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We propose an equivalence class of nonstationary Gaussian stochastic processes defined in the wavelet
domain. These processes are characterized by means of wavelet multipliers and exhibit well-defined time-
dependent spectral properties. They allow one to generate realizations of any wavelet spectrum. Based on this
framework, we study the estimation of continuous wavelet spectra, i.e., we calculate variance and bias of
arbitrary estimated continuous wavelet spectra. Finally, we develop an areawise significance test for continuous
wavelet spectra to overcome the difficulties of multiple testing; it uses basic properties of continuous wavelet
transform to decide whether a pointwise significant result is a real feature of the process or indistinguishable
from typical stochastic fluctuations. This test is compared to the conventional one in terms of sensitivity and
specificity. A software package for continuous wavelet spectral analysis and synthesis is presented.
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I. INTRODUCTION

Continuous wavelet transformation �CWT� is a powerful
mathematical instrument that transforms a time series to the
time-scale domain. Rioul and Flandrin �1� defined the wave-
let scalogram to estimate the nonstationary wavelet spectrum
of an underlying process. Donoho �2� used wavelet tech-
niques for the reconstruction of unknown functions from
noisy data.

The continuous wavelet spectra of paradigmatic processes
as Gaussian white noise �3� or fractional Gaussian noise �4�
have been calculated analytically. Continuous wavelet spec-
tral analysis has been applied to real-world problems in
physics, climatology �5�, life sciences �6�, and other fields of
research. Hudgins et al. �7� defined the wavelet cross spec-
trum to investigate scale- and time-dependent linear relations
between different processes. This measure has been applied,
e.g., in the analysis of atmospheric turbulence �7� and time-
varying relations between El Niño/Southern Oscillation and
the Indian monsoon �8�.

Wavelet spectral analysis is an inverse problem: One aims
to estimate the wavelet spectrum of an unknown underlying
process. However, to characterize the quality of the estimator
in terms of variance and bias, a theory for the direct problem
is required: One has to formulate a framework to synthesize
realizations of a known wavelet spectrum to derive to which
grade the estimated wavelet spectrum reconstructs this un-
derlying spectrum. Hitherto, such a formulation of the direct
problem does not exist for continuous wavelet spectral
analysis. Thus, the following questions are still unresolved:
How can realizations of a specific wavelet spectrum be syn-
thesized? How do these realizations depend on the wavelet
chosen for the synthesis? What is the relation between an
arbitrary stationary wavelet spectrum and the corresponding

Fourier spectrum? What are the variance and the bias of an
arbitrary wavelet sample spectrum? How sensitive is a sig-
nificance test for the wavelet spectrum?

In their seminal paper, Torrence and Compo �9� placed
wavelet spectral analysis into the framework of statistical
data analysis by formulating pointwise significance tests
against reasonable background spectra. However, Maraun
and Kurths �10� highlighted a serious deficiency of pointwise
significance testing: Given a realization of white noise, large
patches of spurious significance are detected, making it—
without further insight—impossible to judge which features
of an estimated wavelet spectrum differ from background
noise and which are just artifacts of multiple testing. This
demonstrates the necessity to advance the significance test-
ing of continuous wavelet spectra and to evaluate it in terms
of sensitivity and specificity.

In this study, we suggest and elaborate a framework of
nonstationary Gaussian processes defined in the wavelet do-
main; these processes are characterized by their time-
dependent spectral properties. Based on these processes, we
present the following results: First, we formulate the direct
problem of continuous wavelet synthesis. This means that we
present a concept to generate realizations of an arbitrary non-
stationary wavelet spectrum and study the dependency of the
realizations on the wavelets used for the synthesis. We derive
the relation of an arbitrary stationary wavelet spectrum to the
corresponding Fourier spectrum. An asymptotic theory for
small scales is presented. Second, we study the inverse prob-
lem of continuous wavelet spectral analysis, i.e., estimating
the wavelet spectrum and significance testing it against a
background spectrum. This means that we study bias and
variance of an arbitrary estimated wavelet spectrum. To over-
come the problems arising from pointwise significance test-
ing, we develop an areawise significance test, taking advan-
tage of basic properties of the CWT. We evaluate this test in
terms of sensitivity and specificity within the framework
suggested.*Electronic address: maraun@agnld.uni-potsdam.de
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The paper is divided into three main parts. Preceded by a
short review of CWT in Sec. II, we develop the new frame-
work of nonstationary Gaussian processes in the wavelet do-
main in Sec. III �the direct problem�. In Secs. IV and V, we
study the inverse problem. Section IV deals with the estima-
tion of wavelet spectra and presents the variance and bias of
an arbitrary estimated wavelet spectrum. The results for the
new areawise significance test are given separately in Sec. V.

II. CONTINUOUS WAVELET TRANSFORMATION

The CWT of a time series s�t�, Wgs�t��b ,a�, at time b and
scale a �scale refers to 1/frequency� with respect to the cho-
sen wavelet g�t� is given as

Wgs�t��b,a� =� dt
1
�a

ḡ� t − b

a
�s�t� , �1�

where the overbar denotes complex conjugate. The brackets
�. . .� denote dependencies of a variable, whereas �. . .� denote
dependencies of the resulting transformation. Here, we
choose the L2-normalization 1/a1/2.

For every wavelet in a strict sense g�t�, a reconstruction
wavelet h�t� can be found �3�. Using this, one can define an
inverse transformation of a function r�b ,a� from the positive
half plane H to the time domain,

Mhr�b,a��t� = �
H

dbda

a2 r�b,a�
1
�a

h� t − b

a
� . �2�

The CWT from one dimension to two dimensions does
not produce any new information, i.e., a continuous wavelet
transform is not uncorrelated. For the wavelet transformation
of Gaussian white noise ��t�, the intrinsic correlations be-
tween the wavelet coefficients at �b ,a� and �b� ,a�� are given
by the reproducing kernel Kg,h(�b−b�� /a� ,a /a�) �for details
and an example, see Appendix A 2� moved to the time b� and
stretched to the scale a� �3,12�,

C�b,a;b�,a�� 	 Kg,h�b − b�

a�
,

a

a�
� . �3�

The reproducing kernel represents a time-scale uncertainty.
For a detailed discussion of CWT basics, please refer to

the comprehensive literature �3,11,12�. Percival and Walden
�13� give a good overview of discrete wavelet transformation
�DWT� and maximum overlap discrete wavelet transforma-
tion �MODWT�.

III. GAUSSIAN PROCESSES IN THE WAVELET DOMAIN

The direct problem of wavelet synthesis corresponds to a
framework to generate realizations of an arbitrary nonsta-
tionary wavelet spectrum. In this section, we develop this
framework and present a priori spectral measures.

Stationary Gaussian processes are completely defined by
their Fourier spectrum S���. A realization of any such pro-
cess can be simulated by transforming Gaussian white noise
to the Fourier domain, multiplying it with a function f���,
and transforming it back to the time domain �see, e.g., �14��;

the spectrum of this process is then given by 
f���
2, where
f��� is called a Fourier multiplier.

We extend this concept to synthesize nonstationary
Gaussian processes using wavelet multipliers m�b ,a� as a
function of time b and scale a. Besides the possibility to
generate realizations of an arbitrary wavelet spectrum, this
framework allows one to generate surrogate data of nonsta-
tionary Gaussian processes.

A complementary approach is given by the recently sug-
gested time-frequency ARMA �TFARMA� processes �15�,
which are special parametric versions of quasi-nonparametric
time-varying ARMA �TVARMA� processes. Syntheses based
on discrete wavelet transformation are that of Nason et al.
�16�, who define stochastic processes by superimposing
weighted wavelet “atoms,” or that of Percival and Walden
�17�, which are both confined to dyadic scales.

A. Definitions

We define an equivalence class of nonstationary Gaussian
processes in the wavelet domain by the wavelet multipliers
m�b ,a�. An individual process is defined by its multipliers
and a synthesizing wavelet pair �g�t� ,h�t��. Realizations s�t�
are given as

s�t� = Mhm�b,a�Wg���� , �4�

i.e., a driving Gaussian white noise ��t�	N�0,1� with
���t1���t2��=��t1− t2� is transformed to the wavelet domain,
multiplied with m�b ,a�, and transformed back to the time
domain. Following Appendix A 1, the realization
m�b ,a�Wg���� in the wavelet domain is, in general, not a
wavelet transformation and, thus, realizations s�t� in the time
domain depend �usually weakly �18�� on the chosen wavelet
g�t� and the reconstruction wavelet h�t�, respectively.

1. Asymptotic behavior

To ensure at least asymptotic independence of the wavelet
g and the reconstruction wavelet h, one has to demand a
certain asymptotic behavior of the process m�b ,a�. As wave-
let analysis is a local analysis, the behavior for long time
series is not of interest. Hence, we consider the limit of small
scales. We demand the following behavior:


�am�b,a�
 � O�a−1+��


�bm�b,a�
 � O�a−1+�� . �5�

This means that looking with a microscope into finer and
finer scales, the derivatives of m�b ,a� grow slower and
slower �in comparison to the scale� such that the process
looks more and more stationary and white. In other words,
for smaller and smaller scales, more and more reproducing
kernels �19� fit into local structures of the process. These
relations are derived in Appendix B 1. The previous discus-
sion shows, that the notion of a time-scale component makes
only sense in the limit of small scales.
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2. Relation to the Fourier spectrum

Consider a stationary Gaussian process defined by
m�b ,a�
m�a� in the wavelet domain. In this special case,
the stationary Fourier spectrum 
f���
2 exists

f��� � m�2�

�
�C1 +

2�

�
m��2�

�
�C2, �6�

with a=2� /� and C1 and C2 being constants, depending on
the localization of the used wavelets. As expected, the Fou-
rier spectrum is given by the wavelet spectrum plus a correc-
tion term. The latter depends on the slope of the wavelet
spectrum m��b ,a� �for details, refer to Appendix B 2�. For
processes exhibiting the asymptotic behavior defined in Eq.
�5�, the correction term vanishes for high frequencies.

B. Spectral measures

Hitherto, continuous wavelet spectral measures have been
defined as the expectation value of the corresponding estima-
tor, e.g., E�
Wgs�t��b ,a�
2� for the wavelet spectrum �10�.
However, these measures are not defined a priori, but depend
on realizations s�t� and the analyzing wavelet g�t�. Also, in
general, one does not have access to the ensemble average
E�.� �20�. Using wavelet multipliers, one can define time-
dependent spectral measures that elegantly overcome these
difficulties.

1. Spectrum

Given wavelet multipliers m�b ,a�, one can define the
spectrum as

S�b,a� = 
m�b,a�
2. �7�

It quantifies the variance of the process at a certain time b
and scale a. White noise is given by S�b ,a�= 
m�b ,a�
2
=const.

2. Cross spectrum

Consider two linearly interacting processes m1c�b ,a� and
m2c�b ,a�, i.e., both are driven by the same noise realization:
s1�t�=Mhm1c�b ,a�Wg�c�t� and s2c�t�=Mhm2�b ,a�Wg�c�t� re-
spectively. Then, the cross spectrum reads

Scross�b,a� = m1c�b,a�m̄2c�b,a� . �8�

In general, this is a complex function that may be decom-
posed into amplitude and phase:

Scross�b,a� = 
Scross�b,a�
exp�i arg�Scross�b,a��� . �9�

The cross spectrum denotes the covarying power of two pro-
cesses, i.e., the predictive information between each other.
Possibly, a superimposed independent variance only appears
in the single spectra but not in the cross spectra; this also
implies that the cross spectrum vanishes for two independent
processes.

3. Coherence

The coherence �sometimes coherency� is defined as the
modulus of the cross spectrum, normalized to the single

spectra. Exhibiting values between zero and one, it quantifies
the linear relationship between two processes. In general, one
rarely finds perfect linear dependence; the single processes
m1�b ,a� and m2�b ,a� rather consist of covarying parts
m1c�b ,a� and m2c�b ,a� as well as superimposed independent
contributions m1i and m2i: s1�t�=Mhm1c�b ,a�Wg�c�t�
+Mhm1i�b ,a�Wg�1i�t� and s2�t�=Mhm2c�b ,a�Wg�c�t�
+Mhm2i�b ,a�Wg�2i�t�. Then, the squared coherence reads

C2�b,a� =

Scross�b,a�
2

S1�b,a�S2�b,a�
=


m1c�b,a�m̄2c�b,a�
2


m1�b,a�
2
m2�b,a�
2
, �10�

with m1�b ,a�=m1c�b ,a�+m1i�b ,a� and m2�b ,a�=m2c�b ,a�
+m2i�b ,a�.

All these measures in combination with a synthesizing
wavelet pair are a priori definitions of individual processes;
the procedure to estimate them will be addressed in Sec. IV.

C. Example

To illustrate this concept, we synthesize a stochastic chirp
that is given as

m�b,a� = exp�−
�b − b0�a��2

2	2�a� � �11�

with b0�a�=
0+c log�a� and 	�a�=	0a1−�, i.e., every voice
�stripe of constant scale� is given by a Gaussian with time
position and width varying with scale. The center of the
Gaussian at scale a is given by b0, the width as 	�a�, deter-
mined by the constants 
0, c, and 	0. The power of 1−�
ensures the process exhibiting the desired asymptotical be-
havior. Figures 1�a� and 1�b� show the spectrum S�b ,a�
= 
m�b ,a�
2 and a typical realization generated from the spec-
trum by Eq. �4� in the time domain, respectively.

IV. ESTIMATING THE WAVELET SPECTRUM

Wavelet analysis is an inverse problem. One aims to esti-
mate the wavelet spectrum of an unknown underlying pro-

FIG. 1. �Color online� Stochastic chirp with �=0.3 �arbitrary
units�. �a� The spectrum 
m�b ,a�
2. �b� A typical realization in the
time domain, calculated with a Morlet wavelet, �0=6.
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cess. In this section, at first we briefly review the well-known
wavelet spectral estimators and their distribution. Then,
based on the framework developed in Sec. III, we derive the
variance and bias of arbitrary estimated wavelet spectra.

A. Spectral estimators

Given a realization s�t� of a nonstationary process, one
can estimate its spectrum �i.e., calculate the wavelet sample
spectrum� using a wavelet g�t� by

Ŝg�b,a� = A„
Wgs�t�
2… , �12�

where A denotes an averaging operator defined in Sec. IV B
and the caret marks the estimator. Following the terminology
of Fourier analysis, the wavelet sample spectrum without
averaging is either called a scalogram �1� or wavelet peri-
odogram �e.g., �16��.

Given realizations s1�t� and s2�t� of two processes, the
cross spectrum can be estimated as

Ŝcross g�b,a� = A„Wgs1�t�W̄gs2�t�… , �13�

or decomposed into amplitude and phase,

Ŝcross g�b,a� = 
Ŝcross g�b,a�
exp�i arg�Ŝcross g�b,a��� ,

�14�

whereas the squared coherence is estimated as

Ĉg
2�b,a� =


Ŝcross g�b,a�
2

Ŝg,1�b,a�Ŝg,2�b,a�
. �15�

For coherence, averaging is essential. Otherwise, one inves-
tigates power in a single point in time and scale, i.e., one
attempts to infer covarying oscillations without observing the
oscillations over a certain interval. Consequently, nominator
and denominator become equal and one obtains a trivial
value of one for any two processes.

B. Distribution, variance, and bias

Qui and Er �21� have studied variance and bias for deter-
ministic periodic oscillations corrupted by white noise. For
Gaussian processes, the wavelet scalogram 
Wgs�t�
2 and also

the wavelet cross scalogram Wgs1�t�W̄gs2�t� obey a �2 distri-
bution with two degrees of freedom. The variance equals to
two times the corresponding mean, VarS=2�
Wgs�t�
2�.

To reduce the variance, averaging the wavelet scalogram
in time or scale direction is required. This, in turn, produces
a bias. Furthermore, the averaging destroys the simple �2

distribution �10�. This occurs �in contrast to the Fourier pe-
riodogram� because of the intrinsic correlations given by the
reproducing kernel �Sec. A 2�.

1. Variance of the wavelet sample spectrum

In practical applications, retaining a scale-independent
variance appears to be a reasonable choice. This might be
accomplished by averaging the same amount of independent
information on every scale, i.e., by choosing the length of the

averaging kernel according to the reproducing kernel. Fol-
lowing Eq. �3�, this means �10�:

• Averaging in scale direction should be done with a win-
dow exhibiting constant length for logarithmic scales, see
Fig. 2�a�. wa denotes the half window length in the same
units as Nvoice �22�.

• Averaging in time direction should be done with a win-
dow exhibiting a length proportional to scale �see Fig. 2�b��.
wba denotes the half window length in units of time.

The �scale-independent� variance of Gaussian white noise
as a function of the width of a rectangular averaging window
is shown in Fig. 3. The graphs for averaging in the scale as
well as in time direction resemble the shape of the reproduc-
ing kernel. An averaging window that is short compared to
the effective width of the reproducing kernel includes only a
minor part of the independent information and thus fails to
notably reduce the variance. Thus, Fig. 3 provides guidance
for choosing an appropriate length of the averaging window.

FIG. 2. Smoothing according to the reproducing kernel to pro-
vide a constant variance for all scales �arbitrary units�. �a� In scale
direction, the length of the smoothing window stays constant �for a
logarithmic scale axis�, wa=const. �b� In time direction, the length
of the smoothing window increases linearly with scale, wba.

FIG. 3. Scale-independent normalized variance of the wavelet
sample spectrum as a function of the lengths of a rectangular aver-
aging window. �a� Averaging in scale direction with half window
length wa. �b� Averaging in time direction with half window length
wba. The graphs resemble the shape of the reproducing kernel.
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The variance of an arbitrary wavelet sample spectrum can be
estimated by constructing a bootstrap ensemble with Eq. �4�.
For processes following Eq. �5�, the variance asymptotically
vanishes for small scales without producing a bias �see Ap-
pendix B 3�.

2. Bias of the wavelet sample spectrum

Given realizations of a Gaussian process defined by
m�b ,a� and constructed with the wavelet pair g�t� and h�t�,
one can estimate the wavelet sample spectrum using a wave-
let k�t� and an averaging operator A. The bias at scale a and
time b of the wavelet sample spectrum then reads

�16�

where Ph→k denotes the projector defined in Appendix A 1.
The bias consists of two contributions: The averaging with
the operator A produces an averaging bias of the smoothed
wavelet sample spectrum in comparison to the wavelet peri-
odogram. Furthermore, not even the wavelet periodogram is
an unbiased estimator; the projection property Appendix A 1
results in an intrinsic bias of the wavelet periodogram in
relation to the underlying spectrum m�b ,a�. Both the averag-
ing bias and the intrinsic bias cause that, for finite scales, the
wavelet sample spectrum is not a consistent estimator even
in the limit of an infinite number of realizations. For averag-
ing on finite scales, one has to consider the trade-off between
bias and variance. For processes following Eq. �5�, the bias
of the estimator vanishes for small scales �see Appendix B
4�.

C. Example

We recall the stochastic chirp from Sec. III C to exemplify
the estimation procedure. Figure 4�a� depicts the wavelet
scalogram of the realization shown in Fig. 1�b�. It is easy to
see that a single realization without averaging yields a rather
insufficient estimation of the real spectrum. Averaging,
shown in Figs. 1�b� and 1�c�, reduces the variance but pro-

duces an averaging bias. The estimation based on the mean
of 1000 realizations without averaging, Fig. 1�d�, yields a
pretty accurate result of the underlying process, which is not
corrupted by the averaging bias, but only by the intrinsic
bias.

V. SIGNIFICANCE TESTING

A. Pointwise testing the wavelet spectrum

To our knowledge, Torrence and Compo �9� were the first
to establish significance tests for wavelet spectral measures.
They assumed a red noise background spectrum for the null
hypothesis and tested for every point in the time-scale plane
separately �i.e., pointwise�, whether the power exceeded a
certain critical value corresponding to the chosen signifi-
cance level. Since the critical values of an arbitrary back-
ground model are difficult to be accessed analytically �10�,
they need to be estimated based on a parametric bootstrap
�23� as follows: Choose a significance level 1−�; choose a
reasonable model �e.g., an AR�1� process in case of climate
data following Hasselmann �24�� as null hypothesis H0 and
fit it to the data; estimate the �1−��-quantile Scrit �i.e., the
critical value� of the corresponding background spectrum by
Monte Carlo simulations. Depending on the chosen back-
ground model and the chosen normalization of the spectral
estimator, the critical value in general depends on scale.
Then, check for every point in the wavelet domain, whether
the estimated spectrum exceeds the corresponding critical
value. The set of all pointwise significant wavelet spectral
coefficients is given as

Ppw = ��b,a�
Ŝg�b,a� 
 Scrit� . �17�

B. Areawise testing the wavelet spectrum

1. Multiple testing, intrinsic correlations,
and spurious significance

The concept of pointwise significance testing always
leads to the problem of multiple testing. Given a significance

FIG. 4. �Color online� Estimation of the stochastic chirp based on the realization in Fig. 1�b� �arbitrary units�. �a� The wavelet scalogram,
i.e., the sample spectrum without averaging. �b� Averaged sample spectrum with wa /Nvoice=0.5. �c� Averaged sample spectrum with
wa /Nvoice=0.5 and wb=3. �d� The spectrum estimated as the mean of 1000 realizations without averaging.
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level 1−�, a repetition of the test for N wavelet spectral
coefficients leads to, on average, �N false positive results.
For any time-scale-resolved analysis, a second problem
comes into play. According to the reproducing kernel Eq. �3�,
neighboring times and scales of a wavelet transformation are
correlated. Correspondingly, false positive results always oc-
cur as contiguous patches. These spurious patches reflect os-
cillations, which are randomly stable �25� for a short time.

For the interpretation of data from a process with an un-
known spectrum, these effects mark an important problem:
Which of the patches detected in a pointwise manner remain
significant when considering multiple testing effects and the
intrinsic correlations of the wavelet transformation?

Figure 5 illustrates that a mere visual judgment based on a
sample spectrum will presumably be misleading. Even in the
case of white noise, the test described in Sec. V A yields a
large number of—by construction spuriously—significant
patches.

2. Measuring areawise significance

We develop an areawise test that utilizes information
about the size and geometry of a detected patch to decide
whether it is significant or not. The main idea is as follows. If
the intrinsic correlations are given by the reproducing kernel
�Appendix A 2�, then also the typical patch area for random
fluctuations is given by the reproducing kernel. Following
the dilation of the reproducing kernel Eq. �3� and as illus-
trated in Fig. 6, the typical patch width in time and scale
direction should grow linearly with scale.

However, investigating the wavelet spectral matrices Fig.
5 reveals that many spurious patches do not have a typical
form; rather, their forms are arbitrary and complex. Patches
might exhibit a large extent in one direction, but be very
localized in the other direction �patch A in Fig. 5�. Other
patches might consist of rather small patches connected by
thin “bridges” �patch B in Fig. 5�. These patches are spurious
even though their area might be large compared to the cor-
responding reproducing kernel. Thus, not only the area but
also the geometry has to be taken into account.

Given the set of all patches with pointwise significant
values, Ppw �see Eq. �17��, we define areawise significant
patches in the following way: For every �a ,b�, we choose a
critical area Pcrit�b ,a�. It is given as the subset of the time-
scale domain, where the reproducing kernel, dilated and

translated to �b ,a�, exceeds the threshold of a certain critical
level Kcrit,

Pcrit�b,a� = ��b�,a��
�K�b,a;b�,a�� 
 Kcrit� . �18�

Then, the subset of additionally areawise significant wavelet
spectral coefficients is given as the union of all critical areas
that completely lay inside the patches of pointwise signifi-
cant values

Paw = �
Pcrit�b,a��Ppw

Pcrit�b,a� . �19�

In other words, given a patch of pointwise significant values,
a point inside this patch is areawise significant, if any repro-
ducing kernel �dilated according to the investigated scale�
containing this point totally fits into the patch. Consequently,
small as well as long but thin patches or bridges are sorted
out as being insignificant.

3. Areawise significance level

The larger the critical area, the larger a patch needs to be
to be detected by the test, i.e., the critical area is related to
the significance level �aw of the areawise test. We define the
latter one as follows: the areas Apw and Aaw corresponding to
the pointwise and areawise patches, Ppw and Paw result as

Apw = �
Ppw

dbda

a2

Aaw = �
Paw

dbda

a2 . �20�

Note that on every scale a, the area is related to the corre-
sponding measure a2. We now define the significance level
of the areawise test as

FIG. 5. �Color online� Pointwise significance test of the wavelet
sample spectrum of Gaussian white noise �Morlet wavelet, �0=6,
ws=0� against a white noise background spectrum of equal variance
�arbitrary units�. Spuriously significant patches appear.

FIG. 6. �Color online� normalized reproducing kernel of the
Morlet wavelet for three different scales �arbitrary units�: �a� s=8,
�b� s=32, and �c� s=128. The width in time and in scale direction
increases linearly with scale �i.e., in scale direction, it appears con-
stant on a logarithmic scale axis�.
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1 − �aw = 1 − �Aaw

Apw
� , �21�

i.e., one minus the average ratio between the areas of area-
wise significant patches and pointwise significant patches.

The relation between the desired areawise significance
level 1−�aw and the critical area Pcrit of the reproducing
kernel is rather nontrivial. As a matter of fact, we had to
estimate the corresponding critical area Pcrit as a function of
a desired significance level 1−�aw by a root-finding algo-
rithm individually for every triplet ��0, wa, wb�. The idea of
this algorithm is outlined in Appendix C 1. It turns out that
the critical area does not depend systematically on the cho-
sen background model �see Table I�.

4. Testing for significant areas

The actual areawise test is performed as follows: �i� Per-
form the pointwise test according to Sec. V A on the 1−�
level; �ii� stretch the reproducing kernel for every scale ac-
cording to Eq. �3�, choose a significance level 1−�aw for the
areawise test and the corresponding critical area Pcrit�b ,a� of
the reproducing kernel; �iii� slide the critical area Pcrit�b ,a�
�for every scale the corresponding dilated version� over the
wavelet matrix. A point inside a patch is defined as areawise
significant, if any critical area containing this point totally
lays within the patch. Figure 7 illustrates the areawise test
based on the result of the pointwise test for a Gaussian white
noise realization shown in Fig. 5. With �aw=0.1, the area-
wise test is capable of sorting out 	90% of the spuriously
significant area from the pointwise test.

The areawise patch does not take into account the spectral
value at a point �b ,a�; only information of the critical value
contour line is utilized to define the patch. Thus, a strongly
localized patch formed by a high peak might be sorted out.
However, this problem might be handled by repeating the

test for different significance levels 1−�. The higher the
level, the more localized patches might be identified.

C. Testing of covarying power

1. The wavelet cross spectrum

Compared to testing the single wavelet spectrum, the in-
ference of covarying power is rather nontrivial. Such as for
the stationary Fourier cross spectrum and the covariance �its
time domain counterpart�, no significance test for the wavelet
cross spectrum exists. Assume two processes exhibiting in-
dependent power at overlapping time and scale intervals.
This power does not covary, i.e., information about one of
the processes is not capable of predicting the other one.
Hence, the real wavelet cross spectrum is zero. By contrast,
the estimated wavelet cross spectrum always differs from
zero. As it is not a normalized measure, it is impossible to
decide whether a cross-spectral coefficient is large because
the one or the other process exhibits strong power or if ac-
tually covarying power does exist. Maraun and Kurths �10�
illustrated this problem and analyzed a prominent example.
To overcome this problem, one normalizes the cross spec-
trum and tests against zero coherence.

2. Pointwise testing of wavelet coherence

The structure of the test is similar to that developed for
the wavelet spectrum. However, as the coherence is normal-
ized to the single wavelet spectra, the critical value becomes
independent of the scale as long as the smoothing is done
properly, according to Sec. IV B �i.e., when the geometry of
the reproducing kernel is accounted for�.

In the case of Fourier analysis, the coherence critical
value is independent of the processes to be compared, if they
sufficiently well follow a linear description �26,27�. This in-
dependency, however, holds exactly only in the limit of a
long time series. As wavelet analysis is a localized measure,
this condition is not fulfilled. However, a simulation study
reveals that the dependency on the process parameter a is
rather marginal �see Appendix C 3�.

3. Areawise testing of wavelet coherence

Also here, an areawise test can be performed to sort out
false positive patches being artifacts from time and fre-
quency resolved analysis. The procedure is exactly the same
as for the wavelet spectrum, only the critical patch-size
Pcrit�b ,a� has to be re-estimated. Areawise significant
patches denote significant common oscillations of two pro-
cesses. Here, common means that two processes exhibit a
rather stable phase relation on a certain scale for a certain
time interval.

4. Testing against random coherence

However, common oscillations do not necessarily imply
coherence in a strict sense. Processes oscillating on similar
frequencies trivially exhibit patches indicating an intermit-
tently similar phase evolution. The typical lengths of these
patches are determined by the decorrelation times of the

TABLE I. Critical area Pcrit at scale a=1 for different AR�1�
processes with parameter a1 for the wavelet scalogram with �pw

=0.05 and �aw=0.1. The variance of the estimation is high due to
the slow convergence of the stochastic rootfinding.

a1 0.1 0.2 0.5 0.9

Pcrit 7.01±0.06 7.21±0.36 6.94±0.31 7.00±0.14

FIG. 7. �Color online� Areawise significance test performed on
the example from Fig. 5 �arbitrary units�. Most of the by construc-
tion spurious patches are sorted out.
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single processes and the similarity of the concerned frequen-
cies.

Figure 8 illustrates this discussion: We simulated realiza-
tions of two AR �2� processes with slightly different
parameters: xi=a1xi−1+a2xi−2+�i, with a1=1.950 12, a2
=−0.967 216 for the first and a1=1.953 03, a2=−0.967 216
for the second process. With a sampling time �t=1/12, this
gives a common relaxation time of �=5 and mean periods of
t1=4 and t2=4.4, respectively. Even though the driving noise
is independent, randomly common oscillations with a length
related to the relaxation time and the difference in period
occur.

If one is not only interested in deriving significant com-
mon oscillations, but also significant coherence in the sense
of coupling between the processes, the areawise test has to
be succeeded by another step: Using a bootstrapping ap-
proach, individually for every setting, it has to be tested if
the time interval of the common oscillations is significantly
long compared to typical randomly common oscillations of
independent processes.

This test against random coherence has to be designed as
follows: One constructs a bootstrap ensemble representing
the length distribution of randomly common oscillations of
the two processes under the null hypothesis �i.e., indepen-
dence�. On the one hand, this can be realized by a parametric
bootstrap, i.e., by fitting two sufficiently complex models to
the two data sets and then performing Monte Carlo simula-
tions. Alternatively, one can apply a nonparametric bootstrap
by constructing surrogate data of the two time series �e.g.,
using the presented wavelet synthesis�. A patch with a length
exceeding a certain quantile of the length distribution then
signifies coherence in a strict sense. For an overview of sur-
rogate time series �see �28�� and for bootstrapping, in gen-
eral, see �29�.

5. Complete test for coherence

To summarize, a complete coherence test includes the fol-
lowing steps: �i� Pointwise significance test as discussed in
Sec. V C 2; �ii� areawise significance test as discussed in
Sec. V C 3; and �iii� a bootstrap-based test against random
coherence.

D. Comparison of tests

Real-world processes, in particular of geophysical or
physiological nature, often exhibit power on a wide range of
scales, where only a narrowband of time-localized oscilla-
tions might be interesting. The question arises as to how
strong the localization in time and scale might be in relation
to the background noise to be, in principle, identifiable. This
question addresses the sensitivity of the test. On the other
hand, it is relevant to know how many true features the test
detects compared to the number of false-positive results.
This question addresses the specificity of the test. �For defi-
nitions of sensitivity and specificity, see the Appendix C 2.�

To investigate these questions, we synthesized nonstation-
ary Gaussian processes that exhibit a variance confined to a
small area in the wavelet domain. We superposed white
background noise to these processes with a certain signal to
noise ratio Rpeak. The resulting processes simulate a typical
situation in geophyiscs, where a signal confined in time and
scale is hidden between other overlaid processes.

For different signal-to-noise ratios and signal extensions,
we simulated a Monte Carlo ensemble and applied the point-
wise and areawise test to every realization. From the out-
comes, we estimated sensitivity and specificity and the rate
of false positive and false negative results of the both tests.
For details of this study, see Appendix C 4.

We summarize the following main results:
For a good signal-to-noise ratio, the specificity of both

tests is very high, i.e., the sensitivity is the interesting mea-
sure; in this rather theoretical case, the pointwise test per-
forms better. However, for a low signal-to-noise ratio, the
specificity of the pointwise test is very low compared to that
of the areawise test: The pointwise test produces many false-
positive results, which are efficiently sorted out by the area-
wise test.

For data with a low signal to noise ratio, it is impossible
to infer structures small compared to the reproducing kernel.
They are, in principle, indistinguishable from the background
noise.

Thus, for data sets exhibiting a broad spectrum �i.e., a low
signal-to-noise ratio�, the areawise test drastically increases
the reliability of the interpretation.

VI. CONCLUSIONS

In this paper, we have presented a concept for continuous
wavelet synthesis and analysis, i.e., for the direct problem of
generating realizations of wavelet spectra and for the inverse
problem of estimating wavelet spectra and significance test-
ing them against a background spectrum.

�i� We have developed a framework to define nonstation-
ary Gaussian processes in the wavelet domain; in this frame-

FIG. 8. �Color online� Areawise significance test for the coher-
ence of two independent AR�2�-processes �arbitrary units�. �a� Time
series, �b� wavelet coherence. Thin lines: pointwise test. Thick
lines: Areawise test. On the main frequency of 1/4, randomly com-
mon oscillations produce a large false positive patch.
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work, an arbitrary nonstationary wavelet spectrum is defined
by wavelet multipliers in time and scale. Realizations are
generated as follows: A driving Gaussian white noise is
transformed to the wavelet domain, multiplied with the
wavelet multipliers, and transformed back to the time do-
main with a suitable reconstruction wavelet. These realiza-
tions depend weakly on the wavelets used for the generation.
Based on this concept, we have defined a priori measures for
wavelet spectra and wavelet cross spectra. For the stationary
case, these wavelet spectra are closely related to Fourier
spectra.

Starting from the framework for the direct problem, we
studied the inverse problem. �ii� We have investigated the
variance and bias of continuous wavelet spectral estimators:
To reduce the variance of the wavelet sample spectrum, one
has to average it. Here, the extension of the averaging kernel
has to be chosen corresponding to the reproducing kernel on
every scale; otherwise, variance and bias will change with
scale. The reproducing kernel also gives a guidance to
choose an appropriate length for the averaging kernel. The
wavelet sample spectrum is subject to two different types of
bias: The averaging causes an averaging bias; additionally,
even the wavelet periodogram exhibits an intrinsic bias.

�iii� We have proposed a new significance test. The con-
ventional pointwise significance test produces many results
that are artifacts resulting from a combination of multiple
testing and intrinsic correlations given by the reproducing
kernel; even white noise exhibits typical spurious patches.
Thus, we have developed a new areawise significance test
that subsequently assesses whether a patch exceeds a critical
size given by the reproducing kernel; smaller patches are, in
principle, indistinguishable from noise.

For the testing of coherence, an extra third step needs to
be performed. Patches “surviving” the areawise test signify a
common oscillation on a certain scale for a certain time in-
terval. However, “common” does not mean “coherent” in the
sense of coupling. Processes exhibiting oscillations on simi-
lar frequencies trivially show patches of a certain length
given by the decorrelation times of the single processes.
Thus, to infer coherence in a strict sense, one needs to test
whether the patch is long in relation to typical randomly
coherent oscillations.

We have compared the areawise significance test with the
conventional pointwise significance test in terms of sensitiv-
ity and specificity. As the areawise test rejects patches small
in relation to the reproducing kernel, it is slightly less sensi-
tive but more specific. Given observations with a broad spec-
trum, e.g., from geophysics or physiology, the conventional
test mimics a misleading structure that is successfully uncov-
ered by the areawise test. A researcher left with a wavelet
sample spectrum exhibiting many pointwise significant
patches is given a measure to reject most spurious patches.

However, even though the effect of multiple testing has
been dramatically reduced by the areawise test, the outcome
is still merely statistical in nature. As for any statistical re-
sult, it is up to the researcher to provide a reasonable inter-
pretation. Instead of being an end in itself, a wavelet analysis
should be the starting point for a deeper physical understand-
ing.

The presented framework is prototypically suitable for
nonparametric bootstrapping in the wavelet domain. Aside

from the construction of nonstationary surrogate data, this
approach allows one to perform significance testing with a
more complex nonstationary background spectrum. Among
others, this is important for the analysis of processes with a
trend in the variance. The concept might also be extended to
non-Gaussian noise. These ideas, however, will be the sub-
ject of future research.

To synthesize realizations of a given wavelet spectrum, to
estimate wavelet spectra and to perform areawise signifi-
cance tests, we developed a free R-package based on the
package Rwave by Carmona et al. �12�. All wavelet plots in
this paper have been realized with this software �30�.
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APPENDIX A: PROPERTIES OF THE TRANSFORMATION

1. Projection property

Taking an arbitrary function f�b ,a�, the transformation
Pg→hf�b ,a�=WhMgf�b ,a� to the time domain and back to
the wavelet domain is a projector onto the space of all wave-
let transformations �3�

Pg→h
2 f�b,a� = Pg→hf�b,a� .

2. Reproducing kernel

A function r�b ,a� is a wavelet transformation, if and only
if

r�b,a� = �
0

� da�

a�
�

0

�

db�
1

a�
Kg,h�b − b�

a�
,

a

a�
�r�b�,a��

and Kg,h(�b−b�� /a� ,a /a�)=Wgh(�b−b�� /a�) is called the re-
producing kernel �3�. The reproducing kernel of the Morlet
wavelet is plotted in Fig. 6.

The intrinsic correlations given by the reproducing kernel
constitute a fundamental difference of any time frequency �or
scale� resolved analysis to time-independent Fourier analy-
sis, where neighboring frequencies are asymptotically uncor-
related.

APPENDIX B: PROPERTIES OF GAUSSIAN PROCESSES
IN WAVELET DOMAIN

1. Dependency on the wavelet

Given a realization of white noise ��t�, the difference
between the realizations sg�t� and sh�t� for a certain m�b ,a�
but different wavelets g and h reads
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with Pg→h=WhMg. The commutator in the previous equation
is given by the integral kernel

�m�b�,a�� − m�b,a��Pg→h�b − b�

a�
,

a

a�
� .

Developing m�b� ,a�� into a Taylor series around �b ,a� gives

=�m�b,a� + �b − b���bm�b,a� + �a� − a��am�b,a�

+ O„�a − a��2 + �b − b��2
… − m�b,a��Pg→h�b − b�

a�
,

a

a�
� .

For Pg→h� b−b�
a�

, a
a�

� sufficiently localized around �b ,a�, this
reads

��b − b���bm�b,a�Pg→h�b − b�

a�
,

a

a�
�

+ �a� − a��am�b,a�Pg→h�b − b�

a�
,

a

a�
� .

With Pg→h� �b ,a�= 1
abPg→h�b ,a� and Pg→h� �b ,a�= � 1

a
−1�Pg→h�b ,a�, we finally get

=a�bm�b,a�Pg→h� �b − b�

a�
,

a

a�
�

+ a�am�b,a�Pg→h� �b − b�

a�
,

a

a�
� .

To ensure asymptotic independence of the chosen wavelet, it
is necessary that �g,h�t� vanishes for small scales. This is
ensured in the following way: Pg→h� � b−b�

a�
, a

a�
� and

Pg→h� � b−b�
a�

, a
a�

�, given by the wavelets g and h, have to be
sufficiently localized; and a�bm�b ,a� and a�am�b ,a� have to
vanish for small scales. This is fulfilled for processes exhib-
iting the asymptotic behavior given by Eq. �5�.

2. Relation to Fourier spectra

For stationary processes, i.e., m�b ,a�
m�a�, Eq. �4� in
the Fourier domain reads

ŝ��� = �
0

� da

a

1
�a

ĥ�a��m�a�ĝ�a���̂���

= ��
0

� da

a

1
�a

G�a��m�a��
f���

�̂��� .

Here, we abbreviate G�a��= ĥ�a��ĝ�a��. In this context, the
caret refers to the Fourier transformation. The term f��� de-
notes Fourier multipliers representing the Fourier spectrum
of the process m�a�.

Developing m�a� into a Taylor series around 2� /�,
m�a�=m�2� /��+ �a−2� /��m��2� /��+O(�a−2� /��2)
leads to

f��� � m�2�

�
���

0

� da

a

1
�a

G�a��� + m��2�

�
�

���
0

� da

a

1
�a

G�a���a −
2�

�
�� .

We factor out 2� /� in the second integral. If G�a�� is well
localized, the integrals might be considered as being con-
stant. Finally, we obtain

f��� � m�2�

�
�C1 +

2�

�
m��2�

�
�C2.

As expected, the Fourier spectrum is given by the wavelet
spectrum plus a correction term. The latter depends on the
localization of the used wavelets and on the slope of the
wavelet spectrum. For high frequencies, the difference van-
ishes if m��2� /���O��� and if the process behaves as de-
fined by Eq. �5�.

3. Asymptotic variance of the wavelet sample spectrum

As discussed in Sec. III A, we constructed the class of
nonstationary Gaussian processes such that they become lo-
cally stationary for small scales �see Eq. �5��. Hence, it is
possible to adapt the length w of the averaging kernel A in
such a way to the process variability �given by �� that it
converges to zero size for small scales but at the same time
includes more and more reproducing kernels. Then the vari-
ance of the spectral estimate and the bias �see Sec. IV B 2�
vanish in the limit of small scales. Given the scale-dependent
variance Var�a� of the wavelet scalogram, the following re-
lation for the variance VarA�a� of the averaged wavelet
sample spectrum as a function of scale a holds

VarA�a� 	 Var�a�a1−�. �B1�

The exponent � �1
�
1−�� describes the scaling of the
averaging window: w�a�	a�. The simple factor a1 results
from the width of the reproducing kernel in smoothing direc-
tion, which is proportional to scale.

Figure 9 shows the variance of the averaged wavelet
sample spectrum of white noise ��=0.75�. The solid line
depicts the variance estimated from an ensemble of 1000
Gaussian chirps, the theoretically expected behavior is plot-
ted as a dashed line.
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4. Asymptotic bias of the wavelet sample spectrum

The bias of the wavelet scalogram reads

Bias�Ŝg�b,a�� = �
WkMhm�b�,a��Wg��t�
2� − 
m�b,a�
2

= WkMhW̄kM̄hm�b1,a1�m̄�b2,a2�

�WgW̄g���t1���t2�� − 
m�b,a�
2.

With ���t1���t2��=��t1− t2�, 	�=1 and Wgg(�t2−b2� /a2)
=K(�b1−b2� /a2 ,a1 /a2), we get

=WkMhW̄kM̄hm�b1,a1�m̄�b2,a2�K�b1 − b2

a2
,
a1

a2
� − 
m�b,a�
2.

Developing m�b1,2 ,a1,2� into a Taylor series around �a,b�,
i.e., m�b1,2 ,a1,2��m�a ,b�+ �b1,2−b��bm�b1,2 ,a1,2�+ �a1,2

−a��am�b1,2 ,a1,2�, and writing �b1,2−b��bm�b1,2 ,a1,2�+ �a1,2

−a��am�b1,2 ,a1,2�= f1,2, WkMhW̄kM̄hK(�b1−b2� /a2 ,a1 /a2)
=C, this leads to

Bias„Ŝg�b,a�… � �C − 1�
m�b,a�
2 − WkMhW̄kM̄h�m�b1,a1� f̄2

+ m̄�b2,a2�f1 + f1 f̄2�K�b1 − b2

a2
,
a1

a2
� .

If the wavelets are properly normalized, such that C=1, the
bias reduces to the second term. Following the same reason-
ing as in Appendix B 1, the bias vanishes for a→0.

APPENDIX C: SIGNIFICANCE TESTING

1. Estimating the patch size

The significance level 1−�aw of the areawise test is a
function of the critical area Pcrit. Unfortunately, this function
is not accessible analytically, such that it is impossible to
choose a desired significance level 1−�aw and then straight-
forwardly calculate the corresponding critical area. In fact,
one has to employ a root finding algorithm that solves the
equation

f�Pcrit� − �aw = 0.

The estimation for f�Pcrit� results from Monte Carlo simula-
tions and, thus, is stochastic itself—conventional root-
finding algorithms fail to solve this problem. Thus, we de-

veloped an iterative procedure that is similar to stochastic
approximation �31�: �i� Choose three reasonable initial
guesses for Pcrit and estimate �aw based on Monte Carlo
simulations. �ii� Assume a locally linear behavior of f around
the root and fit a straight line to the three outcomes; �iii� As
a next guess, choose the root of the straight line; �iv� Go
back to step �ii�, fit the straight line to all previous iterates
�past iterates are given an algebraically decaying lower
weight�; and �v� Choose a termination criterion, e.g., a de-
sired accuracy or a maximum number of iterations.

2. Sensitivity vs specificity

Given a population N, where a null hypothesis H0 is right
in NR cases and wrong in NW=N−NR cases. Applying a sig-
nificance test for H0 to measurements of every element, the
numbers of true negative and false positive results are de-
noted as NTN and NFP, with NTN+NFP=NR. The numbers of
false negative and true positive results are given as NFN and
NTP, with NFN+NTP=NW. Then

sensitivity =
NTP

NW
=

NTP

NTP + NFN
,

specificity =
NTN

NR
=

NTN

NFP + NTN
. �C1�

The sensitivity relates the number NTP of true rejections of
H0 to the total number of wrong H0, NW. On the other hand,
the specificity measures the number NTN of true acceptances
of H0 in relation to the total number of right H0, NR. A
sensitive test rejects H0 in preferably every case it is wrong
�low 
 error�, whereas a specific test preferably only rejects
H0 when it is definitely wrong �low �-error�. For finite data,
no test can be perfectly sensitive and specific, simulta-
neously.

3. Dependency of coherency critical values on the process

Table II shows the estimated critical values for some ex-
amples of different AR�1�-processes. The dependency on the
smoothing parameters wa and wb can be seen comparing �a�
and �b� in Table II. The dependency on the process parameter
a, however, is rather marginal.

4. Comparison of tests

To investigate the sensitivity and specificity of the point-
wise and the areawise significance test, we defined Gaussian
bumps

m�b,a� = exp�−
�b − b0�2

2	b
2 � · exp�−

„c log�a� − c log�a0�…2

2	a
2 � ,

�C2�

where b0 and a0 denote mean time and scale, respectively,
whereas 	b and 	b define the width in time and scale direc-
tion. The logarithm of the scale provides a Gaussian bump in
the typical logarithmic scale axis wavelet matrix. Realiza-
tions were calculated according to Eq. �4� with driving noise

FIG. 9. Asymptotic behavior of the variance of the averaged
wavelet sample spectrum of Gaussian white noise �arbitrary units�.
Solid line: estimation based on 1000 realizations, dashed line: theo-
retically expected behavior 	a1−0.75.
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��t�. The resulting time series was superimposed by indepen-
dent background noise. As a simple model, we chose Gauss-
ian white noise ��t�	N�0,	� with zero mean and variance
	�. Figure 10 displays an example. The amplitude of the
driving noise was chosen as 	�=1. However, the variance of

TABLE II. Critical values of the squared wavelet coherence
Ccrit

2 , between two AR�1�-processes with identical parameters a, xi

=axi−1+�i, for different significance levels and different a. Esti-
mated for a Morlet wavelet, �0=6 with �a� wa=0.5 octaves, wb

=0 and �b� wa=0.5 octaves, wb=1.

�a� a 0 0.1 0.5 0.9

90% level 0.861 0.862 0.868 0.880

95% level 0.900 0.902 0.906 0.916

99% level 0.949 0.951 0.952 0.959

�b� a 0 0.1 0.5 0.9

90% level 0.775 0.780 0.787 0.808

95% level 0.827 0.832 0.838 0.856

99% level 0.898 0.901 0.907 0.919

TABLE III. �a� Sensitivity of the pointwise �pw� and the area-
wise �aw� test, �b� ratio of false negative results from pointwise test
to areawise test AFN�pw� /AFN�aw�, �c� Specificity of the pw and aw
tests, �d� ratio of false-positive results from pointwise test to area-
wise test AFP�pw� /AFP�aw�. The signal-to-noise ratio Rpeak is
given as the ratio between the signal level in the peak 0.2	� and the
noiselevel 	� �see also Fig. 10�. All values are estimated based on
1000 realizations of the corresponding bump.

�a�
Rpeak

� 20 10 2 1

pw aw pw aw pw aw pw aw pw aw

2 0.95 0.89 0.83 0.66 0.92 0.84 0.58 0.30 0.26 0.06

4 0.95 0.91 0.69 0.54 0.73 0.59 0.64 0.47 0.40 0.19

	b 8 0.76 0.66 0.65 0.53 0.61 0.47 0.59 0.44 0.35 0.19

12 0.79 0.71 0.56 0.47 0.53 0.41 0.52 0.38 0.43 0.27

16 0.71 0.62 0.58 0.46 0.31 0.20 0.45 0.31 0.39 0.23

�b�
Rpeak

� 20 10 2 1

2 0.5 0.5 0.5 0.6 0.8

4 0.5 0.7 0.6 0.7 0.7

	b 8 0.7 0.7 0.7 0.7 0.8

12 0.7 0.8 0.8 0.8 0.8

16 0.8 0.8 0.9 0.8 0.8

�c�
Rpeak

� 20 10 2 1

pw aw pw aw pw aw pw aw pw aw

2 0.98 0.98 0.99 0.99 0.98 0.99 0.93 0.99 0.94 0.99

4 0.97 0.98 1.00 1.00 1.00 1.00 0.96 0.99 0.94 1.00

	b 8 0.99 0.99 1.00 1.00 1.00 1.00 0.97 1.00 0.95 1.00

12 0.98 0.99 1.00 1.00 1.00 1.00 0.99 1.00 0.94 0.99

16 0.99 0.99 0.99 1.00 1.00 1.00 1.00 1.00 0.94 0.99

�d�
Rpeak

� 20 10 2 1

2 1.2 1.4 1.4 8.3 10.5

4 1.2 1.6 1.5 7.9 11.2

	b 8 1.6 2.0 2.5 13.9 13.2

12 1.5 2.3 3.6 16.6 9.8

16 1.7 2.0 11.0 21.7 9.8

FIG. 10. �Color online� Gaussian bump with b0=50, a0=4, 	b

=16, and 	a=0.5 superimposed by white noise �arbitrary units�.
The variance of the driving noise was 	�=1, that of the background
noise 	�=0.1. For details see text. �a� m�a ,b�, the contour-line
marks 1/e2. �b� A realization in the time domain using a Morlet
wavelet with �0=6. �c� The corresponding wavelet sample spec-
trum calculated using the same wavelet. Thin and thick lines sur-
round pointwise and areawise significant patches, respectively.
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the resulting bump is much lower �at the peak around 0.2	��,
as the bump is confined to a small spectral band. Thus, the
superimposed noise with 	�=0.1 represents a 50% noise
level in relation to the bump itself. Therefore, we define the
signal-to-noise ratio at the peak as Rpeak=0.2	� /	�. For 	�

=0.2, Rpeak=1.
We performed the following study. We simulated Gauss-

ian bumps of different widths 	b and fixed 	a=0.5, superim-
posed by background noise with different variances 	�. For
each set of values �	b ,	��, we simulated N=10.000 realiza-
tions. To every realization, we applied the pointwise �1
−�pw=0.95� and the areawise test �1−�aw=0.9� as defined
in Sec. V B 4.

Based on this experiment, we compared the sensitivity
and specificity of the areawise significance test to those of
the pointwise test. We define the area of the bump �i.e.,
the set of points where we assume H0 as being wrong� as
PB= ��a ,b� 
m�a ,b�
1/e2�, the complement as PNB

= ��a ,b� 
m�a ,b��1/e2�.
The true positive patches are given as PTP= P� PB, and

the true negative patches as PTN= P̄� PNB; the false positive
patches are given as PFP= P� PNB, and the false negative

patches as PFN= P̄� PB, where P stands for either Ppw or Paw

and P̄ denotes the complement. We calculate the correspond-
ing areas AB, ANB, ATP, ATN, AFP, and AFN as in Eq. �20�.
Then we can define the estimators

ATP

AB
and

ATN

ANB
for sensitivity

and specificity, respectively.
On the one hand, the sensitivity of the pointwise test is

higher than that of the areawise test �see �a� in Table III�, as
the latter one sorts out small patches in the area of the bump.
The sensitivity depends strongly on the signal to noise ratio:
For low background noise 	��	�, both tests perform very
well ��a� in Table III�, although the part of the bump area not
detected by the areawise test is around twice as large than
that not detected by the pointwise test �because the areawise

test sorts out small patches, �b� in Table III�. As the noise-
level increases to the order of the bump’s driving noise, 	�

		�, the sensitivity decreases rapidly. For a zero signal-to-
noise ratio, 	��	� �not shown�, the sensitivity of the point-
wise test converges to �pw=0.05, that of the areawise test to
�pw�aw=0.005. However, the ratio between the parts of the
area not detected by the two tests ��b� in Table III� converges
to �1−�pw� / �1−�pw�aw��1−�pw=0.95. In other words, for
a very bad signal-to-noise ratio, the performance of the
pointwise test is not really better. It just detects patches that
occur spuriously because of the dominant noise.

On the other hand, the specificity of the areawise test is
higher than that of the pointwise test �see �c� in Table III�, as
the latter one detects many more false-positive patches out-
side the area of the bump. Whereas the specificity of the
areawise test appears to be almost independent of the signal-
to-noise ratio close to one, that of the pointwise test de-
creases for high background noise, as more and more spuri-
ous patches appear. At first sight, the difference between the
two tests seems to be rather marginal, but taking into account
the number of false-positive results, an obvious difference
arises: The ratio AFP�pw� /AFP�aw� between the two tests
ranges from 1 for a high signal-to-noise ratio to 1/�aw=10
for a low signal-to-noise ratio �the estimated values are cor-
rupted by a high uncertainty, the order of the values rather
than the values itself is interesting�.

The specificity is—trivially—almost independent of the
bump width as it considers the area off the bump. Also trivi-
ally, small bumps nearly free from background noise are de-
tected almost totally. This occurs because the small bumps
are shorter than the reproducing kernel and thus get enlarged
by the estimation. For large bumps, the sensitivity is, in gen-
eral, lower. However, the decrease of the sensitivity with
noise is much larger for small bumps than for large bumps.
That means that small patches get rather invisible as they get
superimposed by strong noise.
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