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Detecting anomalous phase synchronization from time series
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Modeling approaches are presented for detecting an anomalous route to phase synchronization from
time series of two interacting nonlinear oscillators. The anomalous transition is characterized by an
enlargement of the mean frequency difference between the oscillators with an initial increase in the
coupling strength. Although such a structure is common in a large class of coupled nonisochronous
oscillators, prediction of the anomalous transition is nontrivial for experimental systems, whose
dynamical properties are unknown. Two approaches are examined; one is a phase equational mod-
eling of coupled limit cycle oscillators and the other is a nonlinear predictive modeling of coupled
chaotic oscillators. Application to prototypical models such as two interacting predator-prey sys-
tems in both limit cycle and chaotic regimes demonstrates the capability of detecting the anomalous
structure from only a few sets of time series. Experimental data from two coupled Chua circuits
shows its applicability to real experimental system. © 2008 American Institute of Physics.

[DOLI: 10.1063/1.2943308]

The collective behavior of a population of interacting
rhythmic oscillators has attracted significant attention in
many areas of science and technology over the last de-
cades. Synchronization is one of the most fundamental
phenomena in such systems, where dynamical patterns of
the oscillatory elements are entrained through the mutual
coupling. In a large class of coupled nonlinear systems in
the real world, which typically creates heterogeneity such
as frequency mismatch among the oscillators, phase syn-
chronization has been found to be quite a common phe-
nomenon in which, despite some variability in the ampli-
tude, the phase of the oscillators is locked. Transition
from disordered state to phase synchronization is usually
expected to be a monotonic process, where a gradual in-
crease in the coupling strength monotonically decreases
the frequency difference among the oscillators. However,
due to nonisochronous property of the nonlinear oscilla-
tors as well as asymmetry in the coupling, it has been
recently shown that the increased coupling can initially
increase the frequency difference and then eventually de-
creases it into zero. This nonmonotonic route is called
“anomalous phase synchronization,” which is commonly
found in a variety of systems including biological net-
works. Given a time series measured from such oscilla-
tors, the next important problem is to retrieve the
anomalous structure hidden behind the measurement.
This provides a nontrivial situation, since the underlying
coupled dynamics is usually not known. This paper pre-
sents unique modeling approaches to detect the anoma-
lous phase synchronization from time series. Based only
on a few measurements, nonmonotonic transition to syn-
chronization can be well detected for two coupled limit
cycle oscillators as well as two coupled chaotic oscillators.
This enables the prediction of the onset point of the syn-
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chronization, thus providing an important application to
real experimental systems.

I. INTRODUCTION

Synchronization is a ubiquitous phenomenon of coupled
nonlinear oscillations found in many fields of science and
engineering.]_3 In real-world systems, the oscillatory ele-
ments are inherently nonidentical, where individual oscillator
is governed by a different natural frequency. Such a fre-
quency mismatch can be tuned to zero by introducing an
interaction among the oscillators, which induces a phase syn-
chronization (PS). Due to this natural problem formulation,
the PS has been attracting a great deal of attention. An earlier
and yet famous example is the weakly coupled limit cycle
oscillators, whose dynamics can be reduced to a system of
interacting phase oscillators.” The coupling induced syn-
chrony, known as the Kuramoto transition, provides a simple
description of PS. The idea of PS has been extended to the
study of coupled chaotic oscillators.* With an adequate defi-
nition of phase, it has been shown that the phase of chaotic
oscillators can be entrained through coupling, where the am-
plitude of each oscillator is still independent and chaotic.
Such chaotic phase synchronization can be found in a variety
of laboratory experiments as well as natural systems.s’6

It is usual that increase in the coupling strength induces
a monotonic decrease in the mean frequency difference be-
tween the nonlinear oscillators, leading to PS. In contrast to
such a monotonic transition, a new route to PS has been
recently found, where a small coupling initially enlarges the
frequency difference and then PS sets in later for a larger
coupling strength.7 The underlying mechanism of this
“anomalous” phase synchronization (APS) has been clarified
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as a nonisochronicity of the nonlinear oscillator, whereas
asymmetry of the coupling is also known to pronounce the
anomalous structure. The APS can be seen in a large class of
systems including coupled limit cycle oscillators as well as
coupled chaotic oscillators.® Experiments with two coupled
Chua circuits also provides a clear laboratory example.9’10

To analyze the experimental data from such coupled os-
cillators, special techniques of synchronization analysis
should be developed. Although conventional techniques are
shown to be very efficient for detecting PS even for noisy
and nonstationary data, > only a few deal with the prob-
lem of modeling the coupled oscillators from time series
data. Such a model would reconstruct the synchronization
diagram that classifies the parameter space of the coupling
strength into regions of PS and non-PS. Of special interest in
this modeling is to detect the anomalous structure, which is
usually hidden behind the time series data. This is a chal-
lenging problem, since the anomalous structure can mislead
the modeling to provide a wrong prediction on the onset
point of the PS. Hence, the aim of this paper is to present
modeling techniques for reconstructing the anomalous struc-
ture of coupled oscillators. We deal with both coupled limit
cycle oscillators and coupled chaotic oscillators. For simplic-
ity, we restrict ourselves to the case of two interacting oscil-
lators.

Our study is based upon two approaches. The first one is
a phase equational modeling of coupled limit cycle oscilla-
tors. The second one is a nonlinear modeling technique of
coupled chaotic oscillators. By using simulation data from
prototypical models of APS as well as experimental data
from two coupled Chua circuits, we demonstrate the model-
ing power of detecting the anomalous structure only from a
few sets of measurement data.

The present paper is organized as follows. In Sec. II,
phase equational modeling is introduced to coupled limit
cycles. Simulation results with two interacting limit cycle
predator-prey model are presented. In Sec. III, nonlinear
modeling is applied to coupled chaotic oscillators. Results
with simulation data from two interacting chaotic predator-
prey systems as well as experimental data from two coupled
Chua circuits are presented. Section IV is devoted for con-
clusions and discussions.

Il. COUPLED LIMIT CYCLES

A. Problem and method

We start with a system of two weakly coupled nearly
identical limit cycle oscillators,

xl,zzFl,z(xl,z)+C11,2(X1,2,X2,1), (1)

where x; (e R™) and F; represent state variables and dynam-
ics of the first oscillator (i=1) and the second oscillator (i
=2), C and J; are the coupling constant and the interaction
function between both oscillators. The interaction is consid-
ered to be asymmetric; i.e., J; #J,. With an increase in C,
the system is assumed to give rise to APS.

As a recording condition, we assume that simultaneous
measurements of the two oscillators are made as
{&(nAr), & (nAr):n=1,...,N}, where each variable is ob-
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served through a function G:R" —R' as &(t)=G(x;(t)) with
a sampling interval of A¢. Our objective is to reconstruct the
synchronization diagram including the anomalous structure
from the measurement data. Our main conditions are (i) the
underlying dynamics (1) is unknown, (ii) the coupling con-
stant C associated with the measured data is taken from a
nonsynchronous regime, and (iii) the coupling type is known
to be diffusive.

Our approach is based upon the modeling technique re-
cently introduced to extract phase equations from multivari-
ate time series of a population of coupled limit cycle
oscillators." According to the phase reduction theory,2 if the
coupling C is weak and if the coupled limit cycle oscillators
have similar natural frequencies w;, the system dynamics (1)
can be reduced to phase equations of the following form:

012=w 2+ CH, ,(6,, - 6,,). (2)

Our strategy is to infer the above phase equations (2) from
the measurement data according to the following steps so
that the obtained phase models can be utilized to reconstruct
the synchronization diagram of the original system (1).

(Al) Determine phases 6),(r) from data & ,(f). Among
various definitions of phases,3 a simple formula is ap-
propriate here, where the phase 6 is increased by 2
at every local maximum of &(¢) and between the local
maxima the phase grows linearly in proportion to
time.

(A2) Fit the phases 6 ,(¢) to the phase equations:
012= w5+ CH, 5(0,, - 6, ), 3)
B I
H(AO =, a;; sin jAO+ b;(cos jAG—1), (4)
j=1

by estimating the unknown parameters p
={w;,a;,b;} via the multiple-shooting method. '
Note that the interaction function H;, which is in gen-
eral nonlinear and periodic with respect to 27, is ap-
proximated by a Fourier expansion up to order of wu.
[For simplicity, we consider difference coupling.
Thus, the interaction function is set to zero for zero
phase difference; i.e., I:I,-(O):O.] In the multiple-
shooting, we denote the time evolution of the phase
equations (3) and (4) with respect to the initial condi-
tion 6, 5(0) by 6, (1)= ] 5(6,,(0), 6,,(0),p). Taking
the phases 6 ,(¢) at each sampling time r=iAr as the
initial condition, the phase equations must satisfy the
following boundary conditions at the next sampling
step t=(i+1)Ar:

01,2((” +1)Ar) = d’lmz( 91,2(”AI), 02’1(nAt),p). (5)

With respect to the unknown parameters p, we solve
the above nonlinear equations by the generalized
Newton method. The evolution function ¢/, is inte-
grated numerically. For the computation of the gradi-
ents d¢; ,/dp, which are needed for the Newton
method, variational equations of the phase equations
(3) and (4) are also solved numerically.
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(A3) To avoid the overfitting problem, a cross-validation
technique17 is utilized to determine the optimum num-
ber u of the higher harmonics in the interaction
function. We divide the measurement data into
two parts. For the first half of the data
{0, ,(nAr):n=1,...,N/2}, which is used as the train-
ing sample, the parameter values p are estimated. We
then apply the estimated parameters to the latter half
data {6, ,(nAr):n=1+N/2,...,N}, which is used as
the test sample, and measure the error

N-1 2
E.=(1N) 2 2 [6((n+1)Ar)
n=N/2 i=1

— 6" (6,(nA1), 6,1 (nAD), ).

The order number w that provides the minimum error
is considered to be the optimum.

By simulating the obtained phase equations (3) and
(4), compute the normalized frequency difference as
Aw=2|@,—®,|/(@,+®,) (@, ,: frequency of the first
and second oscillator in the presence of coupling).
The synchronization diagram is drawn by plotting
Aw, which depends upon the coupling strength C.

(Ad)

B. Application

As a prototypical example of coupled limit cycle oscil-
lators, we consider the following two interacting predator-
prey systems:8

. X1.2 X12Y1.2
Xjp=—ax;,| 1 ——= | —a——"—, 6
1.2 1,2( % ) 1+ xx, 5 (6)
. X12Y1.2
Y1,2=—b1,2y1,2+a1 +Cio(ya1 = Y12)- (7)
+ KX1 2

x; and y; denote the prey and predator species, respectively, a
and b are the birth and death rates, respectively, K is the prey
carrying capacity, « is the predation rate, and « corresponds
to the half-saturation constant of the functional response. The
parameter values are set as a=1, a=3, K=3, k=1, where the
mismatched parameters are chosen as b;=0.995 and b,=1.
For sufficiently large K, each predator-prey system is well
known to exhibit limit cycle oscillations.

Figure 2(a) shows interaction functions H,,(A#6) of the
two limit cycle oscillators, obtained by applying a perturba-
tion method to the original equations (6) and (7). The pertur-
bation method is the standard method to estimate the inter-
action function based upon the convolution of the phase
response curve with the external stimuli.>"®!” This approach
cannot be applied directly to the present problem formula-
tion, since it requires the phase response curve, which should
be obtained by applying external perturbations to each non-
linear oscillator in an isolated condition. The first-order Fou-
rier approximation of the estimated interaction functions
yields H;(A6)=0.45sin AG+3.4(1-cos Af) and H,(A6)
~(.52 sin A9+4.05(1—cos A6). This indicates that the inter-
action functions have a very strong cosine-component. Due
to this nonisochronicity, the coupled limit cycles system of
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FIG. 1. Cross-validation test applied to coupled limit cycle predator-prey
model. For order number u=1,2,...,5, error function E. is computed for
the test data, which are not used for the parameter estimation. The minimum
error points the optimum Fourier order at u=3.

equations (6) and (7) exhibits APS. In order to further pro-
nounce the anomalous structure, asymmetry is introduced to
the coupling as C;,=C(1¥x) with a control parameter
x=0.1.

As a measurement of these coupled limit cycle oscilla-
tors, bivariate data were recorded as {x,(r),x,(¢)} under the
coupling strength of C=0.001, which is within nonsynchro-
nized regime (see Fig. 3). The sampling interval was set to
be Ar=0.08 for the extraction of the phase {6,(r)}. To apply
the multiple-shooting method, the data have been down-
sampled to Ar=1000X0.08 and the total of N=2400 data
points have been collected for the parameter estimation.

In the multiple-shooting, initially, the unknown param-
eter values were all set to be zero; i.e., w;=0, a,-jzbijzo. The
convergence property was excellent; within 10 Newton steps
a good estimate was reached.

Figure 1 shows the result of the cross-validation test,
which indicates that the optimum Fourier order is u=3. For
this optimum order, the natural frequencies were estimated as
®1=0.510 and w,=0.512, which are very similar to the val-
ues of w;=0.519 and w,=0.521 obtained by simulating the
original equations (6) and (7) in an isolated condition. Figure

2(b) shows the interaction functions H 12(A6) estimated by
the present technique. The estimated interaction functions are
quite similar to those obtained by the perturbation method as

shown in Fig. 2(a). The first-order terms yield H,(A6)

~0.65sin AG+4.7(1-cos Ad) and ﬁZ(AG) ~1.1sinA6
+5.6(1—cos Af), indicating a strong cosine-component
(723% and 509% of sine-component), which are in a very
good agreement with the estimates obtained by the perturba-
tion method (756% and 779% of sine-component). Further-
more, the coupling asymmetry between the two oscillators

was derived as max|H,|/max|H,|=0.829, which is again
quite similar to max|H,|/max|H,|=0.832, obtained by the
perturbation method.

One of the most important capabilities of the phase mod-
eling is its predictability of the synchronization structure of
the original coupled system. By simulating the estimated
phase equations (3) and (4), the synchronization diagram has
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FIG. 2. Interaction function of limit cycle predator-prey model is drawn for

the first oscillator & 1(A6) (solid line) and for the second oscillator ﬁz(A 0)
(dotted line). (a) The estimates based upon the perturbation method and (b)
estimates based upon the present method.

been drawn by plotting the normalized frequency difference
Aw against the coupling strength C. Figure 3 shows that the
synchronization diagram of the phase model produces a
structure almost identical to the one obtained by simulating
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FIG. 3. Synchronization diagram of two coupled limit cycle predator-prey
model. Normalized mean frequency difference Aw is plotted against the
coupling strength C. The model prediction (dotted line) is compared with
the simulation curve (solid line), which is drawn by using the original Eqs.
(6) and (7). The circle marker corresponds to the coupling strength C
=0.001 utilized for the model estimation.
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FIG. 4. Dependence of the prediction error E, of the synchronization dia-
gram on the parameters b, and y. (a) b;=0.995, b,=1, x €[0.05,0.25]. (b)
b, €[0.993,0.995], b,=1, x=0.1.

the original equations (6) and (7). It should be emphasized
that the anomalous property is well reproduced and further-
more the onset point of PS is also precisely predicted by the
phase model. Considering the fact that only a single data set
was used for this model estimation, the substantial power of
the phase modeling approach to the coupled limit cycle os-
cillators is demonstrated by the present example.

It is important to note that the result of predicting the
synchronization depends upon the parameter mismatch |b,
—b,| and the coupling asymmetry x, which determine the
amount of anomalous property. Figure 4 shows dependence
of the prediction error of the synchronization diagram on the
parameters b; and y. The prediction error is measured by the
deviation of the model diagram from the real diagram as
E,=100f0"°|Aw,(C)-Aw,(C)|dC/ [§*°|Aw,(C)|dC [%],
where Aw, and Aw, correspond to normalized frequency dif-
ference of phase model and original system, respectively. As
the asymmetry parameter y is increased [in Fig. 4(a)] or as
the parameter mismatch |b,—b,| is increased [in Fig. 4(b)],
the prediction error is also increased. This implies that as the
anomalous structure is more pronounced it becomes harder
to predict the synchronization diagram. This might be due to
the limitation of the phase modeling, where stronger nonlin-
earity starts to play an important role in the more pronounced
APS. The phase modeling should be employed under the
condition that the anomalous property is moderate.
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FIG. 5. Dependence of the prediction error E, on (a) observational noise
(from 0% to 25%) and (b) coupling strength C €[0,0.002] used for gener-
ating the time series. The parameters are set to (b;,b,, x)=(0.995,1,0.1).

Another important issue is the effect of noise, which is
inherent in all experimental or natural systems. To study the
influence of noise on the estimation results, zero-mean
Gaussian noise was added to the bivariate data {x,(z),x,(¢)}
as observational noise. The system parameters were set to
(by,by,x)=(0.995,1,0.1). To reduce the noise effect, a mov-
ing average filter, x{(nAt):(l/20)2]2-21x,-((n+j)At) (i=1,2),
was applied before the phase extraction procedure (A1). Fig-
ure 5(a) shows the dependence of the prediction error E, on
the noise level. As the noise level is increased, the prediction
error is increased as well. However, up to the noise level of
15%, the model prediction is still very accurate within the
error of E,<<9%. This demonstrates the robustness of the
present approach against the observational noise.

Finally, Fig. 5(b) shows the dependence of the prediction
error E, on the coupling strength C used for generating the
times series. As the coupling strength is increased, the pre-
diction error is also increased. The reason for this is as fol-
lows. As the coupling strength comes close to the onset point
of synchronization, the phase difference between the two os-
cillators may grow extremely slowly. In order for precise
estimation of the interaction function, time series that con-
tains enough information on the developmental process of
the phase difference is necessary, since the interacting infor-
mation is contained in such interval. Close to the onset point,
however, only a limited information is included, which may
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cause inaccurate estimation of the interaction function. In
this sense, the measurement data away from the onset point
is desired for the present technique.

lll. COUPLED CHAOTIC OSCILLATORS

A. Problem and method

Let us consider the case of coupled chaotic oscillators. In
a manner similar to Sec. II, two diffusively coupled nonlin-
ear oscillators are formulated as

X12=Fo(x;0) + Clxg —x10). (8)

From both oscillators, bivariate data
{&(nAr),&(nAr):n=1,...,N} are simultaneously measured.
The main differences from the assumptions made in the pre-
vious section II are: (1) without coupling (C=0), each oscil-
lator F;, generates a phase-coherent chaos; (2) we assume
that the coupling type is known to be a mutual difference
coupling (x5 | —x,); (3) under M conditions associated with
different coupling strength C; (i=1,...,M) in nonsynchro-
nized regime, the bivariate data are obtained. With an in-
crease in C, the system is again assumed to give rise to APS.

Our objective is to reconstruct the synchronization dia-
gram including the anomalous structure from the few data
sets. Unlike the previous section, the phase reduction
technique2 cannot be applied to the chaotic PS. Instead, non-
linear modeling technique based on Refs. 20 and 21 is ap-
plied to the present case as follows.

First, we embed the bivariate time series {&(7), & (1)}
into delay coordinates

X\ (0)={& ), & (=7, ....&@~(d-1)7)},
Xo(1) ={&(0, 6 - 1), ... .&( - (d-1)7)}

(d: embedding dimension, 7: time lag) and suppose accord-
ing to the embedding theorem”™*® that there exists the fol-
lowing dynamics:

X, ,5(0) = Fy (X, 5(),C(X, 1 (1) = X, 5(1))). 9)
The main point of our modeling is to construct a set of non-

linear functions F 1.2, which approximate F, in Eq. (9). If
the original dynamics (8) is well embedded in the delay co-
ordinate space and the embedded dynamics (9) is precisely
modeled, synchronization structure of the original dynamics

can be predicted by studying the model equations F 1. For

the construction of the nonlinear models F 1.2» there exist
mainly two approaches: local modeling and global modeling.
The local approach is to divide the state space into small
regions and construct a linear or nonlinear function in each
region.24 The global approach, on the other hand, yields a
single nonlinear function that approximates the global dy-
namics without dividing the space.”>?® Although the local
approach is capable of a precise modeling of the local dy-
namics, it is not suitable for modeling the global dynamical
structure such as bifurcations”® due to its local property. We
therefore take the global approach. Among the global func-
tional systems such as polynomial functions™ and radial ba-
sis functions,26 an artificial neural network?®’ is exploited in
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this study. Our modeling procedure consists of the following
main steps.

(B1) The embedding dimension d and the time lag 7 are
chosen. To determine 7, the first zero-crossing point
of the autocorrelation function, which is commonly
used for the nonlinear data analysis,28 is exploited.
The embedding dimension d can be determined by
conventional techniques such as the false nearest
neighbor algorithm.29

(B2) Each nonlinear function 17,- : RIXRI—R? (i=1,2) is
realized by a three-layer feed-forward neural
network,”’ having 2d-units in the input layer, d-units
in the output layer, and k-units in the middle layer.
Each neural network has 4dh parameters, denoted as
W, which are optimized to fit into the data as follows.
First, the cost function is defined as

M 2 N-S§ S

E,W) =22 2 X |X{((n+5)Ar1,C)

i=1 j=1 n=1 s=1

- X,((n+)A1,C)P, (10)

where X ; is the trajectory generated from the model
equations

il,z(f) = ﬁl,z(fl,z(f), C(fz,l(f) - il,z(f))) (11)

started from the initial condition X 1.2(nAr)
=X »(nAr). Note that the data X , and the model tra-

jectories X 1.2 in Eq. (10) are dependent upon the cou-
pling strength C, since we assume that several data
sets are recorded with different coupling conditions.
The maximal iteration step is set as S=5. To minimize
the cost function, the quasi-Newton method based
upon the Broyden—Fletcher—Goldfarb—Shanno for-
mula with Luenberger’s self—scaling30 is utilized. To
compute the first derivatives of the cost function,
variational equations of the model equations (11) are
numerically integrated.

(B3) It has been known that the modeling of the coupled
system based on a single realization of the nonlinear

function F 12 is rather sensitive to the parameter esti-
mation. To overcome this problem, an ensemble tech-
nique is utilized.* In this technique, Q sets of differ-

ent nonlinear models F (11)2 (i=1,...,0) are collected,
each of which can be obtained by the same procedure
as (B2) except that a different initial condition, which
is generated randomly, is set for the parameter estima-
tion. This results in Q sets of neural networks with the
same architecture with different parameter values W.
An ensemble average is then taken as F 12
=(1/ Q)Z,Q:lf (1')2 It has been shown that this ensemble
average is much less sensitive to the model selection,
thus provides a highly reliable modeling.31

(B4) Mean frequencies of both oscillators w; , can be com-
puted by the free-running of the ensemble model
Xi2(0)=F 5(X, 2(t), C(X5,1 (1) =X 5(1))). A unit phase
of 27 is defined as a duration between one local
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FIG. 6. Chaotic attractor in (x,y)-coordinate space of the predator-prey
system (12)—(14).

maximum of the first component of X and the follow-
ing one. By counting the number N; of the local
maxima during a period T, the mean frequency of the
ith oscillator can be computed as w;=27N,/Ty. Nor-
malized mean frequency difference between the two
oscillators is then given as Aw=2|w;—w,|/(w;+,).
By changing the coupling constant C, the synchroni-
zation diagram is drawn, which shows dependence of
the frequency difference Aw on the coupling strength.

B. Applications

1. Simulated data
First, we apply our method to simulated data of two
interacting chaotic predator-prey systems:8

xl,2=a(xl,2_x0)_ax1,2y1,2s (12)

Vip==biyia+axioyi— Byiazin

+C2,1(y2’1—y,y2), (13)

Z12=—c(z12=20) + By12212- (14)

Each system describes a three trophic food chain, where the
basal species x; is consumed by the predator y;, which itself
is preyed upon by the top predator z;. In the absence of
interspecies interactions, the dynamics is linearly expanded
around the steady state (x,0,z,) with coefficients a, b;, and
c. Predator-prey interactions are introduced via mass-action
terms with strength « and 3. The asymmetry of the coupling
C1,=C(1 ¥ x) can be controlled by the asymmetry param-
eter y (-1 =y=1). Other parameter values were chosen as
a=1, c=10, xy=1.5, zp=0.01, «=0.1, B=0.6, b;=1, b,
=0.96.

Under this parameter setting, the predator-prey system
generates a phase-coherent chaos, where the trajectory ro-
tates with a nearly constant frequency in the (x;,y;) plane but
with a chaotic property that appears as irregular spikes in the
top predator z; (see Fig. 6). Because of the phase coherent
property, the phase can be well defined for the chaotic attrac-
tor, where the unit phase of 27 is defined as a duration be-
tween a local maximum of the first component x and the
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FIG. 7. Dependence of the normalized frequency difference Aw between the
coupled predator-prey systems on the coupling strength C e [0,0.08]. The
coupling asymmetry is set as y=0.1.

following one. Figure 7 shows the synchronization diagram,
which indicates dependence of the frequency difference Aw
between the chaotic oscillators on the coupling strength C in
the case of y=0.1. In the weak coupling regime, chaotic
oscillators are not phase synchronized as indicated by the
finite amount of the frequency difference. As the coupling
strength is increased, the frequency difference initially in-
creases and then for C>0.034 it decreases monotonically. As
the coupling strength is further increased, the frequency dif-
ference becomes zero at C=0.05, where the PS sets in. This
indicates a clear APS. In a similar manner as the coupled
limit cycles [Egs. (6) and (7)], the anomalous property can
be more pronounced by increasing the coupling asymmetry
X-

Let us apply our modeling technique to this simulated
system. As the measurement data, two sets of bivariate time
series {x;,x,} were recorded under a no-coupling condition
(C=0) as well as under a weak coupling condition (C
=0.02). For each data set, N=200 data points were collected
with a sampling interval of Ar=0.4. Following the modeling
procedure (B1), the embedding dimension and the time lag
were set as d=3 and 7=1.6. As the nonlinear model in the
procedure (B2), a pair of neural networks F ,, each of which
has six units in the input layer, eight units in the middle
layer, and three units in the output layer, was utilized. In the
ensemble modeling procedure (B3), O=5 sets of the neural
networks were averaged to provide the nonlinear function
Fi,.

Figure 8 shows simultaneous drawing of the synchroni-
zation diagrams of the predator-prey system (12)—(14) and
the nonlinear model. In the case that the asymmetry is not
too strong [Figs. 8(a) and 8(b): x=0.1,0.2], the model pre-
dicts the onset point of PS very precisely. Although the
model curve is slightly deviated from the original, the
anomalous structure discernible in the original synchroniza-
tion diagram has been very well recovered by the model.
Taking into account the fact that only two data sets were
utilized, these results demonstrate the strength of the present
modeling technique. It should be noted, however, that in the
case that the asymmetry becomes very strong [Fig. 8(c):

Chaos 18, 023134 (2008)

x=0.6], the model reconstruction becomes rather unstable. It
has been known that as the asymmetry is more strengthened
the anomalous structure becomes more pronounced, which
induces a much more abrupt transition to PS.® The present
results imply that it may not be so simple for the nonlinear
model to predict such a too sudden change in the synchroni-
zation diagram induced by a strongly anomalous system. The
nonlinear modeling technique should be reliable under the
condition that the anomalous property is moderate.

To study the influence of noise on the reconstruction
results, zero-mean Gaussian noise was added to the bivariate
data {x,(r),x,(¢)} as observational noise. The asymmetry pa-
rameter was set to y=0.1. To reduce the noise effect, a mov-
ing average filter, x/ (nAt):(l/3)E?=]xi((n+j)At) (i=1,2),
was applied before the delay coordinate embedding. Figures
8(d) and 8(e) show the results of reconstructing the synchro-
nization diagram under the noise levels of 20% and 30%.
Although the reconstructed diagram looks rather different
from the original one for the very strong noise level of 30%,
the model reconstruction is still quite accurate up to the noise
level of 20%, where the anomalous structure is well repro-
duced with a good prediction on the onset point of the syn-
chronization. This demonstrates the robustness of the present
approach against observational noise.

2. Experimental data

Let us apply our method to experimental data from two
diffusively coupled nonidentical Chua circuits, which are
known to be a good experimental representative of APS.210
From the experimental setup explained in detail in Ref. 10,
bivariate time series {£,(7),&,(1)} were measured from both
of the coupled circuits with a sampling frequency of 25 kHz.
The coupling strength is scaled as C=1/R. using a resis-
tance R that connects the two Chua circuits. Figure 9 shows
the synchronization diagram observed from the experiment.
As the coupling strength is increased, the frequency differ-
ence between the coupled circuits increases initially, repre-
senting a clear anomalous structure until C<8.4 X 1076, The
PS regime then appears in C € [8.4X 107°,1.68 X 1073]. This
interval of zero frequency difference corresponds to an anti-
phase regime. As the coupling is further increased C>1.68
% 107, desynchronization of coupled oscillators appears. For
very large coupling, this desynchronization regime disap-
pears with the onset of in-phase synchrony. Details of the
in-phase synchrony are described in Ref. 10, which is be-
yond the scope of the present study. We limit our attention
here to identify the anomalous structure only.

Following the modeling procedures of (B1)—(B4), which
were applied to the experimental data, the embedding dimen-
sion and the time lag were set as d=3 and 7=1.2X 107 5. As
the nonlinear model F' ,, a pair of neural networks, having
six units in the input layer, eight units in the middle layer,
and three units in the output layer, was exploited. To make

the modeling more reliable, the ensemble model F 1o Was
constructed from Q=10 different realizations of the neural
networks. We have studied the following three cases: (a)
modeling two data sets with R-=339 kQ and 229 kQ), (b)
modeling two data sets with R-=339 k() and 129 k(), and
(c) modeling two data sets with R-=169 k) and 59.25 k().
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Figure 10 shows simultaneous drawing of the synchro-
nization diagrams of the experimental system and the non-
linear model. In the case (a), the nonlinear model does not
show any transition to PS within C e[0,1.8X107], thus
fails to locate the onset point of PS [Fig. 10(a)]. This might
be due to the same difficulty as we have seen in the modeling
study of the simulated data from the coupled chaotic
predator-prey systems. Namely, in the case that the anoma-
lous transition to PS is too abrupt, nonlinear model cannot
predict such a sudden change in the synchronization dia-

gram. The situation of the case (a) can be greatly improved
in the case (b), where one of the two data sets is located
much closer to the PS regime. This helps to locate the onset
point of the PS (C~8.4 X 107°) more precisely. The anoma-
lous structure is, however, still not recovered in this case.
Location of the transition from PS to desynchronization
(C=1.5%X107) is also not very accurate. The case (c) rep-
resents the best reconstruction, which very precisely locates
the onset point of the PS (C~8.4X 1079), as well as the
transition point to the desynchronization (C~1.68 X 107°).
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Furthermore, the anomalous structure discernible in the ex-
perimental system is recovered in this case. This is mainly
due to the fact that here the two data records were taken not
only from the regime of anomalous transition but also from
the regime of desynchronization on the other side of the syn-
chronization diagram. Compared with the cases (a) and (b),
which attempt an extrapolation of the synchronization dia-
gram by using only one sided data sets, the case (c) attempts
an interpolation by using the both-sided data sets. It is rea-
sonable that such a rich global information on the two dis-
tinct types of the nonsynchronized dynamics is of great help
for recovering the synchronization diagram.

IV. CONCLUSIONS AND DISCUSSION

Modeling techniques have been presented for detecting
the anomalous structure of two coupled nonlinear oscillators
from time series data. We have dealt with both coupled limit
cycle oscillators and coupled chaotic oscillators. Two ap-
proaches were presented: (i) phase equational modeling of
coupled limit cycle oscillators and (ii) nonlinear predictive
modeling of coupled chaotic oscillators. By using simulated
data from two coupled limit cycle predator-prey system, the
phase equation model was shown to be capable of recovering
the synchronization diagram including the anomalous struc-
ture from only a single bivariate data set. The onset point of
PS was well predicted by the model. Interaction functions as
well as natural frequencies of the two limit cycles were also
estimated with a good precision.

A nonlinear modeling technique was then applied to
simulated data from two interacting chaotic predator-prey
systems and also to experimental data from two coupled
Chua circuits. In the case in which the anomalous structure
was moderate and the transition from non-PS to PS was not
too abrupt, the nonlinear model was capable of recovering
the synchronization diagram from only two sets of measure-
ment data associated with different coupling strength. The
onset point of PS was precisely predicted and the anomalous
transition was well reproduced. The nonlinear model, how-
ever, failed to recover the synchronization diagram as the
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FIG. 10. Synchronization diagram of the experimental system (solid line)
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(b) Data from R-=339 kQ, 129 kQ. (c) Data from R =169 kQ, 59.25 k().

anomalous structure got more pronounced and the transition
to PS became too abrupt. This difficulty can be overcome by
utilizing data sets from nonsynchronized regimes located on
both sides of PS. Application to the coupled Chua circuits
showed that the experimental synchronization diagram was
well recovered, if the data sets are taken from both sides of
PS, although the experimental system has a rather sharp
anomalous structure. This improvement is reasonable, since
in this case the recovery corresponds to the interpolation of
the synchronization diagram. Hence, it is concluded that the
modeling data are preferred to be taken not only from one
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side but from both sides of the PS regime whenever such
data are available.

This kind of modeling approach should be of significant
importance for studying synchronization of biological sys-
tems such as firing neurons or ecological systems. In particu-
lar, we have used the predator-prey model as a typical ex-
ample of APS. In the context of ecology, it has been known
that asynchrony of fluctuating animal populations might be
important for increasing the chances of global persistence,
since asynchrony can spread the survival risk in a fluctuating
environment. > Synchronization, on the other hand, tends
to increase the risk of global species extinction. Therefore,
anomalous structure in a weak coupling regime before the
onset of synchronization may play an important role in ecol-
ogy, although further careful investigations from both theory
and experiment are awaited. The present methodology re-
quires measurements of coupled oscillators from a weak cou-
pling regime that gives rise to asynchronous dynamics. This
requirement would fit to some population data, where asyn-
chrony is essential for lowering the extinction risk. Concern-
ing the effect of noise, which is inherent in ecological data,
the present approach was shown to be robust up to 20% level
of observational noise. Although the measurements from na-
ture can exceed this level, the present approach may have a
chance to recover an overall structure of the anomalous tran-
sition, thereby the onset point of synchronization can be ap-
proximately predicted. It should be finally noted that, in or-
der for the application to ecology, the present approach
should be further extended to the case of spatially distributed
oscillators, since the spatial structure plays a key role in eco-
logical systems. Such an extension will be considered in a
future study.
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