time lag τ are

chosen. To determine the time lag, the first zero-crossing
point of the autocorrelation function, which is commonly
used for the nonlinear data analysis [24], is exploited. The
embedding dimension can be determined by conventional
dimensional analysis [24].
(P2) Each nonlinear function F̃i :R

d×Rd→Rd (i= 1, 2)
is realized by a 3-layer feed-forward neural network [22],
having 2d-units in the input layer, d-units in the output
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layer, and h-units in the middle layer. Each neural network
has 4dh parameters, denoted as ω, which are optimized
to fit into the data as follows. First, the cost function is
defined as

E(ω) =
M∑

i=1

2∑

j=1

∑

t

S∑

s=1

|Xj(t+ s∆t, Ci)

−X̃j(t+ s∆t, Ci)|2, (3)

where X̃j is the trajectory in the interval [t, t+S∆t],
generated from the model equations

˙̃X1,2(t) = F̃1,2(X̃1,2(t), C (X̃2,1(t)− X̃1,2(t))) (4)

started from the initial condition X̃1,2(t) =X1,2(t). The
maximal integration time is set as S = 5. To minimize
the cost function, the quasi-Newton method based upon
the Broyden-Fletcher-Goldfarb-Shanno formula with
Luenberger’s self-scaling [25] is utilized. To compute first
derivatives of the cost function, variational equations of
the model equations (4) are numerically integrated.
(P3) By repeating the procedure (P2),Q sets of different

nonlinear models F̃
(i)
1,2 (i= 1, · · ·, Q) are obtained, which

have the same neural network architecture but different
parameter values ω optimized with random initial condi-
tions. Then, the ensemble average is taken as

F̄1,2 =
1

Q

Q∑

i=1

F̃
(i)
1,2. (5)

It has been shown that the ensemble technique provides
much more reliable modeling of nonlinear dynamics
compared to the case of utilizing only a single model,
whose results are rather sensitive to the optimized
parameters [26].
(P4) CPR index is computed [18]. By free-running the

model equations ˙̃X1,2(t) = F̄1,2(X̃1,2(t), C(X̃2,1(t)−
X̃1,2(t))), a pair of trajectories {X̃1,2(t)}Nt=1 can
be generated. Then, the generalized autocorre-
lation function is obtained for each trajectory as
Pi(τ) =

∑N−τ
t=1 Θ(ε− |X̃i(t)− X̃i(t+ τ)|)/(N − τ), where

ε is a threshold and Θ is the Heaviside func-
tion. The threshold ε is determined in such a way
that the recurrence rate is kept constant, i.e.,∑N
t=1

∑N
s=1Θ(ε− |X̃(t)− X̃(s)|)/N2 = 15%. The CPR

index can be computed as the cross correlation between
P1(τ) and P2(τ) as CPR= 〈P̄1(τ)P̄2(τ)〉/(σ1σ2), where
P̄1,2 means that the mean value is subtracted and σ1,2
are the standard deviations of P1,2(τ). If the system is in
synchronization, the generalized autocorrelation functions
of the two trajectories get strongly correlated, resulting
in a high CPR≈ 1. Otherwise, a low CPR is expected.
By changing the coupling strength C, we may finally

draw the synchronization diagram, showing the depen-
dence of the CPR index on the coupling strength C.

Applications. – First, we applied our method to
simulated data from two coupled Rössler oscillators [17]:
ẋ1,2 =−α1,2y1,2− z1,2, ẏ1,2 = α1,2x1,2+ ay1,2+C(y2,1−
y1,2), ż1,2 = 0.1+ z1,2(x1,2− 8.5) . The parameter
mismatch was set as α1,2 = 1± 0.02. In the case of
a= 0.16, each Rössler oscillator gives rise to phase-
coherent chaotic dynamics. Under two conditions with
different coupling strength C = 0 and C = 0.025, which
are in a non-PS regime, the bivariate data {y1(t), y2(t)}
were measured. As reported in [15,27], data from a PS
regime should not be used for the modeling, since they
provide only a limited dynamical information constrained
in the synchronization manifold. For each condition, 800
data points were collected with the sampling interval of
∆t= 0.2. To examine the effect of observational noise,
Gaussian noise was added to the bivariate data. The
noise level was varied as 5, 10, 15, and 20%. Following
the modeling procedure (P1), the embedding dimension
and the time lag were set as (d, τ) = (3, 0.8). Note that
the embedding dimension was not a crucial modeling
parameter, since essentially the same results have been
obtained with d= 4. For the construction of the neural
networks in procedure (P2), number of the units in the
middle layer was set as h= 8.
Figure 1(a) shows the synchronization diagram recon-

structed by the ensemble model F̄1,2, averaged over 5
nonlinear models. No noise was added to the data sets.
Overall structure of the reconstructed diagram is in a very
good agreement with the one drawn by simulating the orig-
inal coupled Rössler equations (solid line with circles). As
indicated by the arrow at C ≈ 0.037, the sudden drop of
the CPR-index corresponds to the onset point of PS. The
nonlinear model locates almost the same onset point as the
original system. This demonstrates the strong capability
of recovering the synchronization diagram in the case of
modeling the noise-free data.
Figures 1(b) and (c) show the Lyapunov exponents

(λ1, λ2, λ3, λ4) computed for the original system (solid
lines) and the nonlinear model (dotted lines) by using the
standard numerical technique [28]. A clear onset point of
PS is discernible also in these figures. Namely, the first
and second exponents (λ1, λ2) remain to be positive in
this range of coupling (except for the periodic window
observed in the nonlinear model at C ≈ 0.067), implying
that both of the coupled oscillators are chaotic in the
amplitude. Whereas the third Lyapunov exponent (λ3)
stays on the zero line, the fourth Lyapunov exponent
(λ4) turns from zero to negative at C ≈ 0.037, which is
a clear transition to PS. The Lyapunov spectrum analysis
is therefore consistent with the CPR index, which also
locates the onset point of PS at C ≈ 0.037.
Figure 1(d) shows the case of applying the nonlinear

modeling in the presence of 5, 10, 15, and 20% noise. Up
to the noise level of 15%, the model predicts the onset
point roughly at around the correct one. Only under the
very strong level of 20% noise, the model becomes rather
inaccurate, resulting in the prediction of the onset point
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Fig. 1: Phase-coherent Rössler chaos. (a) CPR index drawn by varying the coupling strength in the range of C ∈ [0, 0.08] for
the original two coupled Rössler oscillators (solid line with filled circles) and for the nonlinear model obtained from noise-free
data (dotted line with triangles). (b), (c) First, second, third, and fourth Lyapunov exponents computed for the original Rössler
oscillators (solid lines) and the nonlinear model obtained from noise-free data (dotted lines). (d) The CPR curves for nonlinear
models obtained from noisy data (5% noise: solid line with circles; 10% noise: dotted line with triangles; 15% noise: solid line
with asterisks; 15% noise: dotted line with squares). The arrows of (a), (c), and (d) indicate the onset point of PS at C = 0.037.

smaller than the correct one. This implies that the present
approach is quite robust against a moderate amount of
observational noise, which is important for the real data
analysis.
Next, we examined the case of a= 0.2925 that generates

a funnel-type chaotic attractor. Due to the non–phase-
coherent property, it is nontrivial to detect PS in this
case. The advantage of utilizing the CPR index is that it
can be applied also to the non–phase-coherent systems.
In the same manner as the phase-coherent case, the
bivariate data were collected under the coupling strength
of C = 0 and C = 0.02, both of which are in a non-PS
regime. Figure 2(a) shows the synchronization diagram
reconstructed by the ensemble model F̄1,2, averaged over
5 nonlinear models, under a noise-free condition (dotted
line) and the one drawn from the original equations
(solid line). Due to the non–phase-coherency, the original
diagram exhibits a relatively noisy curve. However, a clear
onset of PS is recognized at C ≈ 0.18. The diagram recon-
structed by the nonlinear model reproduced the qualita-
tive structure of the original diagram very precisely with
a correct prediction of the PS onset point. In fig. 2(b),
the second and third Lyapunov exponents (λ2, λ3)
are computed for the original system (solid lines) and
the nonlinear model (dotted lines). As studied in detail
in [17], the coupled Rössler oscillators in this funnel regime
gives rise to generalized synchronization and PS almost
simultaneously. Namely, at C ≈ 0.18, the third Lyapunov

exponent turns from zero to negative, indicating the onset
of PS. Almost at the same place, the second Lyapunov
exponent turns from positive to zero, which indicates the
onset of generalized synchronization. Almost the same
transition can be observed also in the nonlinear model.
This implies the strong modeling capability of predicting
both generalized synchronization and PS by the present
approach.
Figures 2(b) and (c) show the results of the nonlinear

modeling in the presence of 5, 10, 15, and 20% noise. As
the noise level is increased, we see that the model predic-
tion based on the CPR index gets inaccurate, locating
the onset point of PS at smaller couping values. This can
be confirmed also in figs. 2(e) and (f), where the turning
points of the second and third Lyapunov exponents, which
indicate the onset of generalized synchronization and PS,
are found at relatively smaller values. This implies that
the inaccurate prediction of the PS is not due to the CPR
measure but to the modeling error. Despite this modeling
difficulty, the prediction error of the onset point was less
than 16% for the noise level of 5 and 10%. Taking into
account the moderate amount of 10% noise as well as the
difficulty of detecting PS in non–phase-coherent systems,
we consider that the present approach is robust enough to
be applied to the real-world systems.
Let us finally apply our technique to experimental data.

We use an electrochemical oscillator system, in which
the interaction between two non–phase-coherent chaotic

50003-p4



Predicting non–phase-coherent chaos

(d)

(a)

(b)

(c)

-0.1

 0

 0.1

 0.2

 0  0.1  0.2

2n
d 

an
d 

3r
d 

Ly
ap

un
ov

 E
xp

on
en

ts

Coupling Strength

Onset

2nd Exp (15% Noise)
2nd Exp (20% Noise)
3rd Exp (15% Noise)
3rd Exp (20% Noise)

-0.1

 0

 0.1

 0.2

 0  0.1  0.2

2n
d 

an
d 

3r
d 

Ly
ap

un
ov

 E
xp

on
en

ts

Coupling Strength

Onset

2nd Exp (5% Noise)
2nd Exp (10% Noise)
3rd Exp (5% Noise)
3rd Exp (10% Noise)

-0.1

 0

 0.1

 0.2

 0  0.1  0.2

2n
d 

an
d 

3r
d 

Ly
ap

un
ov

 E
xp

on
en

ts

Coupling Strength

2nd Exp (Original)
2nd Exp (Model)
3rd Exp (Original)
3rd Exp (Model)

Onset

 0

 0.5

 1

 0  0.1  0.2

C
P

R

Coupling Strength

Onset

Original
Model

 0

 0.5

 1

 0  0.1  0.2

C
P

R

Coupling Strength

Onset

5% Noise
10% Noise

 0

 0.5

 1

 0  0.1  0.2

C
P

R

Coupling Strength

Onset

15% Noise
20% Noise

(e)

(f)

Fig. 2: Non–phase-coherent Rössler chaos. (a), (b), (c) CPR index drawn by varying the coupling strength in the range of
C ∈ [0, 0.25] for the original two coupled Rössler oscillators (solid line of (a)) and for the nonlinear models obtained from
noise-free data (dotted line of (a)), data with 5% and 10% noise (solid and dotted lines of (b)), and data with 15% and 20%
noise (solid and dotted lines of (c)). (d), (e), (f) Second and third Lyapunov exponents computed for the original Rössler
oscillators (solid lines of (d)) and for the nonlinear models obtained from noise-free data (dotted lines of (d)), data with 5% and
10% noise (solid and dotted lines of (e)), and data with 15% and 20% noise (solid and dotted lines of (f)). The arrows indicate
the onset point of PS at C ≈ 0.18.

oscillators has been well designed [29]. The experiments
were carried out in a standard three-compartment
electrochemical cell consisting of two iron working
electrodes (1mm diameter each with 2mm spacing), a
Hg/Hg2SO4/K2SO4 reference, and a Pt counter elec-
trode. The applied potential (V ) of both electrodes
were connected to the potentiat through two individual
parallel resistors (Rind) and through one series collective
resistor (Rcoll) which furnishes a global coupling of
strength K =Rind/Rtot, where Rtot =Rcoll+Rind/2
is kept constant. For K = 0, the external resistance
furnishes no additional coupling; for K = 1, the maximal
external coupling is achieved. This global coupling can be
translated into the diffusive coupling as C =K/(1+K).
From the current of each electrode, three sets of bivari-

ate time series {ξ1(t), ξ2(t)} were measured (sampling

frequency: 2 kHz; data points: 2400) under the coupling
strength of K = 0, 0.2, 0.4, which are all in a non-
synchronized regime. Following the modeling procedure,
the embedding dimension and the time lag were set
as (d, τ) = (4, 35 [ms]). For construction of the neural
network, the number of the units in the middle layer was
set as h= 12. The ensemble model was then constructed
from Q= 50 nonlinear models. Figure 3 compares the
synchronization diagram of the nonlinear model (dotted
line) with that of the experimental data (solid line).
The model provides a highly precise prediction on the
onset point of the PS at C = 0.6, which agrees with
the preceding studies [18,29]. Although the nonlinear
model becomes unstable (divergent solution) at C = 0.65,
the qualitative structure of the original synchroniza-
tion diagram is well reproduce until that point. This
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Fig. 3: Synchronization diagram of the two coupled elec-
trochemical oscillators (solid line) and the model prediction
(dotted line). The location of the data used for the modeling
is indicated by the three circles.

demonstrates the strong potential of the present method
to real experimental data.

Summary. – To summarize, a new approach has been
presented for the reconstruction of PS from measurement
data of coupled non–phase-coherent chaotic oscillators.
For simulated data from two coupled Rössler oscillators in
a funnel-type chaotic regime, the synchronization diagram
has been recovered only from few data sets. The method
was robust up to 10% observational noise. The results
with experimental data from electrochemical oscillators
demonstrated its practical applicability to real-world data.
Our future study will focus on the application of this
methodology to biological data.
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