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We report on the origin of synchronized bursting dynamics in various networks of neural spiking
oscillators, when a certain threshold in coupling strength is exceeded. These ensembles synchronize
at relatively low coupling strength and lose synchronization at stronger coupling via spatio-temporal
intermittency. The latter transition triggers multiple-timescale dynamics, which results in synchro-
nized bursting with a fractal-like spatio-temporal pattern of spiking. Implementation of an appro-
priate technique of separating oscillations on di�erent time-scales allows for quantitative analysis of
this phenomenon. We show, that this phenomenon is generic for various network topologies from
regular to small-world and scale-free ones and for di�erent types of coupling.
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Achievements of the recent decade have given strong
evidence that synchronous activity [1] plays an important
role in the functioning of the nervous system and brain
[2]. These examples range from coordinating movements
in the motor system to information processing (recog-
nition and perceptual binding) in the visual cortex and
olfactory system. On the other hand, synchronization
may play a destructive role, causing neural disorders like
epileptic seizures or Parkinson's disease [3]. Moreover,
the importance of desynchronization in cognitive process-
ing is increasingly being recognized [4].
The need for the theoretical explanation of these �nd-

ings stimulated extensive research in the �eld of nonlin-
ear dynamics. The most simple and liable to analysis
models of integrate-and-�re neurons, which mimic pe-
riodic subthreshold approach to the spiking state, were
extensively studied to elucidate perfect synchronization
between identical units [5] and frequency synchronization
between non-identical ones [6]. The recently developed
theoretical framework for chaotic synchronization paved
the way to analyzing cooperative dynamics of more real-
istic models of chaotically spiking and bursting neurons
[7]. Complete chaotic synchronization in small and large
ensembles of identical neurons was found and methods of
its prediction were developed [8].

However, in nature neurons are not identical. There-
fore, the functional interdependence between momentary
states of synchronized neurons, if any, becomes extremely
complex and di�cult to identify, especially in large en-
sembles [1]. At the same time, as chaotic synchronization
has been observed in a variety of small groups of non-
identical neurons [9], it gives strong grounds to expect it
to appear in large ensembles too.

A promising way to make an advance here is the con-
cept of chaotic phase synchronization (CPS) [10]. It im-
plies the adjustment of characteristic time-scales of non-
identical oscillators in course of interaction. Given an ap-
propriate de�nition of phase and frequency one obtains

an e�cacious tool for detecting this process. Neurons,
known as multiple-time-scale systems, can generate ei-
ther single spikes mediated by long intervals of silence,
or trains of spikes, coined bursts. Remarkably, as we have
recently shown, it is possible to identify phase synchro-
nization on the bursting time-scale, while oscillations on
the spiking time-scale are unsynchronized [11].

In this Letter we study the pathway to the formation
of synchronized bursting in networks of intrinsically spik-
ing neurons. We show that it is observed with increase
of interneuronal coupling, as the networks achieve syn-
chronous spiking, undergo its instability towards gener-
ation of bursting, which �nally synchronizes. We ana-
lyze this phenomenon basing on the CPS concept and
develop a proper technique to separate oscillations on
spiking and burtsting time-scales. We demonstrate, that,
when the CPS regime gets unstable, spatio-temporal in-
termittency excites oscillations on the FTS, and eventu-
ally leads to the regime of synchronized bursts with a
fractal-like spatio-temporal structure of the spikes. Sim-
ulations of scale-free, random, and small-world topologies
give evidence of ubiquity of this phenomenon in complex
neuronal networks.

We consider networks of non-identical neuronal model
maps, proposed in [12]:
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f(x, x̃, y) =





α/(1− x) + y, if x ≤ 0,
α + y, if 0 < x < α + y and

x̃ ≤ 0,
−1, if x ≥ α + y or x̃ > 0,

(2)

where xj and yj are the fast and slow variables respec-
tively, j = 1, N . In all simulations we use µ = 10−3,
α = 3.5, σi ∈ [0.15, 0.16] (a uniform random distribu-
tion) that provides chaotic spiking in an isolated map;
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FIG. 1: Space-time plots illustrate di�erent regimes that oc-
cur in the chain (1). xj values are represented by colour, white
corresponds to minimal values, black to maximal ones. Shown
are (a) unsynchronized spiking, ε = 0.01, (b) synchronized
spiking, ε = 0.05, (c) desynchronized state: synchronization
is occasionally broken by fast repetitive spikes, ε = 0.1, (d)
synchronized bursts with a fractal-like spatio-temporal struc-
ture of spikes, ε = 0.2.

ε is the coupling strength, Ki is the number of entries
in the i-th neuron. The sum is taken over all neigh-
bours of a neuron in the network; all connections are
reciprocal. The coupling function corresponds either to
electrical Gk

j,i = xk
j − xk

i , or synaptical excitatory cou-
pling Gk

j,i = (xrp − xi)χ(xj), here the reversal potential
xrp = 1, χ(x) = 1 if x > 0, and χ(x) = 0 otherwise.

To analyze the collective dynamics of this neural en-
semble in terms of CPS one has to introduce frequency
and phase characteristics of oscillations. For spiking dy-
namics we determine the average spiking frequency in
neuron j by:

ωj = lim
k→∞

nk
j /k, (3)

where nk
j is the number of spikes �red from the beginning

up to the discrete time k. The phase of spiking reads:

ϕk
j = 2π

k−kj,m

kj,m+1−kj,m
+ 2πmj , kj,m ≤ k < kj,m+1, (4)

kj,m being the moment of the m-th spike in neuron j.
Further on, we need the other characteristics, which

correctly describe the slow time-scale (STS) oscillations
in the bursting regime. The STS frequencies Ωj and
phases Φj are de�ned similar to their spiking time-scale
counterparts ωj (3) and ϕj (4), except that not each spik-
ing event contributes to the 2π growth, but only the �rst
one in a burst (in simulations, the one coming after at
least 80 iterations in silent state). Note, that while neu-
rons generate STS chaotic spiking (like for ε = 0), both
de�nitions are equivalent. If fast repetitive spikes form
trains of bursts, Ωj will characterize the bursting fre-
quency and ωj will characterize the average spiking fre-
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FIG. 2: Variances of slow time-scale (STS) and spiking fre-
quencies Ωj and ωj over the chain (1) vs. coupling strength
ε for di�erent chain sizes N .

quency. This technique allows for a correct separation of
the FTS and STS.

Now we summarize the regimes that occur for di�er-
ent coupling strengths ε in a regular chain of electri-
cally coupled neurons [13]. At low coupling neuronal
�rings are unsynchronized (Fig.1(a)), at moderate cou-
pling they get synchronized (Fig.1(b)). Suddenly, as we
increase ε, the CPS regime becomes unstable and neurons
start �ring fast repetitive spikes occasionally (Fig.1(c)).
Further increase of ε results in the regime of synchro-
nized bursts with a fractal-like spatio-temporal structure
of spikes (Fig.1(d)).

To quantify these transitions we have computed the
variances of the STS and spiking time-scale oscillations
frequencies vs. the strength of the electrical coupling
for the chain lengths N = 200, 400, 800 (Fig.2). We
�nd three size-independent critical coupling strengths:
ε1 ≈ 0.035, ε2 ≈ 0.07, and ε ≈ 0.15, which de�ne four
intervals: (i) for ε ∈ [0, ε1] oscillations on the single ex-
isting time-scale � the slow one � are unsynchronized, (ii)
for ε ∈ [ε1, ε2] oscillations on the STS are synchronized,
(iii) for ε ∈ [ε2, ε3] oscillations on the second time-scale �
the fast one � are initiated, both time-scales demonstrate
unsynchronized oscillations, (iv) and for large coupling
ε > ε3 oscillations on the STS get synchronized again,
oscillations on the FTS are still unsynchronized.

The transition to CPS at ε1 is what one would have
intuitively expected á priori, as long as this is a conven-
tional way how arrays of non-identical oscillators behave
[1], but the instability of CPS at ε2 and the generation
of the FTS by repetitive spikes further on demand a de-
tailed study. To uncover the nature of this transition, we
record the interspike intervals Ts in each neuron and plot
their evolution for di�erent coupling strengths (Fig.3).
For ε < ε2 we observe that chaotic spikes construct only
the STS (Ts > 100), be it unsynchronized (Fig.3(a)) or
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FIG. 3: Evolution of interspike intervals for (a) ε = 0.01, (b)
ε = 0.05, (c) ε = 0.073 In (c) we denote several intervals of
stability windows TL.

synchronized (Fig.3(b)) dynamics. Note that in the syn-
chronization regime the relative spike timing in neurons
is locked but not tightly �xed. It varies from one spik-
ing front to another one exhibiting �exibility of phase,
typical of genuine CPS (see the inset in Fig.3(b)). Ts se-
quences (Fig.3(c)) demonstrate the intermittent nature
of the developing instability. The time intervals, during
which fast repetitive spikes are generated, are interrupted
by windows of synchronized STS spiking (in Fig.3(c) one
of them lasts as long as TL ≈ 10, 000 iterations, which is
of the order of 100 STS interspike intervals). The closer
ε is to ε2, the larger become stable CPS windows TL.
In Fig.4(a),(b) we show statistical properties of inter-
spike intervals Ts and time durations of stable windows
TL, respectively. Remarkably, the probability distribu-
tions of TL demonstrate a power-law dependence over
�ve decades in a �nite interval of the coupling strength
with ε-dependent exponents.

The shown complexity arises on the micro-scale, when
a spike in an adjacent neuron makes a just �red neu-
ron �re again (Fig.4(c)) should the coupling be strong
enough. It is important to underline the principal role
of the individual dynamics of oscillators in synchroniza-
tion and desynchronization processes. In the classical
case of coupled quasiharmonic oscillators the variables
change smoothly and the coupling tries to synchronize
the systems all the time. In case of spiking neurons, the
coupling synchronizes them until the faster neuron �res.
Its �ring is also a synchronizing event, as it pushes the
slower oscillator up. On the opposite, �ring of the slower
neuron desynchronizes them, as it pushes the faster one
up towards the next �ring. Varying ε we change the
balance between synchronization and desynchronization
and observe the instability of synchronization when short
desynchronizing intervals prevail.

In addition, we implemented synaptical excitatory cou-
pling instead of the electrical one and found no qualitative
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FIG. 4: Probability distributions of (a) interspike intervals
Ts and (b) duration of stable CPS windows TL for di�erent
values of the coupling strength (solid lines are guides for the
eye). (c) Dynamics of fast variables xj in three neighboured
neurons. It is shown, how a spike in the 28-th neuron makes
the 27-th neuron (bold line) �re a repetitive spike.

di�erence with respect to the shown e�ects. We would
like to stress that the observed instability of the syn-
chronous regime is not an artefact of a time-discrete sys-
tem. We have observed it in ensembles of non-identical
Hindmarsh-Rose neuronal oscillators too [14].

Next we study whether these results are valid in com-
plex neuronal networks with a long-range synaptic con-
nectivity [15], that is typical of biological ensembles. In
the following we implement two types of complex topolo-
gies: scale-free and small-world ones [16]. Our inter-
est in such networks has been additionally stimulated
by the recent study [17], that reported scale-free prop-
erties of functional brain networks (with the exponent
varying from 2.0 to 2.2). The scale-free network, we sim-
ulate, is characterized by the node degree distribution
P (K) ∝ K−γ , γ = 2.2, and the mean < K >≈ 4.2. The
small-world network has on the average 10 links per neu-
ron and the probability of rewiring a short-range regular
link is p = 0.1. The results of the simulations (Fig.5(a,b))
demonstrate the same scenario of the onset of bursting
via instability of synchronized chaotic spiking. This sim-
ilarity becomes quite natural, as one takes into account,
that fast repetitive spiking is the result of interaction of
two neighbours, which �re with a mismatch in time, as
discussed above. Thus, the neighbour-to-neighbour inter-
actions, and not the global architecture, are important.

What for topology does matter, is the global coher-
ence. Having in mind, that precise timing of synchro-
nized oscillations in biological ensembles is considered to
be a functional means in cognitive tasks [2], we calculate
the order parameter (i.e. coherence) for the STS oscil-
lations: ρ = |∑ eiΦj |, Fig.5(c). In complex networks
with long-range connectivity STS �ring is tightly locked
within 10 time durations of a single spike, while in lo-
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FIG. 5: Variances of (a) STS and (b) spiking frequencies Ωj

and ωj and (c) the order parameter of the STS oscillations ρ
vs. excitatory coupling strength for local coupling (LC), scale-
free (SF), and small-world (SW) network topologies. Here
N = 200 and all data are averaged over 100 realizations of
network topologies and random parameters of individual neu-
rons.

cally coupled ensembles the global coherence is absent
(Fig.5(c),1(b)). Thus the long-range coupling strength,
subjected to synaptic plasticity, appears to be a plau-
sible way for dynamical altering between coherent and
non-coherent performance, suggesting, in turn, a mecha-
nism for information processing in biological networks.
In summary, we have shown that ensembles of non-

identical neurons generate an instability of synchronous
chaotic spiking, as the coupling strength is increased.
Arising spatio-temporal intermittency gives birth to
bursting dynamics, which at stronger coupling becomes
synchronous. This phenomenon has proved to be generic
with respect to the type of coupling and network architec-
ture. Beside general interest from the viewpoint of the-
oretical nonlinear dynamics, these �ndings may directly
apply to neurobiological systems, indicating, that (i) ex-
cessive coupling does not necessarily improve synchrony
of spiking, and (ii) it is also the population dynamics,
not only individual parameters of neurons, that is re-
sponsible for forming spiking or bursting regimes. And
we strongly expect the reported e�ects to be observed in
biological experiments.
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