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Continuous wavelet transform in the analysis of burst synchronization in a coupled laser system
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The transition to synchronization of a pair of coupled chaotic CO, lasers is investigated numerically in a
model system. This system displays episodes of bursting of different predominant frequencies. Due to the
multiple time scales present in this system, we use a complex continuous wavelet transform to perform the
synchronization analysis. Thus it enables us to resolve the time of occurrence as well as the frequency of an
event in a given time series up to an intrinsic uncertainty. Furthermore, due to the complex nature of that
wavelet transform, it yields a direct estimate of the system’s phase. We show that, as the coupling strength of
the laser system is increased, the mutual coherency increases differently for different frequencies. Additionally

we test our method with experimental data.
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I. INTRODUCTION

Chaotic synchronization is of fundamental importance in
a variety of complex systems [1-3]. Synchronization is often
studied in autonomous chaotic systems, that is, systems not
subjected to an external driving. In this situation, a coupling
between two or more systems (identical or not) can induce
changes in some properties of the dynamics of the systems,
leading to a common behavior.

Here, we consider the case of synchronization of coupled
nonautonomous systems, where chaos is due to an external
periodic forcing. In particular, we consider bursting chaotic
dynamics originated as a consequence of an interior crisis
[4,5]. In contrast to a generic chaotic system, where the at-
tractor is filled almost uniformly in the course of time, in a
bursting chaotic dynamics there are rather long time intervals
spent around unstable periodic orbits (UPOs) laying inside
the basin of attraction of the chaotic attractor before the cri-
sis. The time intervals during which the chaotic orbit is at-
tracted by one of these UPOs lead to bursts of high ampli-
tude, which have the predominant period of the
corresponding UPO. Thus, a peculiar feature of a bursting
chaotic system is such local structures.

As we couple two such bursting chaotic systems, these
local structures can be synchronized. For low values of the
coupling strength, they become partially synchronized, and
as we increase the coupling strength, they become com-
pletely synchronized. In this paper we investigate a model
system of two coupled CO, lasers, and focus on the role of
the different time scales present in the system. For this pur-
pose we utilize a complex continuous wavelet transform to
resolve different local structures of this multitime scale sys-
tem.

The paper is organized as follows. In Sec. II the laser
model is presented and the analysis tools are introduced. In
Sec. III the results of our analysis are described and in Sec.
IV we draw the conclusions.
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II. MODEL AND ANALYSIS METHODS
A. Laser model

The model describes a setup of two identical lasers with a
common sinusoidal forcing and unidirectional coupling
(master-slave coupling). From an experimental point of view
such a configuration can be implemented by a single laser
whose dynamical regime is controlled via an adequate func-
tion generator. Specifically, a master signal is obtained by
recording a long time sequence of the laser in a condition
where it displays chaotic bursts. In a second stage, the re-
corded master signal is reproduced by the function generator.
The difference signal between the master and the slave laser
intensity, amplified by a coupling factor e, is used as an
amplitude modulation applied to the sinusoidal driving of the
slave laser. This coupling scheme is fairly general allowing
coupling between two lasers with nearly identical param-
eters. The chaotic and synchronization behavior can be re-
produced by using the following model of five differential
equations for each of the two lasers:

%1 =kx;(xy = [1 + asin’(F, + B)]),
Xy ==T"1x0 + yxs + x4 + p — 2kx1x,,
B3==Txs+ y+x5+p,
gy ==Toxy + yxs+2(x; + p),

d5==Doxs+ yxy+ 2(x3 + p), (1)
where x represents the slave laser and an identical set of
equations exists for the master laser y. The coupling and

forcing functions are given by
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FIG. 1. Time series of the laser intensities x; and y; from the
model system (1) in the uncoupled mode (€=0). The portion of the
time series, displayed in the zoomed box, demonstrates that there is
a spike on every period of the forcing frequency f. Time durations
of local structures are denoted by O; segments; precisely, Oy, O,,
03, and O4 denote intervals during which the trajectory passes close
to an UPO of period 1, 2, 3, 4, respectively. See the text and Fig. 2
for more details.

F.=A[1+ €(y, - x,)]sin(27f1),

Fy=Asin(27ft). (2)

In the above equations, x; represents the laser output inten-
sity, x, is the population inversion between the two resonant
levels, and x3, x4, and x5 account for molecular exchanges
between the two levels, resonant with the radiation field and
other rotational levels of the same vibrational band. The pa-
rameters of the model are the following: k=30 is the unper-
turbed cavity loss parameter, y=0.05 is a coupling constant,
I';=10.0643, and I",=1.0643 are population relaxation rates,
z=10 accounts for an effective number of rotational levels,
a=4 accounts for the efficiency of the electro-optic modula-
tor, B=0.1794 is a bias voltage, and p=0.019 87 is the pump
rate. The rest of the parameters are related to the external
forcing: the frequency f=1/7 and the amplitude A=0.1044,
which are set to a value where the system exhibits chaotic
bursting, and € is the master-slave coupling strength. For
more details on the model see [6-8].

If the system is uncoupled and autonomous (A=0) the
subsystems show a fixed point dynamics. When the external
forcing is introduced (A >0) but without coupling (e=0), the
lasers are in a self-sustained regime and show tonic spiking
with the frequency f of the periodic forcing (an exemplary
time series for each laser is shown in Fig. 1). The spike
occurrences of both subsystems are locked perfectly due to
their common forcing, however, considering that the initial
conditions are different, the spike amplitudes of both systems
are uncorrelated. This is the typical behavior of systems
which are phase synchronized due to a common driving sig-
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nal [2,3]. On a larger time scale, it becomes visible that
bursts of higher amplitude—i.e., groups of consecutive
spikes with high amplitude—occur repeatedly but irregularly
[see time series in Fig. 4(a)]. The creation of these bursts can
be explained as follows.

By increasing the amplitude A of the sinusoidal driving,
the laser undergoes a sequence of subharmonic bifurcations
leading to a small amplitude chaotic attractor. A further in-
crease of A leads to an interior crisis [4,5,9], whereby the
chaotic attractor suddenly expands, including phase space
regions of other unstable orbits. Shortly after the crisis, an
intermittent regime (crisis-induced intermittency) is estab-
lished where bursts of high amplitude orbits of periods three
and four are intercalated with the chaotic attractor before the
crisis. The bursting regime investigated here is not a bistable
regime. Bistability in this model occurs for lower values of
the parameter A (the amplitude of the intrinsic modulation)
[10], but we do not consider this regime here.

By introducing the coupling into the system (€>0) we
can synchronize both lasers. The synchronization studied
here is not the one of the spikes, which are, as already men-
tioned, locked perfectly, but the synchronization of the
bursts, or to be more precise the synchronization of the
UPOs of different length. In the numerical system we only
observe in-phase synchronization of those orbits, however, in
the time series recorded from the experiment we also observe
antiphase sychronization during the high amplitude bursts
[8].

Due to the strong periodic forcing (2), the rotation times
of all orbits are locked to integer factors of the frequency f of
the forcing. A spike is created after a full rotation of the
trajectory across the attractor. An exhibition of trajectories
passing nearby different periodic orbits that exist inside the
attractor is presented in Fig. 2. We find segments of orbits,
which can have cycling times one to four times the forcing
period. Larger spikes (larger values of x;) are created by
orbits with longer periods.

The orbits of different length create the different time
scales present in this system, i.e., a multi-time-scale system
is generated. A coupling between both laser systems might
lead to a synchronization on these different time scales be-
tween both systems. With an adjustment of the coupling
strength €, the visitings of the UPOs may occur simulta-
neously in both subsystems, which manifests in a synchroni-
zation of the bursts of both lasers. Due to the multiple time
scales in this system, which arise from the different UPOs
present in the attractor, a continuous wavelet transform rep-
resents an appropriate tool for a synchronization analysis.

B. Continuous wavelet transform

The continuous wavelet transform (CWT) has been devel-
oped to resolve events localized in time as well as in fre-
quency. It can be interpreted as a constant Q bandpass filter
bank (Q =bandwidth/center frequency=const). In mathemati-
cal terms the CWT W,x of a function x() is defined as

-7

Wyx(o, 1) = %_JR ¢*< - )x(t)dt, (3)

with the mother wavelet i(r) translated by 7 and dilated by
o. The raised star denotes complex conjugation. The choice
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FIG. 2. x;-x4 projection of the laser’s attractor plotted together
with trajectories passing nearby unstable periodic orbits of different
length. (a) Orbits of length 1 and 4. (b) Orbits of length 2 and 3.

of the mother wavelet ¢ is mainly influencing the time-scale-
uncertainty of the resulting wavelet transform. For more
background on the CWT see, for example, [11].

The numerical computation of the wavelet transform in
this work is performed by using systems of linear difference
equations. This approximate method to calculate the CWT
has the advantage of a very short computation time, which is
also independent of the wavelet’s scale. The wavelet used
here is given by its z transform

Ziy=V(z) =H(z)H*(1/z%), (4)
with

_ . \3
ma%(i_—j}’)) - D(z-i), (5)

where H(z) is the system’s transfer function and p €[0,1] is
a parameter which allows one to smoothly alter the degree of
localization of the wavelet in either time or frequency. How-
ever, this method has the drawback that the transformed sig-
nal is not completely analytic, and that the wavelet changes
its shape slightly under the rescaling process. Nevertheless, if
p is choosen high enough (p>0.6), these problems can be
neglected. Figure 3 displays the magnitude of the Fourier
transform W(e'®) of this wavelet for p=0.75, which is the
value that has been used in our analysis. This wavelet can be
compared with the Cauchy-Paul-Wavelet. A detailed expla-
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FIG. 3. The magnitude of the Fourier transform W(w) of the
wavelet (4) for p=0.75. Note, that the negative frequencies are
basically zero, which gives the wavelet its nice analytic properties.

nation of this wavelet will be given in a forthcoming paper
[12].

The complex valued CWT has the advantage over the real
valued CWT that it can be immediately split into a phase and
an amplitude at each point (o, 7). Thus the existing methods
for detecting phase synchronization can be applied very eas-

ily.
C. Measuring synchronization and coherency

Phase synchronization (PS) is characterized by the adap-
tation of the typical time scales between two systems, while
their amplitudes may stay nearly uncorrelated. If one deals
with narrow-band oscillatory dynamics, also called phase co-
herent, simple phase definitions exist, e.g., based on the ro-
tation of the trajectory or based on the Hilbert transform
[3,13], that yield good results (see also [14] for a compari-
son). However, in case of non-phase-coherent dynamics,
such as multiple time scales, other approaches are necessary.
So far techniques basing on special filters [15], on curvature
[16], or on recurrence [17,18] have been proposed. Also in
the case of different time scales being present in the system,
there is no general method to define the phase of the system.
A complex CWT is advantageous for this purpose, because
due to its complex nature, it yields a direct estimate of the
phase for each time scale of the system. In order to quantify
PS, we use two different measures, namely, the mean result-
ant length (also known as vector strength) and the cross cor-
relation coefficient combined with a complex CWT.

The mean resultant length is defined as follows:

T
. 1 .
Fyy = |<61A¢Xy(t)>| = ;,E elA(ﬁXy(t) P (6)
t=1

where A, (1) := ¢ (1)~ ¢,(1) denotes the phase difference
between both systems at time 7. We extract the phases ¢, ,(f)
directly from the argument of the CWT: ¢.(1)
=arg Wyx,(o,1), and analogously for y,. The mean resultant
length r,, can assume values from O to 1 and quantifies the
strength of the mean angle of the circularly distributed values
(here the phase differences Ad,,). If r,,=0, it indicates that
all values of Ag¢,, are equally distributed over the interval
[0,27), indicating that there is no synchrony between the
phases ¢, and ¢,. The value r,,=1 indicates that all phase
differences are equal and thus the phase differences are
locked perfectly at all times. Since the phases of chaotic
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systems usually show a certain amount of phase diffusion,
one expects values less than 1, but still considerably larger
than O, if their phases are synchronized. Note that the mean
resultant length is similar to the Kuramoto parameter [2,19],
but with mean over time instead of being computed over an
ensemble of oscillators.

The cross correlation coefficient (CCC) is a linear mea-
sure for the similarity between two signals and is given by

(xy*)

= T ———, 7
S 7
where ( ) denotes the mean over time and the signals x and y
are considered to be mean free. This is the case here, since it
is a property of the CWT to remove the mean from signals.
In general, p,, can be complex valued (in the case of analytic
signals) with an arbitrary angle and a modulus between 0 and
1. A modulus of 0 means that there is no linear correlation
between the signals, and a value of 1 indicates that the sig-
nals are completely linearly correlated, and thus differ only
by a factor. The modulus of the complex CCC is also known
as coherence.

As Eq. (7) is the normalized scalar product of x and vy,
thus, the CCC measures the orthogonality between two func-
tions. Since we have that (sin w,7,sin w,t)=4,, ,,, (where J,,,
denotes the Dirac delta) and that PS also implies a coinci-
dence of the frequencies, it is clear that the CCC can be used
to detect PS. However, in the case of two real, oscillatory
signals the coefficient’s modulus fluctuates arbitrarily be-
tween 0 and 1 if the phase differences of the two signals are
altered. In the extreme case we have (sin wt,cos wt)=0, even
though intuitively they should be considered to be phase syn-
chronized. In that case one has to calculate the cross corre-
lation function and search the appropriate delay (in the sine-
cosine case it is w/2). This requires much more
computations compared to the calculation of the mere CCC,
which is the cross correlation function at delay zero.

The complex wavelet used here yields an analytic signal.
For analytic signals the phase delay between two signals of
equal frequency plays no role, since it can be factored out:
(el ity = pid(pie! ity =i Thus, for analytic signals
the CCC is stable under phase shifts and can be used as a
measure for PS.

III. RESULTS AND DISCUSSION

Before applying the measures for synchrony and coher-
ency, one needs to consider what the wavelet spectrum re-
veals and how it can be used together with the above mea-
sures to get more insight into the synchronization behavior of
the system.

A. Interpretation of the wavelet spectrum

The data has been logarithmized before the computation
of the CWT in order to transform the exponentially shaped
spikes into a more sinusoidal-like shape (see the time series
in Fig. 5 in comparison to the time series in Fig. 1). Thus the
resulting wavelet spectrum looks cleaner, since it contains
less higher harmonic components. Figure 4 shows an exem-
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FIG. 4. A time series of the x; component of the model system
(1) and (2), (a) and the corresponding wavelet power spectrum (b)
of the logarithmed data. The spiking frequency f of the laser has
been normalized to be scale 0, so that the subharmonics are num-
bered with 1,2,3,... for the first, second, third, and so on subhar-
monic, respectively.

plary (original) time series and the corresponding CWT of
the logarithmized data.

The continuous horizontal line (normalized to be scale 0)
in the CWT of the numerically integrated laser model corre-
sponds to the system’s intrinsic spiking frequency f, which is
caused by the periodic forcing. On larger scales patches oc-
cur at those times where we find bursts in the time series.
This can be understood as follows. As we explained in Sec.
II, bursts in the time series are created by trajectories passing
nearby UPOs with cycling times that are multiples of the
forcing’s frequency (see again, Fig. 2). Hereby subharmonics
of that frequency are created which will become visible as
patches at the corresponding scale in the wavelet power
spectrum (see Fig. 4, and also Fig. 5, for a magnification of
a burst).

Hence, the CWT of the laser model data allows quantify-
ing easily the synchronization between the different time
scales and yields a method to indirectly study the synchroni-
zation characteristics of the individual periodic orbits.

Figure 6 shows the CWT for a time series recorded from
the experiment. The laser intensity signal has been recorded
at the onset of the bursting behavior for an amplitude value
A=0.108 (such a value is about 3% different from the nu-
merical value). Note that computing the logarithm of the data
does not reduce the higher harmonics in the same amount as
in the numerical case. The wavelet power spectrum displays
higher harmonics of the subharmonics, which appear as
patches around scale 0.5.

B. Multiscale synchronization analysis

We combine now the methods of Sec. II to perform a
multiscale synchronization analysis. We calculate Egs. (6)
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FIG. 5. Magnification of the large burst after sample 5000 in
Fig. 4, here with the logarithmed time series in (a). This is a local
structure created by the influence of a period four orbit, which
becomes visible in the CWT as a third subharmonic.

and (7) for different values of the coupling strength € and for
each scale o of Wyx; and Wy, of the laser intensities from
the model system (1) and from experimentally recorded data.

For the model system the measures were calculated for
values of € from 0 to 200. The resulting functions (o, €) and
|p(o,€)| are shown in Fig. 7. Qualitatively, both measures
yield similiar results. At e= 160, both systems become al-
most completely synchronized, as it has been already re-
ported in [8]. But here we see in detail that there is almost
complete synchronization on all scales.

The result obtained from our analysis is the observation of
a diverse transition to synchronization of the coupled model
system on its different time scales. In particular, we see an
increase of phase coherency among the period three orbits
(second subharmonics) between both subsystems for rela-
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FIG. 6. Same as Fig. 4, but here for experimental data. See the
text for more details.
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FIG. 7. The results of the multiscale synchronization analysis
for the model system (1). Left: the mean resultant length r(o, €),
and right: the modulus |p(c, €)| of the cross correlation coefficient.

tively low values of the coupling strength €, whereas the
coherency between the other orbits (period two and four)
starts increasing for much higher values of e. This result is
obtained with both, the mean resultant length and the corre-
lation coefficient.

Figure 8 shows r(e) and |p(e)| only for the three subhar-
monics. Here one can follow the transition to full synchroni-
zation for each of those three time scales. Especially for
coupling strength bewteen 40 and 80, the difference in the
amount of synchrony of the subsystems beween the second
and the third subharmonic is rather strong.

In the analysis of experimental data, collected using the
master-slave experimental setup described at the beginning
of Sec. II, we used three different values of the coupling
strength e. Figure 9 shows again both measures of sychroni-
zation but here plotted against scale. Both measures reveal
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FIG. 8. The measures of synchronization for the model system
(1) plotted only for the three subharmonics (o=1,2,3). (a) Mean

resultant length r(€) and (b) modulus |p(e)| of the cross correlation
coefficient.

clearly an increase of synchronization between the second
subharmonics of both lasers as the coupling strength is in-
creased. Note that the maxima at o=0.5 result from the
higher harmonics which have already been discussed in Sec.
IIT A. Further, note that the maxima of the curves are not
aligned for the different coupling strengths. This is caused by
the fact that we used much less data for the calculation of the
presented figures compared to the numerical case. Therefore
transients in which the systems are between two orbits and
which appear between the subharmonic scales in the CWT
have a much larger impact in the statistical analysis. A more
detailed discussion of the experiment will be presented else-
where.

IV. CONCLUSIONS

We have numerically studied the synchronization of
bursts in a model system of two externally forced coupled
CO, lasers with master-slave coupling. The bursts in this
system have different predominant frequencies, which arise
from unstable periodic orbits of different lengths embedded
in the chaotic attractor.

For multi-time-scale systems no standard measures for
phase synchronization exist. Therefore we have applied a
complex continuous wavelet transform to the data of the la-
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FIG. 9. Results from experimental measurements. (a) The mean
resultant length (o). (b) The modulus |p(a)| of the correlation co-
efficient. The coupling strengths are 40, 50, and 60, respectively.

sers’ intensities in order to decompose the multiple time
scales of that system. We have combined this approach with
two measures for phase synchronization, namely, the mean
resultant length and the cross correlation coefficient. This
procedure enables us to identify details of synchronization of
these multi-time-scale systems. In particular, we have found
that as we increase the coupling strength, there is an early
increase of synchronization between periodic orbits of period
three, where the fundamental period is given by the period of
the forcing. This insight was not known from previous analy-
sis, carried out with standard methods. This multiple time-
scale synchronization analysis has also been tested with ex-
perimental data, where we have found qualitatively the same
results.

The analysis method presented in this paper can be ex-
tended to apply to a general class of multi-time-scale sys-
tems, such as neuronal dynamics, where spiking and bursting
play a key role in the communication among neurons
[20,21].
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