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This paper examines the dynamics of an ensemble of hysteresis-based genetic relaxation oscillators,
focusing on the influence of noise and cell-to-cell coupling on the appearance of new dynamical
regimes. In particular, we show that control of the coupling strength and noise can effectively change
the dynamics of the system leading to behaviors such as clustering, synchronous and asynchronous
oscillations, and suppression. Moreover, under certain conditions an optimal amount of noise can
lead to increased order in the system. The results obtained are correlated with relevant biological
processes that occur in living organisms.
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I. INTRODUCTION

Many fundamental cellular processes are governed by
genetic regulation programs based on gene-protein inter-
actions. Since the complete structure and functionality
of cellular processes remains still mainly unexplained,
different mathematical models have been proposed in
order to investigate cellular behavior, by using circuit
and system theoretic models, including electrical circuits,
Boolean networks, Bayesian networks, differential equa-
tions, Petri nets and weight matrices [1, 2].

Due to recent technological advances, the design of
synthetic genetic networks has become possible [3, 4] and
has been added to the list of theoretical and experimen-
tal tools for the study of gene-protein networks. This
experimental progress has made genetic networks acces-
sible to quantitative analysis [5, 6]. In certain cases,
data obtained from synthetic-biology experiments have
been proved consistent with the theoretical predictions
of mathematical models, opening the gate for the under-
standing of gene regulatory networks.

As pointed out by Hasty et al. [6], there are two
dominant reasons for the construction of synthetic ge-
netic networks. First, simple networks represent a basic
step towards the understanding of logical cellular con-
trol, whereby biological processes could be monitored or
manipulated at the DNA level [7]. From the construc-
tion of simple switches or oscillators, one can envision
the design of devices and software capable of performing
elaborate functions in living cells [8, 9]. The second moti-
vation for constructing networks of synthetic genetic os-
cillators is the notion of reduced complexity: decoupling
a simple network from its native and often complex bio-
logical surrounding can lead to valuable information re-
garding evolutionary design principles [10], because both
gene switches and oscillators are thought to be essential
minimal modules in living organisms [11, 12]. Therefore,
exploiting the behavior of networks constructed from syn-
thetic genetic oscillators under different conditions, one
could establish a solid theoretical background for design-
ing genetic oscillator circuits. Such circuits could be fur-
ther used in devices for sensing, computing, etc.

Experimental evidence shows that among most impor-
tant factors affecting the performance of a cellular system
within a living organism are noise [13, 14], inter-cellular
communication [15], and population size [6, 13, 14]. The
inherent stochasticity of biochemical processes, which de-
pend on relatively infrequent molecular events involving
small number of molecules, is an essential source of inter-
nal noise in biological systems. Additionally, fluctuations
originating from the random variation of one or more
externally-set control parameters act as external noise.
Since the presence of noise in biological systems is in-
evitable, the consideration of its effects on the dynamics
of gene networks is of course, very important.

Generally, intercellular communication is accom-
plished by transmitting individual states to neighbor-
ing cells via intercellular signals, and further integrating
those signals to generate a global response at the levels
of molecules, tissues, organs and the body. The ability
to communicate among cells is an absolute requisite to
ensure appropriate and robust coordination of cell activ-
ity at all levels of the organisms in an open environment
[16].

Intercellular communication may have significant ef-
fects on the dynamics of cells. Cell-to-cell coupling in
bacteria via quorum sensing, e.g., sometimes creates new
dynamical regimes [15, 17, 18]. Most importantly, since
quorum sensing dynamically interconnects proteins and
genes between cells, the size of the population, meaning
the number of cells interacting, can make a qualitative
difference in the dynamics of the system.

The investigation of how the interplay between noise
and intercell coupling may lead to qualitative changes in
the dynamics of cells has not been pursued at an appro-
priate level so far. In this paper we try to shed light
into this question, in the particular case of a coupled ge-
netic relaxator model. The model used is a toggle switch
driven via a hysteresis loop by intercell signaling. We first
review previous studies on this model, highlighting the
most important properties relevant for our work. Then
we analyze the influence of a multiplicative noise source,
as a means of controlling gene expression in the ensem-
ble. We show that fluctuations can switch the dynam-
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ics between synchronous and asynchronous oscillations,
and lead to noise-induced suppression of oscillations in
the ensemble, depending on the coupling strength. We
find also that an optimal amount of noise can produce
oscillations with a higher level of ordering. Finally, we
present an overview of possible applications where these
phenomena could be implemented.

II. MODEL EQUATIONS

Oscillatory behavior has been found in different spe-
cialized genetic networks, such as the ring oscillator or
repressilator [3] and the relaxation oscillator [19]. In that
context, a model of hysteresis-based relaxation genetic
oscillators has recently been proposed [18]. This oscil-
lator is constructed by combining two engineered gene
networks, the toggle switch [4] and an intercell commu-
nication system, both of which have been previously im-
plemented experimentally in Escherichia coli. These en-
gineered gene networks are carried on multi-copy, self
replicating plasmids that interfere minimally with the
host cell. This allows one to consider the dynamics of
the engineered network to be independent of the cell’s
natural regulatory circuitry. The toggle switch consists
of two mutually repressing transcription factors. In its
original version [4], these proteins are the lac repressor,
encoded by the gene lacI, and a temperature sensitive
variant of the λ cI repressor, encoded by the gene cI857.
The synthesis of the two repressor proteins is regulated
in such a way that the expression of the two genes (cI857
and lacI) are mutually exclusive: the cell can be either
in a state where the λ repressor is abundant and the lac
repressor scarce (the cI on state) or in a state where the
lac repressor is abundant and the λ repressor scarce (the
lacI on state).

The presence of hysteresis in the toggle switch has been
exploited to construct an oscillator network (Fig. 1), by
coupling the toggle switch to a second module that au-
tonomously drives cells through the hysteresis loop. This
second module, intended to drive oscillations, involves
components of the quorum-sensing system from Vibrio

fischeri. Quorum-sensing enables cells to sense popula-
tion density through a transcription factor protein LuxR,
which acts as a transcriptional activator of genes ex-
pressed from the Plux promoter when a small, organic
molecule, the autoinducer (AI), binds to it. The AI is
synthesized by the protein encoded by the gene luxI, and
can diffuse across the cell membrane. The concentration
of AI depends on that of LuxI, and can be controlled
experimentally [18].

Following [18], we denote the cI857 gene by v, the lacI

gene by u, and the luxI gene by w. The time evolution of
the concentrations of the three proteins for i = 1, ..., N
cells is governed by the dimensionless system:
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FIG. 1: Schematic diagram of the network of genetic relax-
ation oscillators.

dui

dt
= α1f(vi) − ui + α3h(ωi) (1)

dvi

dt
= α2e(ui) − vi (2)

dwi

dt
= ε(α4e(ui) − wi) + 2d(we − wi) + g(wi)ξi(t)(3)

dwe

dt
=

de

N

N
∑

i=1

(wi − we). (4)

where we gives the time evolution of the extracellular AI
concentration, and the regulatory functions are defined
as:

f(v) =
1

1 + vβ
, e(u) =

1

1 + uγ
, h(w) =

wη

1 + wη
,

where β, γ and η are Hill coefficients.
The dimensionless parameters α1 and α2 regulate re-

pressor in the toggle switch, α3 determines the activation
due to the autoinducer, and α4 the repression of the au-
toinducer (for details, see [18]). The small parameter ε
enables the appearance of relaxator dynamics. Two pa-
rameters that are of crucial importance in the analysis of
this system are the coupling coefficients, d and de (intra-
cellular and extracellular), defined as:

d =
D

2(1 + δe/De)
, de = De + δe.

δe depends on the half-life of the proteins u and v, and on
the effective first-order constant of removal of AI from the
extracellular medium. D depends mainly on the diffusion
coefficient, and De depends on both the diffusion coeffi-
cient and the ratio between the volume of the cells and
the extracellular volume. Thus, the strength of coupling
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among the cells can be varied by changing the diffusion
properties of the membrane or the population density.

Finally, the last term in Eq. (3) models the contri-
bution of random fluctuations, where ξi(t) is a Gaussian
white noise with zero mean and correlation 〈ξi(t)ξj(t

′)〉 =
σ2

aδijδ(t− t′). The multiplicative noise is interpreted ac-
cording to Stratonovich [20], which is the correct stochas-
tic interpretation for a realistic noise with small tempo-
ral autocorrelation [21]. The noise term can incorporate
both extrinsic and intrinsic stochastic sources. The for-
mer can be changed externally in experiments [22], what
might result in large amplitude fluctuations [5, 22]. Phys-
ically, this type of noise might be generated by using
an external field, e.g. electromagnetic field [5]. How-
ever, this externally variated noise remains uncorrelated
for different cells in this case. We establish the function
g(wi) by means of a simple approximation, consisting on
assuming that the relative fluctuation scale is the inverse
square-root of the concentration [23, 24],

g(wi)

wi

≈ 1√
wi

, (5)

which leads to

g(wi) =
√

wi. (6)

The proposed scaling is generic for many stochastic pro-
cesses (e.g. Poisson process or birth/death processes)
and provides a reasonable approximation to investigate
the implications of fluctuations on biochemical regulatory
circuits [23, 25].

III. DETERMINISTIC DYNAMICS

In gene regulation systems, many different time scales
characterize the gene expression process. For instance,
the transcription and translation processes generally
evolve on a time scale much slower than that of phospho-
rylation, dimerization, or DNA binding of transcription
factors. In the particular case of model (1)-(3), when
the parameter ε is small (ε ≪ 1), the evolution of the
system splits into two well-separated time-scales. Due
to this property, the system can produce relaxation os-
cillations. Moreover, varying the parameters α1 and α2,
different regimes can be generated including oscillatory,
bistable and monostable behaviors, as shown in the phase
diagram plotted in Fig. 2.

Now let us illustrate the influence of cell-to-cell com-
munication. We focus on the region where de ≫ d, in
order to avoid the frequency decrease described in [18].
Therefore, we are assuming that the population density is
high, which experimentally would require some artificial
conditions: the bacteria are locked in chambers under the
flow of a liquid that supplies food in abundance. This is
a model for more natural cluster formation phenomena,
where the strong population density is of certain impor-
tance, as we will show with the model investigated.
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FIG. 2: Different dynamical regimes of a single oscillator:
O - oscillatory regime, B - bistable regime, M - monostable
regime. Parameters are σ2

a = 0.0, α3 = 1.0, α4 = 4.0, β =
γ = η = 2.0, ε = 0.01.
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FIG. 3: Synchronous oscillations (left) and cluster solution
(right). Parameters are those of Fig. 2, except N = 20, α2 =
5.0, de = 1.0 for both plots, α1 = 3.0, d = 0.005 in the left
plot and α1 = 2.9, ε = 0.05 and d = 0.3 in the right plot.

In the oscillatory regime (region O in Fig. 2), macro-
scopic oscillations in protein concentration appear over
the whole population, corresponding to synchronization
between self-excited oscillators (Fig. 3, left). For larger
values of the coupling strength (d = 0.3), two different
regimes are possible (Fig. 4). This figure illustrates in
detail the bifurcation structure of the full system when
α1 is varied, at a constant level of α2 = 5, as obtained
with the software package XPPAUT [26]. First, there
is a clustering solution (e.g. if α1 = 2.9), where os-
cillators are separated in two groups of cells exhibiting
distinct steady states (Fig. 3, right). In the absence of
coupling, in this region an isolated oscillator would be in
the steady state. To increase the parameter region where
this regime is observed, we have used ε = 0.05. However,
for ε = 0.01 the bifurcation diagram looks qualitatively
similar (not shown). Second, there is a parameter region
(e.g. if α1 = 3.0) where two different regimes coexist: a
regime of synchronous oscillations and a regime of oscilla-
tion death, where oscillators are grouped into two steady
state clusters, like in a clustering regime just described.
The difference is that in this parameter region, an iso-
lated oscillator would be in the oscillatory state in the
absence of cell-to-cell coupling.
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FIG. 4: Bifurcation diagram obtained by varying α1, when
the value of α2 is kept fixed (α2 = 5). Other parameters
are: α3 = 1.0, α4 = 4.0, β = γ = η = 2.0, ε = 0.05,
d = 0.3 and de = 1. Thin solid lines represent stable steady
states, dash-dotted lines correspond to unstable steady states,
dashed lines represent stable limit cycles, dotted lines denote
unstable limit cycles, and thick solid lines represent a situa-
tion with two stable clusters. Note that the Hopf bifurcation
point HB1 separates a region where the clustering state is
a global attractor from another one in which that solution
coexists with stable in-phase oscillations.

The regime of synchronous oscillations exists for a non-
zero, but weak, coupling strength (0 < d ≪ 1), where the
AI is able to synchronize the oscillations over the entire
population. The clustering or oscillation death regime
occurs for larger coupling strengths and is characterized,
as described above, by two clusters of silent oscillators
producing constant protein levels.

IV. STOCHASTIC EFFECTS

The biochemical processes of transcription and transla-
tion depend on the number of promoter sites and mRNA
molecules. These numbers are typically small, and thus
cells may experience large fluctuations, which are usually
seen as a source of internal noise. Furthermore, noise can
also originate externally, in the random variation of one
or more of the externally-set control parameters [27].

Because it is unavoidable in biochemical systems, noise
in gene expression has been subject of many scientific in-
vestigations recently. For example, McAdams and Arkin
[28] proposed theoretically, and van Oudenaarden con-
firmed experimentally [29] that most of the noise in gene
expression in prokaryotic cells arises during transcription.
It has also been observed experimentally that the domi-
nant source of gene regulation noise is extrinsic, both in
prokaryotic [30] and in eukaryotic [31] cells. However, the
question of how the cell functions reliably in the presence
of noise is still open. Recent numerical studies show that
noise can play an ordering role in biochemical systems
[32]. We now present further evidence in that direction,
in this case in a multicellular system.

Specifically, we analyze in what follows the influence
of noise on the system of genetic relaxation oscillators
described above, for both the regimes of clustering and
synchronous oscillations. First we examine the important
influence of noise in isolated oscillator, where oscillations
are seen to be suppressed by fluctuations. Then we show
that an increase of noise in the system results in a rich
dynamical behavior and leads to qualitative changes in
the oscillation behavior. We also compare the different
dynamical regimes created in the system due to noise.

A. Noise-induced suppression in a single oscillator

Figure 5 shows the behavior of an isolated cell, initially
in the oscillatory regime, for increasing values of the noise
intensity. The numerical analysis of the system is carried
on with the Heun integration method [33] with step size
control, i.e. for small concentrations, the step size has
been also decreased.
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FIG. 5: Time series for one oscillator for different noise inten-
sities. From top to bottom, and from left to right the noise
increased: σ2

a = 0, 0.1, 0.2, 0.5, 1.5, 3.0. Other parameters as
in Fig. 3, left.

We find that that the increasing noise shifts the dy-
namics of the system from regular (top left plot) to ir-
regular (middle left plot) oscillations, while large enough
noise levels suppress the oscillations (bottom right plot).

The effect of noise-induced suppression of oscillations
can be explained by taking into account that, when the
amplitude of fluctuations in the production rate of wi

[Eq. (3)] becomes sufficiently large, the protein level of
w itself eventually reaches high levels, and when that
happens the term h(w) = wη

1+wη in Eq. (1) saturates

(h(w) → 1). This allows a simplification of this case,
such that the system is governed only by the first two
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equations of the original model (1)-(4):

dui

dt
= α1f(vi) − ui + α3

dvi

dt
= α2g(ui) − vi

To find the stationary solutions of the system in this case,
we set dui

dt
= 0 and dvi

dt
= 0 . The equilibrium states can

be found as zeroes of the following function:

F (u) = u − α1(1 + uγ)β

αβ
2 + (1 + uγ)β

− α3 , (7)

the solution of which can be obtained graphically by plot-
ting F (u) vs. u, as shown in Fig. 6. The plot reveals that

0 1 2 3 4u

-1

-0.5

0

F(
u)

FIG. 6: Graphical solution of the equation (7).

the system has a single steady state at high u, which
happens to be stable. This indicates that oscillations are
suppressed for high enough noise intensities.

Note that even though the noise intensities required for
suppression are somewhat large, they are experimentally
sensible, and furthermore they do not lead to unrealis-
tic situations (such as negative values of the fields) for
small concentrations, since we have chosen g(wi) in such
a way that the amplitude of the fluctuations decreases
for decreasing protein levels, and are zero at wi = 0. It is
well known that such a multiplicative noise term, when
interpreted according Stratonovich, produces a system-
atic effect due to its mean being non-zero, what is know
as the Stratonovich drift [21]. It might seem that the
suppression described above is due to that drift term.
However, the phenomenon persists even when the noise
is purely additive (g(wi) = 1, results not shown). This is
an unrealistic situation where the AI concentration can
become negative, and as such is not considered in this
paper. However, the persistence of suppression in this
case shows that the phenomenon just requires that the
AI concentration becomes large intermittently.

It is known that simulations of Langevin equations
along the same lines as those considered here correlate
well with a discrete description of the biochemical pro-
cesses involved using, e.g. the Gillespie approach [34].

However, we have checked with a simplified approach
that the results discussed above are also obtained within
a discrete description. To that end, we rewrote the
stochastic model (1)-(4) in the Ito form (i.e. introducing
explicitly the Stratonovich drift term) [20] and applied
the Gillespie algorithm to the resulting model [35, 36].
With these assumptions, a typical time series generated
with the Gillespie algorithm is shown in the right plot of
Fig. 7, and is seen to compare favorably with the simula-
tions of the Langevin equations (left plot in the Figure).
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FIG. 7: Time-series for a single gene circuit in the oscillating
regime. The noise is switched on at t = 2000. Left: simula-
tions of the Langevin stochastic differential equations (1)-(4).
Right: simulations using the Gillespie algorithm applied to
the corresponding discrete system (see text). Parameters are
as in Fig. 3, left.

B. Noise in the stable synchronous regime

Next, we analyze the influence of noise on the system in
presence of cell-to-cell communication. As a reference, we
first consider the behavior of the system in the absence of
noise. When the coupling strength is weak (0 < d ≪ 1),
the AI is present at a relatively small concentration and
is able to synchronize the oscillations over the entire pop-
ulation. In our model, the AI plays a double role: inside
the cell it is used to switch the production of the two
proteins of the switch, when their concentration levels
are high enough and the conditions for switching are ful-
filled; additionally, it is used to synchronize the oscilla-
tions among different cells, as we mentioned.

When noise is present in the system, it produces fluc-
tuations in the AI concentration, which now disturbs the
synchronous oscillations in the system. The behavior of
different cells is affected and as a result, asynchronous
oscillations of the protein concentrations occur over the
entire population (see Fig. 8, left plots). If the noise is
increased even further, the fluctuations in the AI (both
extracellular and intracellular) are high, and the system
behaves as if a large AI concentration is present. In that
case, genetic switching is not established and a stable
production of the two proteins occurs. Due to the large
fluctuations of the AI concentration, however, the sys-
tem will have only one stable solution (explanation given
in section IV A), which will be populated by all oscilla-
tors present in the system. Since there are no oscilla-
tions for large noise intensities, we refer to this effect as
noise-induced suppression of oscillations (see Fig. 8, right
plots).
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FIG. 8: Dynamics of the system for different noise in-
tensities. From top to bottom, and left to right: σ2

a =
0, 0.1, 0.2, 0.5, 1.5, 3.0. Other parameters as in Fig. 3, left.

The effect of noise-induced suppression resembles that
of stochastic focusing [37], since suppression is enhanced
by the high nonlinearity of the function h(w). As pointed
out in [37], stochastic focusing is similar to the effect
of stochastic resonance, because more noise leads to an
increased order in the system. A similar statement could
be made for noise-induced suppression, where larger noise
intensities also lead to ordering of the oscillators in one
cluster.

In order to describe quantitatively the different dynam-
ical regimes that emerge in the presence of the noise, we
introduce the following order parameters:

j =
Nj

NT
, f =

〈

Nu

N

〉

(8)

where N is the total number of cells, Nj the number of
jumps over a predefined threshold (we choose u = 2 in the
present case), Nu is the number of cells above this thresh-
old, T is the total time, and 〈·〉 denotes time averaging.
Consequently, j measures the number of jumps above a
threshold, averaged over the total number of oscillators
and the integration time, whereas f is the fraction of cells
above the threshold.

The order parameter j (Fig. 9, left) has a well de-
fined value for zero noise intensity (giving the number
of jumps over threshold for the stable synchronous solu-
tion). As explained above, for moderate noise intensities
the synchronous solution is disrupted, engaging the sys-
tem into the regime of asynchronous oscillations. This
corresponds to a constant increase of j, until a maxi-
mum is reached for a certain noise intensity. Further
increase of the noise intensity affects the dynamics of
the AI up to the point where fluctuations in the sys-
tem are large enough to quench the oscillations, leading
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FIG. 9: Order parameters j (left) and f (right) vs. noise
intensity (σ2

a) for the stable synchronous solution.

to noise-induced suppression (characterized by a value
of j decreasing towards 0). The other order parameter,
f , follows the transition of the oscillators in the system
from the case where they oscillate to the point where
they all move to the upper stable state, giving the noise
intensity when the oscillations in the system will be sup-
pressed (Fig. 9, right). Important conclusions about the
order in the system can be revealed by estimating the
coherence of the oscillations. Since the system under-
goes noise-induced jumps, its time evolution for different
noise intensities can be viewed as a sequence of pulses of
duration tp. In order to characterize the order quantita-
tively, we compute the variability of the pulse duration
(oscillation period) via the coefficient of variation (or nor-

malized standard deviation), Rp =

√
var(tp)

tp
[38], where

var(tp) denotes the variance. In the context of coherence
resonance, this parameter characterizes the temporal co-
herence or periodicity of oscillations. Smaller values of
Rp mean larger coherence. In the present case, as shown
in Fig. 10, the dependence of this quantity on the noise
intensity shows a continuous growth, meaning that noise
destroys order in a monotonic way.
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R
p

FIG. 10: Coherence parameter of the system. The coherence
is maximal (Rp = 0) for σ2

a = 0. Increase of noise intensity in
the system destroys the synchronous solution, which results
in asynchronous oscillations (value of Rp is increased).

Hasty and Collins have suggested that noise is im-
portant in gene expression systems [39] because it can
be used by an organism in deciding between alternative
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states, such as a particular developmental pathway. The
asynchronous oscillations of the population that we ob-
serve in the presence of noise can be viewed as a hetero-
geneity in the population, where the population creates
many different possible pathways for its survival in the fu-
ture. The conditions in the surrounding environment will
possibly influence the future state of the system. This
implies that real systems might use the noise-“created”
heterogeneity as a method of adaptation to different sur-
vival conditions.

C. Noise in the clustering regime

Similarly to the case of stable synchronous oscillations,
noise also affects the dynamics of the system when the
oscillators are initially distributed between two stable
steady state clusters. Again, the system is observed to
undergo noise-induced jumps, with apparent coherent be-
havior for a given noise intensity, in transit to a state
where all of the oscillations are suppressed and the oscil-
lators populate the upper steady cluster.

Due to the structural properties of the genetic net-
work under investigation, when the coupling strength is
large enough (meaning that the concentration of the AI
is large enough to entrain the oscillations in the system),
constant concentrations of the proteins are obtained, and
different oscillators will be distributed among these states
(Fig. 11, top left). When small noise is present in this
system, it causes fluctuations in the AI concentration,
affecting the dynamics of the protein production. Gene
expression is now able to switch between both states,
i.e. undergoes noise-induced jumps, which lead to asyn-
chronous oscillations of the protein concentrations in the
different cells (Fig. 11, bottom left). If noise is increased
further, and similarly to the previous section, the fluctu-
ations of the AI concentration become large enough to be
able to quench the oscillations. Only the upper state is
stable under these conditions. Therefore, all the oscilla-
tors will shift to this state, and noise-induced suppression
can be observed once more (Fig. 11, right plots).

We can use the order parameters defined in Eq. (8) to
determine the noise intensity needed for suppression in
this case, as well as the noise intensity at which all of the
oscillators in the system shift to the upper stable state.
By definition, the order parameter j is zero when the
noise is absent, since the oscillations are quenched due
to the coupling strength. When noise starts to affect the
system, its dynamics changes as explained above. Asyn-
chronous oscillations are now born in the system, char-
acterized by an increase in the number of jumps, and
consequently an increase of j (Fig. 12, left). When the
noise intensity is large enough, the value of j starts to
decrease towards zero, where noise induced-suppression
is observed. The shift of the different oscillators to the
upper stable state is expressed by the behavior of f with
respect to the noise intensity (Fig. 12, right).

The coherence parameter Rp reveals another interest-
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FIG. 11: Dynamics of the system for different noise inten-
sities. From top to bottom and from left to right: σ2

a =
0, 0.1, 0.2, 0.3, 0.4, 0.5. Other parameters as in Fig. 3, right.
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FIG. 12: Order parameters j (left) and f (right) vs. noise
intensity (σ2

a) for the oscillation death regime.

ing property of the system in this case. As shown in the
left panel of Fig. 13, for small and large noise intensities,
noise-excited oscillations appear to be rather irregular,
while for moderate noise intensities, relatively coherent
oscillations are observed. This implies that if the noise
level present in the system is of moderate intensity, noise-
induced jumps in the system are relatively periodic. This
is an example of coherence resonance [38].
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FIG. 13: Left: Coherence parameter Rp for increasing noise
intensity; Right: Synchronization level R vs. noise intensity.
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In order to quantify the level of synchronization in the
system, we use the following order parameter [17]:

R =
〈M2〉 − 〈M〉2

〈u2
i 〉 − 〈ui〉2

, (9)

where 〈· · · 〉 denotes time average, · · · indicates aver-
age over all cells, and we have defined the mean field

M(t) = (1/N)
∑N

i=0 ui(t), which in the synchronized case
will be similar to each one of the local signals ui(t). On
the other hand, when the oscillators are not synchro-
nized, the individual signals ui(t) are completely out of
step with respect to each other, and their sum will be
averaged out to an approximately constant value at all
times. Therefore, the order parameter R is defined as the
ratio of the standard deviation of the time series of M(t)
to the standard deviation of ui(t) averaged over i. In this
way, in the unsynchronized regime R ≈ 0, whereas R ≈ 1
refers to the synchronized case.

Computing the order parameter R for this case, we
can identify a synchronization transition occurring as the
noise level is changed. The right panel of Fig. 13 shows
that for σ2

a > 0.02 (where coherence resonance was ob-
served) the value of R is increased, corresponding to the
regime where the oscillators are most ordered, i.e syn-
chronized in the presence of noise. This correspond also
to the decrease of the coherence parameter, i.e. improve-
ment of the periodicity (Fig. 13 left). The value of R
does not approach exactly 1 because in the presence of
noise synchronization is not complete. For stronger noise
intensities (σ2

a > 0.4), the oscillations are continously
suppressed, and the oscillators populate the upper stable
steady state. Moreover, an increase of the synchroniza-
tion level is also characterized by an increase of noise-
induced jumps, as measured by the parameter j. Note
also that in the clustering regime, one needs much less
noise to obtain suppression than in the oscillatory regime.
This can be explained by the fact that the state towards
which the oscillation quench already exists.

As mentioned above, the question of how cells func-
tion reliably in the presence of noise is still open. The
fact that order in the population of synthetic genetic os-
cillators is optimal for moderate noise intensities clearly
implies that noise in real systems plays a constructive
role, leading to more order in the dynamics.

D. Comparing noise effects for different coupling

levels

We have seen that a large enough noise suppresses os-
cillations and stabilizes the dynamics of the genetic re-
laxation oscillators, both when the deterministic behav-
ior exhibits synchronous oscillations and in the regime
of clustering. In spite of the similar limiting behavior
for large noise, the stochastic effects differ for different
coupling. In particular, for large coupling (clustering or
oscillation death regime in the absence of fluctuations)

noise has a much stronger influence, as revealed by the
average number of jumps j shown in the left panel of
Fig. 14. The plot reveals that the number of jumps is
higher when the system departs, in the absence of noise,
from the clustering regime than from the synchronous
oscillation regime. This can be due to the fact that in
the former regime, each of the cells behaves as a bistable
system driven by noise, whereas in the latter case os-
cillations are already present in the system, and noise is
not inducing many new jumps. In its turn, for the regime
of coexistence of synchronous oscillations with oscillation
death, the number of jumps is always smaller. Note also
that in the regimes that exhibit cluster formation (both
with and without coexistence) one needs much smaller
noise intensity for the suppression than in the oscillatory
regime. This can be also vizualised in the left panel of
Fig. 14. Again the oscillatory/oscillation death regime is
suppressed faster than the two other regimes.
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FIG. 14: Average number of jumps j (left) and suppres-
sion parameter j (right) versus noise intensity for three dif-
ferent coupling regimes. Diamonds correspond to the syn-
chronous oscillation regime (low coupling d = 0.005, α1 = 3
and ǫ = 0.01.), stars to the clustering regime (large coupling
d = 0.3, α1 = 2.9 and ǫ = 0.05.) and triangles to the co-
existing oscillation death and oscillatory regimes (large cou-
pling d = 0.3, α1 = 3 and ǫ = 0.05.). Other parameters are:
α2 = 5, α3 = 1, α4 = 4, and β = γ = η = 2.

The transition through the various regimes occurring
under the influence of noise can be also represented as
follows. In Fig. 15, the x-axis represents time, while the
different oscillators are displayed along the y-axis. The
value of u is shown in color code for each oscillator and
each time instant. In both plots of Fig. 15 noise is in-
creased in two steps, at times t = 2000 and t = 4000. The
top plot corresponds to a situation where the system ex-
hibits, in the absence of noise (t < 2000), synchronous
oscillations in protein concentration. For the noise inten-
sity σ2

a = 0.12 (2000 < t < 4000), asynchronous oscilla-
tions are present, while for the noise intensity σ2

a = 1.0
(t > 4000), noise induced-suppression is observed. On
the other hand, the bottom plot of Fig. 15 corresponds
to a regime in which for zero noise (t < 2000) a clus-
tering regime occurs, and the oscillators populate one
of two stable states. For the noise intensity σ2

a = 0.12
(2000 < t < 4000), asynchronous oscillations are cre-
ated, while for the strong noise intensity σ2

a = 0.5, noise
induced suppression is observed (t > 4000). Comparing
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FIG. 15: Overview of the dynamical evolution of the coupled
oscillators. Noise is increased step-wise at t = 2000 and t =
4000. The top panel corresponds to the regime of synchronous
oscillations, the bottom panel to the clustering regime. The
noise intensity is 0.0, 0.12, and 1.0 (top) and 0.0, 0.12, and
0.5 (bottom). The time series are plotted for a system of 200
relaxation oscillators, each of them denoted by the horizontal
line, with color encoding corresponding the color scale shown
on the right. On the plot the horizontal lines are very close
so that they are indistinguishable. Note that without cell-to-
cell communication, the single oscillator would be in a simple
oscillating regime.

upper and bottom plots again one can see that different
noise intensities (larger for in-phase regime) are needed
for the full suppression when starting from in-phase or
clustering regime (see also Fig. 14).

It is also worth mentioning at this point that if the
noise acts upon the fast variables of the system (u, v),
the effect of noise induced suppression is not observed
(results not shown in the paper). Further investigation
is needed of that case.

V. SUMMARY AND OUTLOOK

We have studied effects of noise and population size
on an ensemble of genetic relaxation oscillators. It is
well known that noise cannot be avoided in biochemical
systems, causing many experimental issues on the behav-
ior of such genetic oscillators. We have shown, however,
that naturally occurring noise can be exploited to con-
trol the dynamics of the system, switching between syn-
chronous and asynchronous oscillations and oscillation
suppression.

The control over gene expression in ensembles of cou-
pled synthetic genetic oscillators opens new approaches
in biotechnology, enabling scientists to develop a new era
of devices for sensing, computing, drug production, etc.
This new approach of investigation through the construc-
tion of synthetic genetic networks implemented in real
cells could allow the manipulation of biological processes
at a genetic level and create more complete models of the
behavior of natural systems.

From a different perspective, an adequate control
of the performance of synthetic genetic oscillators or
switches might enable the construction of integrated bi-
ological circuits capable of performing increasingly elab-
orate functions, with data-processing and storage capa-
bilities, which would gradually change the direction of
computing. If constructed, these new devices will allow
more cost-efficient devices that would outweigh present
memory units, for example. Synthetic genes, encoded
into the DNA, might be “downloaded” into a cell, creat-
ing in that way a nano-robot, which could be used for in

vivo biosensing, autonomous synthesis of complex bioma-
terial, execution of programmed cell death, or interfacing
with microelectronic circuits by transducing biochemical
events to and from electronics.
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