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In Nonlinear Dynamics synchronization of oscillators is examined. Alternatively for linear
stochastic systems, coherence analysis is utilized to detect interdependencies in transfer function
systems. In contrast to the latter, oscillators continue oscillating in the absence of interaction
between the processes. For transfer function systems the output ceases to exist without an
input. Analysis techniques able to differentiate these considerably different classes of dynamics
are desired in various applications. We show that conclusions from analysis techniques to the
underlying dynamics have to be taken with care due to missing specificity. Moreover, we present
an approach towards higher specificity.
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1. Introduction

To investigate interrelations in multivariate sys-
tems, analysis techniques have been developed in
various fields and are applied to empirical data,
e.g. [Brockwell & Davis, 1998; Pikovsky et al., 2001;
Timmer et al., 2000]. Detection of such interac-
tions enables deeper insights into basic mechanisms
and functioning underlying these systems. However,
interpretations about the underlying dynamics of
systems are based on solving an inverse problem

which is usually more difficult than a direct prob-
lem. We show that for two widely used analysis
techniques such conclusions about the underlying
dynamics are impossible.

The nonparametric coherence analysis devel-
oped in the framework of linear stochastic systems
enables a detection of interactions in transfer func-
tion systems [Brockwell & Davis, 1998]. A pointwise
significance level prevents erroneous conclusions
from finite time series generated by these pro-
cesses. Coherence analysis has found wide-spread
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acceptability and has become a standard tech-
nique to analyze not only transfer function systems.
Coherence analysis is very sensitive in detecting
interactions in several systems but no conclusions
about the underlying dynamics are possible from
significant coherence values.

For nonlinear synchronizing oscillators, phase
synchronization analysis has been shown to be
very efficient in detecting interactions between
oscillators [Pikovsky et al., 2001]. Even for weak
coupling and a possible presence of stochastic influ-
ences, phase synchronization analysis is able to
reveal the coupling. This illustrates the high sen-
sitivity of the method in analyzing interactions in
multivariate systems. However, application of phase
synchronization analysis to, for instance, a transfer
function system will also show a significant result.
Phase synchronization analysis is therefore not spe-
cific in detecting the correct class of underlying
dynamics.

The noteworthy difference between the two
classes of processes considered is the fact that two
oscillators continue oscillating, independently when
the coupling is absent. In contrast, the output of
the transfer function system ceases to exist in case
of no input. This difference may lead to remarkably
different interpretations in applications to empirical
data. Therefore, a methodology able to distinguish
these two classes is desired. We demonstrate miss-
ing specificity for both analysis techniques by means
of two genuine representative model systems of the
two classes of dynamics, the transfer function sys-
tems and synchronizing oscillators. We propose an
extension of both techniques to increase specificity
without loss in sensitivity. By means of simulated
data sets we show the performance of the proposed
extension allowing the differentiation between the
two types of dynamics.

2. Coherence and Phase
Synchronization Analysis

Interactions in linear stochastic systems can
be detected utilizing cross-spectral analysis.
To this aim, the cross-spectrum CSxy(ω) =
FT {CCFxy(τ)}, which is the Fourier trans-
form of the cross-covariance function of pro-
cesses x and y, is normalized by the auto-spectra
Sxx(ω) = FT {ACFxx(τ)}, which is the Fourier
transform of the auto-covariance function of pro-
cesses x and y, respectively, leading to the coherence

function

Cohxy(ω) =
|CSxy(ω)|√

Sxx(ω) Syy(ω)
. (1)

Coherence takes values of one in the case of a perfect
linear interdependence between the processes x and
y and values close to zero in absence of any inter-
action at frequency ω. When coherence has to be
estimated for finite time series, a significance level
prevents erroneous conclusions about the presence
of interactions [Brockwell & Davis, 1998; Timmer
et al., 2000]. Coherence was estimated smoothing
the auto- and cross-periodograms.

In order to detect phase synchronization
between two coupled oscillatory systems, a suit-
able definition of phase and amplitude of a real-
valued observed signal is necessary. To this aim,
let x(t) be the real-valued signal. The analytic
signal is then given by ψ(t) = x(t) + ix̂(t) =
A(t) exp(iϕ(t)), where A(t) is its amplitude and
ϕ(t) the phase [Gabor, 1946]. The imaginary coun-
terpart of the analytic signal can be obtained by,
e.g. the Hilbert transform of the signal [Oppen-
heim & Schafer, 1975]. Phase synchronization of
two coupled, chaotic oscillators occurs if the n :
m phase locking condition |nϕx(t) − mϕy(t)| =
|Φn,m| < const is satisfied [Pikovsky et al., 2001]
where ϕx(t), ϕy(t) denote phases of the time series
x(t) and y(t), for instance, the X-components of
a Rössler oscillator, and n,m are given integers.
To handle phase jumps, induced by the presence of
dynamic or observation noise, Φn,m is modified by
Ψn,m = Φn,m mod 2π. In that case, a sharp peak in
the distribution of Ψn,m indicates phase synchro-
nized oscillators [Tass et al., 1998]. A commonly
used quantity, measuring the sharpness of the dis-
tribution of Ψn,m, is the synchronization index
[Mormann et al., 2000; Pikovsky et al., 2001]

R2
n,m = 〈cos(Ψn,m)〉2 + 〈sin(Ψn,m)〉2 . (2)

The synchronization index is Rn,m = 1 for a con-
stant phase difference between the two oscillators
and Rn,m = 0 for uniformly distributed phase
differences.

3. Model Systems Under Investigation

In the following, the two model systems represent-
ing two classes of dynamics, i.e. a signal propagation
paradigm and coupled self-sustained oscillators, are
introduced. The first model system is a network of
two coupled Rössler oscillators [Rössler et al., 1976]
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Ẏj

Żj
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The parameters of the two oscillators are σ1,2 = 1.5,
ε12 = ε21 = 0.09, ω1 = 1.005, ω2 = 0.995, a = 0.15,
b = 0.2, c = 10 and η1,2 denotes Gaussian dis-
tributed white noise. The Rössler system was sam-
pled at 10 Hz.

Our exemplary transfer function system is
a model for signal propagation based on a
slightly modified autoregressive process of order
one (AR[1])

u(t) = ru(t − 1) + sx(t − τ) + η(t) , (4)

where the output signal u(t) is a time-delayed
and low-pass filtered version of the input signal
x(t) [Mertins, 1999]. The noise term η(t) accounts
for all influences which are not modeled by x(t).
Usually, η(t) can be considered as Gaussian white
noise accounting for various additional influences
faced in real-world systems. Several choices for x(t)
are conceivable. We utilize the X-component of a
single Rössler oscillator, sampled at 10 Hz, as input
signal (σ1 = 1.5, ω1 = 1, a = 0.15, b = 0.2, c = 10)
and the parameters for the output signal are cho-
sen to be r = 0.4, s = 0.7, and τ = 2 in the
following.

The difference between both model systems is
the fact that the Rössler oscillators continue self-
sustained oscillations regardless whether they are
coupled or not. For the transfer function model, the
output signal decreases exponentially in case of an
absent input, i.e. there is no interrelation between
input and output signals.

4. Sensitivity, Specificity, and
Increased Specificity

To illustrate that both analysis techniques are sen-
sitive in detecting the class of underlying dynam-
ics, they are applied to the system they have been
developed for. Coherence analysis is thus applied
to the transfer function model and phase synchro-
nization analysis to the coupled stochastic Rössler
system. In Fig. 1 the results are shown for the
signal propagation example and in Fig. 2 for the
coupled stochastic Rössler system. Coherence is

highly significant over a broad range of frequencies
[cf. Fig. 1(a)]. Similarly, a sharp peak in the his-
togram of the phase differences strongly indicates
phase synchronization [Fig. 2(a)]. Both techniques
are thus able to reveal the interaction between
the processes if the correct class of dynamics is
present.

In Figs. 1(b) and 2(b) the results are shown
for both analysis techniques when applied to the
other model system. In the transfer function system,
the histogram shows again a high concentration of
phase differences strongly arguing for phase syn-
chronization [Fig. 1(b)]. Thus, phase synchroniza-
tion analysis is not specific in detecting the correct
class of underlying dynamics as phase synchroniza-
tion is based on coupled self-sustained oscillators.
In the same way, coherence analysis is not specific
in detecting transfer function systems. Coherence
is highly significant over a broad range of frequen-
cies when applied to the coupled stochastic Rössler
system [cf. Fig. 2(b)].

In order to be able to draw conclusions about
the underlying dynamics we suggest to apply coher-
ence analysis to the phase fluctuations ϕ1,2 (t) −
Ω1,2t, i.e. the phase of each signal subtracted by the
linear trend caused by the frequency Ω1,2 obtained
by the synchronized system. This is motivated by
the fact that phase synchronization is a frequency
related phenomenon. Coherence of the phase fluctu-
ations for synchronizing oscillators is expected to be
significant solely at the oscillation frequency if there
is any significance at all. For propagated signals the
phases of both, the input and the output, should
be similar. This would lead to a broad band coher-
ence between the phase fluctuations. Therefore,
coherence analysis applied to the phase fluctuations
should enable a distinction between both types of
dynamics.

Moreover, in case of phase synchronizing oscil-
lators and in presence of dynamic noise, phase
jumps are expected to occur. Motivated by the
washboard potential of the phase differences phase
jumps in both directions are expected for suf-
ficiently large noise variance. For signal propa-
gation the output signal is expected to perform
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Fig. 1. Analysis of our transfer function model. (a) Coherence between the input signal x(t) and the output signal u(t). The
5% significance level is indicated by the red line and coherence is highly significant. (b) Histogram of the phase difference
calculated between input signal x(t) and the output signal u(t). A sharp peak in the histogram is observed. (c) Time course
of the phase difference and a corresponding magnification. Rapid phase changes in one direction are preferred for the transfer
function model. (d) Coherence between the phase fluctuations (blue) and the 5% significance level (red). The coherence is
significant in the low frequency range.

a phase jump after the input signal has per-
formed one. Strictly speaking, there are no phase
jumps for a single oscillator. Caused by trajectories
close to the origin of the phase space, phase slips
occur which are referred to as phase jumps in the
following.

In Figs. 2(c) and 2(d), the results are shown
for the coupled stochastic Rössler system. Phase
jumps in both directions are observed with almost
the same frequency (c) and coherence is signif-
icant solely at the oscillation frequency (d). In
Figs. 1(c) and 1(d), the results are shown for our
transfer function model. Phase jumps only in one

direction occur (c) and coherence is significant over
a broad range of frequencies (d). In summary, for a
given high synchronization index, if coherence of the
phase fluctuations is significant over a broad range
of frequencies and if phase jumps appear merely
in one direction, there is strong evidence for signal
propagation. If in contrast coherence is only signifi-
cant at the oscillation frequency and if phase jumps
in both directions occur with almost the same fre-
quency, there is strong evidence for synchronizing
oscillators. For results that do not clearly fit into
this scheme or for results obtained for low synchro-
nization, no conclusion is feasible.
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Fig. 2. Analysis of the coupled stochastic Rössler system. (a) Histogram of the phase difference calculated between the oscil-
lators X1 and X2. A preferred value of the phase difference and therefore a phase synchronization between the oscillators
is indicated. (b) Coherence between the oscillators X1 and X2. The 5% significance level is indicated by the red line and
coherence is highly significant. (c) Time course of the phase difference. In this example, phase jumps in both directions occur
with almost the same frequency. (d) Coherence between the phase fluctuations (blue) and the 5% significance level (red). The
coherence is not significant in the low frequency range, only at the oscillation frequency.

5. Conclusion

By means of two illustrative and representative
model systems, we have shown, that both coherence
analysis as well as phase synchronization analysis
are sensitive in detecting interactions in systems
they have been developed for. In contrast, both
analysis techniques do not prevent erroneous con-
clusions about the different dynamics when applied
to the model systems they have not been devel-
oped for. In other words, if a conclusion about the
underlying dynamics is the desired goal of the anal-
ysis, extensions of both techniques are required.
To this aim, we proposed a combination of both
concepts allowing differentiation of the two classes
of dynamics.
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