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Abstract

The peculiarities of external synchronization of a resonant limit cycle on a torus are studied

in an autonomous oscillator of quasiperiodic oscillations with two basic frequencies. We show

numerically and experimentally that in the resonance conditions the synchronization effect takes

place only at one of the two basic frequencies of the system, while the oscillations at the second

basic frequency remain unsynchronized. Our results convincingly indicate a principal difference

between synchronization of the resonant limit cycle on the torus and of a typical limit cycle. This

is in contrast to the well-established theory of synchronization of a limit cycle. This finding opens

new strategies for controlling systems with multiple time scales.
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Quasiperiodic oscillations with two and more basic frequencies are widely encountered

in the contemporary natural sciences. They appear when electro-magnetic oscillations are

modulated by information signals in radio-engineering, accompany the transition to turbu-

lence in fluid flows (hydrodynamics), describe the motion of planets (celestial mechanics),

etc. Quasiperiodic oscillations describe biophysical, ecological and even social evolutionary

processes such as the cardio-respiratory system, photosynthesis: day-night cycle and Calvin

cycle and others. In phase space they are associated with limit sets or attractors in the

form of n-dimensional tori. The analysis of stability, bifurcations and synchronization of

quasiperiodic oscillations are determined by resonances and bifurcations of n-dimensional

tori. This is a rather complex and in many ways unsolved problem. In our research we

deal with the case of quasiperiodic oscillations whose image in the phase space represents

an attracting limit set in the form of a two-dimensional (2D) torus.

In our case we study quasiperiodic oscillations in an autonomous dissipative dynamical

system that realizes the regime of stable self-sustained oscillations with two basic frequencies.

It is important to note that non-autonomous two-frequency oscillations that are observed

when a limit cycle system is periodically driven cannot be used here because in such systems

only one of two frequencies (the oscillation frequency on a limit cycle) depends on parameters

of a system. The external forcing frequency is not defined by the system properties.

An autonomous dissipative dynamical system in R4 that can demonstrate stable two-

frequency oscillations can be described by the following system of equations [1, 2]:

ẋ = mx + y − xϕ− dx3,

ẏ = −x,

ż = ϕ,

ϕ̇ = −γϕ + γΦ(x)− gz.

(1)

where m, d, γ, and g are system parameters, and Φ(x) is a nonlinear function that is defined

as follows:

Φ(x) = H(x)x2, (2)

where H(x) is the Heaviside function. The oscillator of two-frequency oscillations (1) is a

suitable model to study the regularities of external and mutual synchronization of quasiperi-

odic oscillations and to establish a new effect – the winding number locking on a 2D torus

[2]. The results presented in [2] were obtained for regimes of non-resonant two-frequency
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oscillations satisfying the inequality:
f1

f2

6= p

q
, (3)

where p, q = 1, 2, . . . , k, f1 and f2 are the basic oscillation frequencies of the oscillator. The

resonant case on a 2D torus when f1/f2 = p/q was excluded in [2], because we expected

that the resonance on a 2D torus corresponds to a stable limit cycle and its synchroniza-

tion conditions are well studied and described in detail in books (see, for example, [3–5]).

However, we show in this letter, this is not true. We especially demonstrate that a limit

cycle not lying on a torus and a resonant limit cycle on the 2D torus respond to an external

periodic force in a completely different way. We present numerical and experimental results

that describe these peculiarities of the resonant limit cycle synchronization on a 2D torus.

Turn to the system (1). We set the system parameters, m = 0.096, g = 0.257, γ = 0.2,

and d = 0.001 and choose initial conditions in the vicinity of the coordinate origin. In

this case the system (1) has a stable quasiperiodic solution with two irrationally related

frequencies f1 and f0. A projection of the corresponding ergodic 2D torus is presented in

Fig. 1,a and the power spectrum of x(t) in Fig. 1,b. If we change the parameter g that

controls the winding number, then for g = 0.263 a resonant mode is observed on the torus

resulting in f1 : f0 = 1 : 4 (Fig. 1,c,d). In this regime we have a stable limit cycle on the

torus (Fig. 1,c) and its power spectrum (Fig. 1,d) contains only one basic frequency f1 and

its harmonics 2f1, 3f1, 4f1 = f0 etc. If the way of limit cycle emerge is unclear it is impossible

to claim that the limit cycle realized by any dynamical system lies on the 2D torus surface.

We deal with a typical stable periodic oscillatory regime with period T0 = 1/f1 and its

power spectrum contains frequency f1 and its harmonics nf1. Let us attempt to synchronize

this cycle by an external harmonic signal with frequency fex = f1 + ∆, where ∆ is a small

frequency mismatch.

Now we study the influence of the additive external force k sin(2πfex) on system (1):

ẋ = mx + y − xϕ− dx3 + k sin(2πfex),

ẏ = −x,

ż = ϕ,

ϕ̇ = −γϕ + γΦ(x)− gz.

(4)

Which is for k = 0 in the resonant regime. We analyze a weak external forcing (k = 0.01).

We calculate the power spectrum of x(t) from eq. (4) as the external signal frequency fex
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is varied. The numerical results are pictured in Fig. 2. We find that fex locks the internal

frequency f1 in the region fex ' 0.0381 ÷ 0.0385. In the synchronization region (Fig. 2,a)

the modulation frequency f1 is locked by the external force and the condition f1/fex = 1

is fulfilled. It is important to emphasize that at the same time the frequency f0 is not

synchronized by the external force Fig. 2,b); f0 does not essentially change both outside the

synchronization region of the frequency f1 and inside it at all. In other words, the frequency

f0 does not respond to the change of the external force frequency fex. If we would deal

with a typical limit cycle, then the spectral line at the frequency f0 = 4f1, as well as at any

harmonic nf1, would demonstrate the synchronization effect. However, such a situation is

not realized in system (1). In the autonomous quasiperiodic self-sustained oscillator the two

frequencies f1 and f0 correspond to the different oscillatory modes, even being rationally

related (1 : 4). They remain independent in a sense that an external force effects them in a

different way. Next this fact will be also shown for second harmonic. Let fex = 2f1 +∆. Our

findings practically repeat the results presented in Fig. 2. The frequency f1 is locked by the

double frequency signal within a finite region (0.0763 ÷ 0.0766). With this, the frequency

f0 remains unsynchronized as in case of Fig. 2.

Next, we confirm this phenomenon experimentally. We use an electronic generator of

quasiperiodic motions [2]. It can be modeled by (1). We have chosen the regime of oscilla-

tions which corersponds to the resonance 1 : 3. We synchronize a resonant 1 : 3 limit cycle

(Fig. 3,a) in order to demonstrate that the results shown in Fig, 2 does not depend on the

winding number. If we apply the periodic force to the electronic oscillator in the regime of

periodic motions (in our case it is resonant limit cycle (Fig. 3,a)) then outside the synchro-

nization region (fex = 2.9 kHz) a 2D torus is observed. The projection of it is shown on Fig.

3,b). Fig. 3,c illustrates a projection of the torus existing inside the synchronization region

of frequency f1 (fex = 3.4 kHz). The measurement results being similar to the numerical

findings shown in Fig. 2 are presented in Fig. 3,d,e. The effect of external synchronization

of frequency f1 is illustrated by Fig. 3,d, and Fig. 3,e confirms that the oscillator frequency

f0 does not depend on the external signal frequency fex.

The physical and numerical experiments in current paper consider the case of external

force frequency fex close to modulation frequency f1. Generally the same results can be

obtained for the basic frequency f0 if the external frequency fex is close to it.

Now, we study the mechanism behind the phenomena shown in Figs. 2 and 3. We
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analyze how the limit sets of system (4) evolve as the external frequency fex changes by

considering their Poincaré sections, for which secant surface satisfies the condition x(t) =

0. In the unforced system the initial torus (Fig. 4,a) looks like a closed invariant curve

l1 (Fig. 4,a) in the Poincaré section and the resonant case 1 : 4 (”•”, Fig. 4,a,b) is

identified by the appearance of four stable fixed points that correspond to the Poincaré

section of the resonant cycle (Fig. 1,c). When the external force starts acting with frequency

fex 6= f1, a new 2D torus is born in the vicinity of the resonant cycle (Fig. 3,b). In the

Poincaré section this torus is represented by four invariant curves l2 in the vicinity of the

corresponding fixed points (Fig. 4,b). All these transformations occur in complete agreement

with the classical mechanism taking place for the limit cycle in the Van der Pol oscillator

when approaching the synchronization region [6]. However, the classical scenario is further

violated. According to the classical theory, when entering the region of frequency f1 locking

(Fig. 2) the resonance on the torus must correspond to the emergence of a fixed point on

the invariant curves l2. However, this is not observed in our case. Moreover, the invariant

curves l2 undergo some complex rebuildings that result in the appearance of an invariant

curve l3 in the synchronization region of frequency f1 in the Poincaré section (Fig. 4,c).

This curve corresponds to the torus resembling the initial one (Fig. 4,a). We can at least

infer that the invariant curve l3 is not topologically related with the curves l2. We have also

calculated the full spectrum of Lyapunov exponents for all the cases presented in Fig. 4

(naturally excluding the resonant cycle). Our calculations have shown that the Lyapunov

spectrum contains two zero maximum exponents.

From a physical viewpoint, the obtained results can be explained as follows. The

quasiperiodic oscillator (1) in fact represents an autonomous system of two interacting

nonlinear oscillators, as it was shown in [2]. The internal coupling of oscillators ensures

the generation of two-frequency oscillations. Their properties depend on the controlling

parameters. For certain parameter values, the frequencies of oscillators can be mutually

synchronized, i.e., the resonance f1 : f0 = p : q takes place. Physically, the basic frequencies

f1 and f0, even being rationally connected, correspond to a different oscillatory modes. In

the presence of external periodic force each of the oscillators can be synchronized indepen-

dently. Our experiments have shown that the resonant limit cycle can be synchronized on the

torus when the system is driven by an external two-frequency signal including f ′1 = f1 + ∆

and f ′2 = f0 + ∆. In this case both oscillators will be synchronized in the resonant mode
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p : q and the winding number will be locked. The latter phenomenon was established and

described in [2].

The bifurcational mechanism of resonant cycle synchronization on a 2D torus described

in this Letter is a rather complicated problem of the qualitative theory. But we hope to

study it in future.

New phenomenon of synchronization of quasiperiodic dynamics can be used to diagnose

the presence of a resonant torus in a system. If the torus exists, then its basic frequencies

will demonstrate the effect of synchronization independently (Figs. 2 and 3). In case when

a system demonstrates a complex multi-fold (loop) limit cycle not lying on a torus, the

synchronization at frequency f1 and at any of its harmonics nf1 can lead to the effect when

all harmonics in the spectrum are locked. We have observed this effect experimentally.

The obtained result can be applied to the dynamics of multi-scale systems control.
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FIG. 1: Non-resonant (a,b) and resonant (c,d) quasiperiodic oscillations with two frequencies f1

(modulation frequency) and f0 (basic frequency). (a) Projection of a non-resonant torus on the

plane (x, y); (b) power spectrum of x(t) oscillations for the non-resonant case (a); (c) limit cycle

on a torus in the resonant case f1 : f0 = 1 : 4, and (d) power spectrum of the resonant cycle
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FIG. 2: Calculation results of the frequency relation f1/fex (a) and of the frequency f0 (b) as a

function of the external signal frequency in system (4) for m = 0.096, g = 0.263, γ = 0.2, d = 0.001,

and k = 0.01
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FIG. 3: Experimental results. (a) Phase portrait projection of an autonomous limit cycle on a torus

in the resonant case 1 : 3, (b) 2D torus resulted from the periodically driven limit cycle (outside the

synchronization region, fex = 2.9 kHz), c) 2D torus projection inside the synchronization region of

frequency f1 (fex = 3.4 kHz). Frequency relation f1/fex (d) and f0 (e) as a function of the external

force frequency fex (lines with black points were determined experimetally).
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FIG. 4: Projections of the Poincaré sections. (a) Limit cycle on a torus generated by the system

without external driving in the resonant case 1 : 4 (”•”, g = 0.261) and torus generated in the

regime of quasiperiodic oscillations (l1, g = 0.262); (b) torus being subject to the external force

at the frequency outside the synchronization region (l2, g = 0.262, fex = 0.03758) and resonant

torus generated by system without external force (”•”, g = 0.263); (c) torus in the synchronization

regime (l3, g = 0.263, fex = 0.0383)
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