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In this tutorial we present recently developed nonlinear methods of cardiovascular physics and
show their potentials to clinically relevant problems in cardiology. The first part describes meth-
ods of cardiovascular physics, especially data analysis and modeling of noninvasively measured
biosignals, with the aim to improve clinical diagnostics and to improve the understanding of car-
diovascular regulation. Applications of nonlinear data analysis and modeling tools are various
and outlined in the second part of this tutorial: monitoring-, diagnosis-, course and mortality
prognoses as well as early detection of heart diseases. We show, that these data analyses and
modeling methods lead to significant improvements in different medical fields.
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List of Abbreviations

ACE alternating conditional expectation (algorithm)
ACM all cause mortality
AF atrial fibrillation
ApEn approximate entropy
BBI beat-to-beat interval
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BP blood pressure
BPV blood pressure variability
BRS baroreflex sensitivity
CH chronic hypertension
CHF congestive heart failure
CON controls
DCM dilated cardiomyopathy
DFA detrended fluctuation analysis
DSM dual sequence method (for BRS estimation)
ECG electrocardiogram
FHC familiar hypertrophic cardiomyopathy
HRECG high resolution electrocardiogram
HRV heart rate variability
HRT heart rate turbulence
LASDID large-scale dimension density
MSE multiscale entropy
NAAR nonlinear additive autoregressive (model)
NNI normal-to-normal-beat-interval
ICD implanted cardioverter-defibrillator
IUGR intrauterine growth retardation
PE preeclampsia
PI pulsatility index
PIH pregnancy-induced hypertension
PPA positive predictive accuracy
REAR renormalized entropy based on an autoregressive spectral estimation
ROC receiver operator curve
RP recurrence plots
RQA Recurrence quantification analysis
SampEn sample entropy
SBP systolic blood pressure
SHR spontaneously hypertensive rats
TO turbulence onset
TS turbulence slope
VF ventricular fibrillation
VPC ventricular premature complex
VT ventricular tachycardia

1. Introduction

Often data show complex structures which cannot
be interpreted immediately, reaching from slowly
moving periodic oscillations with stochastic influ-
ences to chaotic behavior with abrupt qualitative
changes. Such a variety of complex dynamics can be
found for example in cardiological data of patients
with dynamic diseases. For cardiological data, the
complexity of healthy dynamics can be understood
to be an essential part of their capability to adapt to
a varying environment. On the other hand, cardiac
disease causes a reduced dynamic complexity and
thus a reduced ability to adapt to environmental

changes which is connected with a higher risk of
life-threatening events.

Such difficult dynamics is mostly found in com-
plex systems and cannot be explained by standard
data analysis. Hence, the central demand of non-
linear dynamics aims exactly at such phenomena.
In this tutorial, new nonlinear data analysis and
modeling methods of cardiovascular physics are
introduced and applied to clinical data. The first
part of the work is focused on the methods devel-
oped in the field of cardiovascular physics, especially
nonlinear data analysis and modeling of noninva-
sively measured biosignals with the aim to improve
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clinical diagnostics and to better understand car-
diovascular regulation. The second part describes
applications to clinically relevant problems.

Most cardiovascular diseases are characterized
by an initial slow progression which subsequently
may lead to abrupt qualitative changes [Zipes &
Wellens, 1998; Lakatta & Levy, 2003]. This patho-
genesis is a dynamic process and the associated
cardiovascular parameters, such as heart rate vari-
ability (HRV), exhibit complex dynamics. It is well
known that a metronomic heart rate is pathologi-
cal; the healthy heart is influenced by multiple neu-
ral and hormonal factors that result in variations
in RR-intervals. The disadvantage of linear param-
eters in analyzing such processes is the limited
information about the underlying complex system.
They often require stationarity and do not take into
account nonlinear correlations. On the other hand,
a classical nonlinear description, involving correla-
tion dimension or Lyapunov exponents estimation
[Almog et al., 1996; Babloyantz & Destexhe, 1988;
Glass & Mackey, 1988; Goldberger et al., 1984;
Kobayashi & Musha, 1982; Lombardi et al., 1996b],
suffers from the curse of dimensionality. Mostly,
there are not enough points in the (often nonsta-
tionary) time series to reliably estimate these non-
linear measures.

Therefore, we favor measures of complexity —
another approach within nonlinear dynamics —
which are able to quantitatively characterize the
dynamics even for rather short time series [Schwarz
et al., 1993; Kurths et al., 1995; Voss et al., 1996b;
Voss et al., 1998; Wessel et al., 2000c].

Several techniques to analyze heart rate and
blood pressure variability (BPV) data have been
proposed in the literature [Task Force Heart Rate
Variability, 1996]. However, until today no tech-
nique exists that reliably describes these types of
cardiovascular regulation. A main focus of this tuto-
rial is to discuss different approaches to cardiologi-
cal signal analysis to get a better understanding of
the underlying processes. In our opinion, the only
way to develop appropriate models for cardiovascu-
lar regulation is to study the systems via sophisti-
cated methods and apply them to data of different
pathologies.

Annually, in the United States approximately
450,000 people die due to sudden cardiac death
[Alberte & Zipes, 2003; Barron & Lesh, 1996; Dami-
ano, 1992]. The accurate and reliable identification
of patients who are at high risk of sudden cardiac
death is an important and challenging problem.

HRV and BPV parameters, calculated from time
series of beat-to-beat intervals (BBI), have been
used to predict the mortality risk in patients with
structural heart diseases [Kleiger et al., 1987; Tsuji
et al., 1996]. Moreover, they were used for esti-
mating medicamental and therapeutical effects as
well as for physiomonitoring [Karemaker & Lie,
2000; Mortara et al., 1997]. Further, cardiovas-
cular interactions are analyzed to gain informa-
tion for the development of cardiac pacemakers
or implantable cardioverter-defibrillators [Sugiura
et al., 1991; Klingenheben & Hohnloser, 2003]. The
continuous and ongoing development in variability
analyses all have the same aim:

• Gaining new physiological information for diag-
nostics, prognosis and risk stratification, for
clinical treatment, pharmacologic research and
genetic research,

• Minimization of the patients risk due to the
improved analysis of especially noninvasive bio-
logical signals,

• Substitution of invasive diagnostic procedures by
improved and substantial cost saving diagnostics.

A fundamental step to analyze cardiovascular
variability was the invention of the electrocar-
diogram (ECG) for noninvasive detection of car-
diac excitation propagation by EINTHOVEN in
1902 [Einthoven, 1902]. The noninvasive continuous
blood pressure (BP) measurement was developed
several decades later. The fundamental work was
patented in 1969 by PENAZ and published after-
wards [Penaz, 1973]. Technical realizations for non-
invasive continuous BP measurement were available
starting from the 80’s with the “Finapres” device
(company Ohmeda, USA). Surprisingly, the basic
scientific knowledge of cardiovascular variability
analyses had been known a long time before, and
is represented in the following list [Rompelman &
Ten Voorde, 1995; Man in’t Veld et al., 1995]

• S. HALES (1733): Detection of respiratory
induced BP-fluctuations

• C. LUDWIG (1846): Detection of respiratory
induced heart rate (HR) fluctuations

• L. TRAUBE (1865): Influence of curare to BP in
an animal model

• E. DECYON, L. LUDWIG (1866): Neurogenetic
feedback between heart and circulation

• E. HERING (1868): Respiratory influence to
BP-waves
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• S. MAYER (1876): Detection of Mayer-waves;
lower frequency than respiratory induced BP-
fluctuations

• G. KÖSTER, A. TSCHERNAK (1903): Detec-
tion of vagal nerves in the aorta

• A. HEPPINGER, C. HESS (1948): Detection of
sympathovagal balance.

The investigation of the mutual influence of HR
and BP in the control of autonomous regulation
nowadays is a main research topic [La Rovere et al.,
2003]. A comprehensive methodological characteri-
zation of the beat-to-beat cardiovascular regulation,
however, is missing until today. Moreover, there
exists no “golden parameter” whose measurement
is able to reliably describe and estimate all risks.
From time to time there is an excessive enthusiasm
of some scientists claiming that their new devel-
oped parameter is better than previously used ones.
However, none of the known risk predictors proba-
bly is or can ever serve as an omnipotent outcome
determinant. Nevertheless, characteristic phenom-
ena of cardiovascular regulation are very exactly
detectable with specifically adapted methods
[Wessel et al., 2003].

The large complexity of cardiovascular regu-
lation, with its multiplicity of hormonal, genetic
and external interactions, requires a multivariate
approach based on a combination of different linear
and nonlinear parameters [La Rovere et al., 2001;
Bauernschmitt et al., 2004; Wessel et al., 2004c].
We have recently demonstrated that a multivari-
ate approach with HRV parameters including non-
linear methods as well as the combination of HRV
measures with clinical parameters like the ejection
fraction, the complexity of ventricular arrhythmias
or the signal-averaged electrocardiogram, signifi-
cantly improves the results of risk stratification
[Voss et al., 1998]. Moreover, in numerous clini-
cal studies [Barron & Lesh, 1996; Lombardi et al.,
1996b; Lombardi et al., 1996a; Voss et al., 1996b;
La Rovere & Schwartz, 1997; La Rovere et al., 2001]
it was demonstrated, that a multiparametric anal-
ysis of the cardiovascular regulation increases the
diagnostic information. However, one has to con-
sider some characteristics when using mathematical
approaches for the analysis for physiological sys-
tems (MILHORN [Milhorn, 1966]). We single out
the following valuable characteristics:

• Relations between variable biological systems are
usually nonlinear,

• Biological control systems have multiple feedback
loops and the dynamics result from the interplay
between them,

• Biological systems are much more complicated
than physical systems.

Considering these rather system-theoretical
characteristics, the development of nonlinear and
also knowledge-based methods should lead to
a diagnostic improvement in risk stratification.
Accordingly, first applications of nonlinear dynam-
ics tools in medical diagnostics have been met with
success over the last decade [Focus Issue: Dynamical
Disease: Mathematical Analysis of Human Illness,
1995; Kantz et al., 1998]. So far, however, research
was limited either to only analyze data [Gold-
berger et al., 1988; Yamamoto & Hughson, 1994a;
Cerutti et al., 1996; Poon & Merrill, 1997; Ivanov
et al., 1999; Schmidt et al., 1999a; Yang et al., 2003;
Wessel et al., 2004c], or develop models [Garfinkel
et al., 1992; Wikswo et al., 1995; Gray et al., 1998;
Witkowski et al., 1998; Ditto & Showalter, 1998;
Focus Issue: Mapping and Control of Complex Car-
diac Arrhythmias, 2002; Special Issue: Virtual Tis-
sue Engineering of the Heart, 2003]. A further
aim of this tutorial, therefore, is, to go a qualita-
tively new step: the combination of data analysis
and modeling. This model-based nonlinear-dynamic
data analysis of noninvasively measured biosignals
leads to an improved understanding of the cardio-
vascular regulation. Applications of these research
results are manifold: Monitoring-, diagnosis-,
course- and mortality prognoses as well as the early
detection of heart diseases. With respect to clini-
cal applications, there is an extraordinary demand
for new computer-controlled diagnostic methods to
obtain a more exact and differentiated picture of the
possibly damaged heart and to develop new biomed-
ical devices for risk stratification.

The present work represents a summary of new
and innovative methods developed by our group,
which offer a lot of clinical applications and may
sometime replace or complement some invasive and
expensive diagnostics.

2. Methods of Cardiological
Biosignal Processing

2.1. State of the art in clinical
practice

Clinical diagnostics in cardiology includes a lot of
invasive as well as non-invasive procedures. Only
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few of them, such as electrocardiography, offers
the possibility to characterize the dynamics of the
cardiovascular system over time (from minutes to
hours and days). Using portable Holter devices, the
study of beat-to-beat changes in the ECG is possible
under physical load and over the whole day. Other
diagnostic tools, as for example imaging, invasive
or biochemical procedures, are only able to repre-
sent the heart functionally and morphologically for
a rather short temporal interval.

The everyday routine in a hospital only allows
specialized and expensive devices for variability
analyses. This is all the more unsatisfactory because
numerous clinical studies proved the diagnostic
power of variability analyses. It is state of the art
today, to detect single beats in the ECG and to
analyze how the difference between two successive
beats evolves. Already in 1996 guidelines to analyze
this variability were published by the Task Force of
the European Society of Cardiology and the North
American Society of Pacing and Electrophysiology:
“Heart rate variability: Standards of measurement,
physiological interpretation and clinical use” [Task
Force Heart Rate Variability, 1996]. However, they
have not become generally accepted as standard
diagnostic tools so far. There are two reasons for
the low acceptance: firstly, the deficits in the car-
diological education for this new diagnostic field
and secondly, the reduced availability of commer-
cial devices for variability analyses.

The analysis of the heart rhythm is only
one substantial component of the interpretation
of electrocardiograms. Several medical questions
can already be answered by visual inspection of
the ECG paper strips themselves, e.g. whether
the electrical excitation in different locations of
the heart (sinus node, atrium, AV node, ven-
tricle) is normal or not. Moreover, arrhythmias
of different origin can be detected (e.g. sinus
bradycardia/tachycardia, atrial tachyarrhythmias,
ventricular tachycardia/fibrillation, supraventricu-
lar beats) as well as the sick sinus node syndrome
and other electrical pathologies. In addition to the
arrhythmic considerations several morphologic dis-
turbances, such as atrioventricular block, left/right
bundle branch block, WPW syndrome, atrioventric-
ular dissociation as well as injury currents (e.g. after
myocardial infarction) can be visually identified
[Zareba et al., 2001].

A substantial parameter in the ECG is the
T-wave (Fig. 1), which had mostly been visually
analyzed in the past. It is now possible to analyze

Fig. 1. Schematic representation of the PQRST-complex in
the electrocardiogram.

it in a computer-assisted way. Already in 1909 HER-
ING described [Hering, 1909] an electrical alternans
of the T-wave which one year later was correlated
with cardiac morphology by LEWIS [Lewis, 1910].
High amplitude T-wave alternans are rarely seen
in patients at risk for sudden cardiac death. How-
ever more recent studies showed that low amplitude
T-wave alternans discriminates patients with ven-
tricular tachycardia (VT) or ventricular fibrillation
(VF) from those without VT or VF [Rosenbaum
et al., 1996]. The analysis of the ST-segment is a
standardized method of ECG analysis, but surpris-
ingly no variability of this segment has been consid-
ered so far [Lehtinen et al., 1996; Suurkula et al.,
2001]. There are two types of ST-T wave abnormali-
ties which are very common and may be seen in any
lead of the ECG: an ST segment depression and an
ST segment elevation. Nonspecific T-waves and ST-
segments changes may also be seen in healthy indi-
viduals and can be caused by anemia, fever, drugs
or acute infections. Specific ST-segments changes
may be seen in association with various diseases,
such as ischemia, myocardial injury, pericarditis
or left ventricular hypertrophy [Kudenchuk et al.,
1998]. A further standardized clinical diagnostic
tool is the analysis of the late potentials [Breithardt
et al., 1991] in the high resolution ECG, which
however is not established in practice yet. Cardiac
late potentials are low amplitude electrical signals
(less than 1 mV) that occur after the normal QRS
and represent delayed conduction in damaged or
diseased ventricular myocardium. They cannot be
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seen in normal ECGs, but are revealed only after
signal averaging because of background noise. The
occurrence of late potentials themselves can be a
harbinger of serious ventricular tachyarrhythmias,
but the positive predictive value is low [Steinbigler
et al., 1998].

2.2. Linear analysis of heart rate
and blood pressure variability

Spontaneous fluctuations of cardiovascular signals
such as heart rate and blood pressure had already
described more than hundred years ago [Ludwig,
1847; Koepchen, 1959; Wolf et al., 1978]. However,
the physiological interpretation of these variabilities
is still an interesting and exciting research area. The
fluctuations of heart rate and blood pressure repre-
sent not only oscillations around a fixed value. They
are the expression of several influences, such as res-
piration and different self-regulating rhythms.

The basis of nearly all HRV studies is the ECG
recording. The trigger point to detect the beat-
to-beat variations in the ECG should be the time
difference between successive sinus node activities,
visible as the P-waves in the ECG. This wave,
however, has a small amplitude and is sometimes
difficult to detect (Fig. 1). Therefore as a compro-
mise the distance between two successive R-peaks,
which can be determined relatively simply, is used
for estimating the HRV. Figure 2(a) shows the basic
extraction principle of beat-to-beat (RR) intervals
from the ECG. To get more insight into cardiovascu-
lar regulation, simultaneous blood pressure signals
are recorded additionally to the ECG. The lower
part of Fig. 2 demonstrates how information about
the beat-to-beat variation of systolic and diastolic
pressure values is determined. Plotting the actual
RR-intervals or the pressure values versus time, we
get the tachogram/systogram/diastogram (Fig. 3).

Short-term heart rate regulation is accom-
plished mainly by neural sympathetic- and
parasympathetic-mediated cardiac baroreflexes and
peripheral vessel resistance, whereas long-term reg-
ulation is achieved by hormonal pathways as well
as other systems like the renin-angiotensin-system
[Berntson et al., 1997].

The analysis of HRV has become a powerful
tool for the assessment of autonomic control.
HRV measurements have proven to be indepen-
dent predictors of sudden cardiac death after
acute myocardial infarction, chronic heart failure or
dilated cardiomyopathy [Kleiger et al., 1987; Tsuji

(a)

(b)

Fig. 2. Scheme of beat-to-beat interval extraction: The RR-
intervals from the ECG (a) as well as the systolic and diastolic
blood pressure values from the blood pressure curve (b).

(a)

(b)

Fig. 3. Representative example of cardiovascular oscilla-
tions: the tachogram — the RR-intervals versus beat num-
ber (a), systogram/diastogram — the systolic/diastolic blood
pressure values versus beat number (b).

et al., 1996; Task Force Heart Rate Variability, 1996;
Szabo et al., 1997]. Moreover, it has been shown
that short-term HRV analysis already yields a prog-
nostic value in risk stratification independent of
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that of clinical and functional variables [La Rovere
et al., 2003]. However, the underlying regulatory
mechanisms are still poorly understood. Hence, we
include in our study also the blood pressure vari-
ability (BPV). The assessment of BPV from ambu-
latory blood pressure provides further predictive
information of cardiovascular risk but the prognos-
tic value of beat-to-beat BPV needs further inves-
tigations [Verdecchia et al., 1999].

The analysis of heart rate or blood pressure
variability is often difficult due to a huge amount of
artifacts and arrhythmias. While occasional ectopic
beats are treated successfully by most preprocess-
ing methods, more complex arrhythmias or arrhyth-
mias which are similar to normal fluctuations may
remain untreated. Therefore, we developed a new
method for data preprocessing which is presented
in the following.

2.2.1. Preprocessing

The main objective in the analysis of heart rate
and blood pressure is to investigate the cardiovas-
cular system during normal sinus rhythm. There-
fore, it is necessary to exclude not only artifacts
(e.g. double recognition, i.e. R-peak and T-wave
recognized as two beats) but also beats not com-
ing from the sinus node of the heart, so called ven-
tricular premature complexes (VPC). VPCs are not
directly controlled by the autonomous nervous sys-
tem. Practically, this exclusion means a filtering of
the time series. The original time series are denoted
as the RR-series (derived from the RR-intervals)
and the filtered time series as NN-series (normal-to-
normal-beat-interval). VPCs in the tachogram are
usually characterized by a very short interval fol-
lowed by a very long RR-interval (ventricular pre-
mature beat). Another VPC type is described by
a very short interval only (supraventricular prema-
ture beat). The 20%-filter [Haaksma et al., 1995;
Kleiger et al., 1987; Zebrowski et al., 1995] consid-
ers these facts; if the current value of the tachogram
differs more than 20% from its predecessor, the cur-
rent value and its successor are marked as not nor-
mal. The advantage of this filter is the very simple
rule. However, the disadvantages are rarely consid-
ered. VPCs with less than 20% difference are not
removed from the series and may falsify almost all
HRV or BPV parameters. The RR-intervals recog-
nized as not normal are treated in different ways:
either they are simply removed from the series or
linear or spline interpolated [Lippman et al., 1994;

Berntson et al., 1990]. The disadvantage of sim-
ply removing the beats is the loss of time depen-
dence which can cause the estimation of artificial
frequencies. Interpolating linearly may lead to false
decreased variabilities, interpolating with splines
often fails in time series with many VPCs.

In the following our adaptive filtering algorithm
is presented [Wessel et al., 2000b], which is based
on our previous interval filter described in [Wessel
et al., 1994]. The main advantage of this procedure
is the spontaneous adaptation to variability changes
in the series, which enables a more reliable removal
of artifacts and VPCs. This new filtering algorithm
consists of three subprocedures: (i) the removal of
obvious recognition errors, (ii) the adaptive percent-
filter, and (iii) the adaptive controlling filter.

(i) Obvious misrecognitions are RR-intervals of
length zero, BBIs less than 200ms (human refrac-
tory time) and pauses, i.e. when the heart does not
pump for a certain time. These pauses were evalu-
ated with every clinical Holter system, therefore we
do not consider them.

(ii) An adaptive filtering procedure was devel-
oped based on the adaptive mean value µa and
the adaptive standard deviation σa. Firstly, to
estimate the basic variability in the series, a
binomial-7-filtered series is calculated. Given the
tachogram x1, x2, . . . , xN , the binomial filtered
series is given by

tn :=

xn−3 + 6xn−2 + 15xn−1 + 20xn

+ 15xn+1 + 6xn+2 + xn+3

7
. (1)

The filtered series t1, t2, . . . , tN reflects the global
behavior of sinus node activity without the influence
of artifacts and VPCs. The adaptive mean value
µa(n) and the adaptive standard deviation σa(n)
of the binomial filtered series t1, t2, . . . , tN are
defined as:

µa(n) := µa(n − 1) − c · (µa(n − 1) − tn), (2)

σa(n) :=
√

µa(n)2 − λa(n), (3)

where c is a controlling coefficient (c ∈ [0, 1]) and
λa(n) is the adaptive second moment

λa(n) := λa(n − 1) − c · (λa(n − 1) − t2n),
n = 1, . . . , N. (4)

The exclusion rule of this filter reads as follows: The
RR-interval xn is classified as not normal, if

|xn − xn−1| >
p

100
xn−1 + cf · σa (5)
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and

|xn − xlv| >
p

100
xlv + cf · σ̄a, (6)

where p is a proportional limit (here p = 10%),
‘cf · σ̄a’ is a generalized 3σ-rule (cf = 3.0), xlv is
the last valid RR-interval and σ̄a is the averaged
σa. Values recognized as not normal are replaced
with a random number from [µa(n) − (1/2)σa(n),
µa(n) + (1/2)σa(n)] to avoid false decreased vari-
abilities.

(iii) Finally, as a precaution, follows the adap-
tive controlling procedure. From the resulting time
series x%

1 , x%
2 , x%

3 , . . . of the adaptive percent-filter
again the binomial filtered series and the respec-
tive adaptive mean value and standard deviation
are calculated. The value x%

n is considered to be
not normal if

|x%
n − µa(n)| > cf1 · σa(n) + σb (7)

where cf1 is the filter coefficient (here cf1 = 3.0)
and σb stands for a basic variability (for HRV here
σb = 20ms). This basic variability σb was intro-
duced to reduce filtering errors for time series with
low variability (near the accuracy of RR-interval
detection). Not normal values are replaced with the
respective values of the binomial filtered series. The
advantage of our newly introduced adaptive filter-
ing procedure is the spontaneous adaptation of the
filter coefficients due to sudden changes in the series
(e.g. sudden heart rate increase, see Fig. 4). The
choice of a generalized 3σ-rule in this algorithm
was done heuristically and we got excellent filtering

Fig. 4. One typical HRV series including VPCs with dif-
ferent prematureness (a), the results after filtering using the
20% rule (b) and the filtered time series after adaptive pre-
processing (c).

results for most of the data. It has to be mentioned
here, that we analyzed thousands of human and
animal time series so far. Small changes of the
controlling parameters will not significantly influ-
ence the filtering result. A MATLAB implementa-
tion of the preprocessing algorithm is available from
tocsy.agnld.uni-potsdam.de.

2.2.2. Time and frequency domain
parameter

Standard methods of HRV analysis include time
and frequency domain parameters; these are lin-
ear methods. Time domain parameters are based
on simple statistical methods derived from the
RR-intervals as well as the differences between
them. Mean heart rate is the simplest parameter,
but the standard deviation over the whole time
series (sdNN) is the most prominent HRV measure
for estimating overall HRV. A list of these param-
eters is given in Table 1. These parameters can be
calculated for short (5 minutes) and long (24 hours)
term epochs, representing short-term resp. long-
term variability or for averaged short term epochs
(e.g. mean of 288 five-minutes intervals a day). The
overall HRV estimate sdNN and other time domain
parameters can be used to predict mortality in the
recovering period after an myocardial infarction. In
one of the first risk studies using these parameters,
Kleiger et al. [1987] showed that an sdNN < 50ms
was associated with a 5.3-fold increased mortality
when compared to patients with preserved HRV
(sdNN > 100ms).

Time domain geometrical methods (see
Table 1) are methods where the BBI are converted
into special geometrical forms quantifying their
distribution. Special forms are used to make the
approach more insensitive to artifacts and ectopic
beats. A disadvantage of these methods is that they
require a considerable number of RR-intervals, thus
they are not applicable to very short-term time
series. A triangular index HRVi showing reduced
HRV has been associated with both arrhythmic
and nonarrhythmic death [Task Force Heart Rate
Variability, 1996; Hartikainen et al., 1996]. We
introduced a more robust method to quantify the
distribution [Voss et al., 1996b] based on infor-
mation theory, in particular the method uses the
Shannon- and the Renyi-entropy of the histogram.
We demonstrated the usefulness for risk stratifica-
tion two years later in a blinded study [Voss et al.,
1998].
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Table 1. Description of time- and frequency domain parameters, standards [Task Force Heart Rate Vari-
ability, 1996] and additional measures we developed (•). BBI here stands for the filtered beat-to-beat
intervals (NN-intervals).

Variable Units Definition

Time domain statistical methods

meanNN ms/mmHg Mean BBI resp. mean BP
sdNN ms/mmHg Standard deviation of all BBI resp. BP values
sdaNN5 ms Standard deviation of successive five minutes BBI averages

(for HRV only)
rmssd ms/mmHg Root mean square of successive BBI/BP differences
pNN50 % Percentage of NN-interval differences greater than 50 ms

(for HRV only)
• pNNX % Percentage of beat-to-beat differences greater

than Xms/mmHg (e.g. X = 100/200 ms, X = 5/10 mmHg)
• pNNlX % Percentage of beat-to-beat differences lower

than Xms/mmHg (e.g. X = 10/20/30 ms, X = 3/6 mmHg)
• Shannon none Shannon entropy of the histogram

(density distribution of the BBIs/BP values)
• RenyiX none Renyi entropy of order X of the histogram

(e.g. X = 2/4/0.25)

Time domain geometrical methods

HRVi none HRV triangular index
TINN ms Baseline width of the minimum square difference triangle

Frequency domain methods

P ms2/mmHg2 Total power from 0–0.4 Hz

ULF ms2/mmHg2 Ultra low frequency band 0–0.0033 Hz

VLF ms2/mmHg2 Very low frequency band 0.0033–0–0.4 Hz

LF ms2/mmHg2 Low frequency band 0.04–0.15 Hz

HF ms2/mmHg2 High frequency band 0.15–0.4 Hz
LF/HF none Quotient of LF and HF
LFn none Normalized low frequency band (LF/(LF + HF))

Frequency domain HRV parameters enable one
to analyze periodic dynamics in the heart rate time
series [Akselrod et al., 1981]. There are mainly two
different techniques for spectral analysis: methods
based on Fast Fourier Transform (FFT) and para-
metric autoregressive model estimations of wavelet
approaches. The results using different spectral
methods however should be comparable (apart from
differences in time and frequency resolution). The
Task Force on HRV [Task Force Heart Rate Vari-
ability, 1996] recommended that power spectral
analysis of 5-minute ECG recordings should be used
to assess autonomic physiology and pharmacology.
Very low, low and high frequencies (see Table 1)
can be estimated from such 5-minute ECG record-
ing. The high frequency power reflects modulation
of vagal activity by respiration whereas the low
frequency power represents vagal and sympathetic
activity via the baroreflex loop. The low-to-high fre-
quency ratio is used as an index of sympathovagal
balance [Malliani et al., 1991]. The capability of fre-
quency domain parameters for risk stratification of

post-infarction patients was proven by Bigger et al.
[1992] — a reduction in the ultra low and very low
frequency power is associated with pathologies.

For blood pressure series all described HRV
parameters can be accordingly calculated, only
some statistical parameters need to be adapted (e.g.
pNN50 makes no sense for BPV — the standard
deviation for BP series differs from 5 to 10 mmHg).

2.3. Nonlinear analysis of heart rate
and blood pressure variability

Heart rate and blood pressure variability reflect
the complex interactions of many different control
loops of the cardiovascular system. In relation to the
complexity of the sinus node activity modulation
system, a predominantly nonlinear behavior has
to be assumed. Thus the detailed description and
classification of dynamic changes using time and
frequency measures is often not sufficient. Therefore
we introduce in the following subsection nonlinear
methods based on symbolic dynamics, renormalized
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entropy, finite time growth rates, recurrence quan-
tification analysis, large-scale dimension densities
as well as further nonlinear approaches developed
by other groups. In the application section we
compare the nonlinear measures with each other,
and also with the linear parameters introduced
in Sec. 2.2.2.

2.3.1. Symbolic dynamics

We have shown already in 1995 that symbolic
dynamics is an efficient approach to analyze
dynamic aspects of HRV [Kurths et al., 1995;
Voss et al., 1996b]. The first step in this analysis
is the transformation of the time series into sym-
bol sequences with symbols from a given alphabet.
Some detailed information is lost in this process, but
the coarse dynamic behavior can be analyzed (see
Fig. 5) [Engbert et al., 1997]. Wackerbauer et al.
[1994] used the methodology of symbolic dynamics
for the analysis of the logistic map, where a generic
partition is known. However, for physiological time
series analysis a more pragmatic approach is nec-
essary. The transformations into symbols have to
be chosen context-dependent. For this reason, we
develop complexity measures on the basis of such
context-dependent transformations, which have a
close connection to physiological phenomena and
are relatively easy to interpret.

Comparing different kinds of symbol transfor-
mations, we found that the use of four symbols, as
explained in Eq. (8), is appropriate for our purpose.

Fig. 5. Sketch of symbolic dynamic transformation.

The time series x1, x2, x3, . . . , xN is transformed
into the symbol sequence s1, s2, s3, . . . , sN , si ∈ A
on the basis of the alphabet A = {0, 1, 2, 3}.

si(xi) =




0 : µ < xi ≤ (1 + a) · µ
1 : (1 + a) · µ < xi < ∞
2 : (1 − a) · µ < xi ≤ µ
3 : 0 < xi ≤ (1 − a) · µ

,

i = 1, 2, 3, . . . (8)

The transformation into symbols refers to three
given levels where µ denotes the mean beat-to-beat
interval and a is a special parameter that we have
chosen 0.05. We tested several values of a from 0.02
to 0.08, however the resulting symbol sequences dif-
fered not significantly. Figure 6 gives some exam-
ples for this dependence: for a = 0.5 and a = 0.6
the word distributions nearly coincide — only for
higher values (a = 0.8) we see some differences for
the subjects (3) and (4).

There are several quantities that characterize
such symbol strings. In this study we analyze the
frequency distribution of length three words, i.e.
substrings which consist of three symbols from the
alphabet A (Fig. 5, bottom), leading to maximum
64 different words (bins). This is a compromise of
having, on the one hand, some dynamical informa-
tion and of having, on the other hand, a sufficient
good statistics to estimate the probability distribu-
tion (cf. Fig. 6). We consider the following measures
of complexity:

(i) The Shannon entropy Hk (“fwshannon”) cal-
culated from the distribution p of words is the
classic measure for complexity in time series:

Hk = −
∑

ω∈W k,p(ω)>0

p(ω) log p(ω), (9)

where W k is the set of all words of length
k. Larger values of Shannon entropy refer
to higher complexity in the corresponding
tachograms and lower values to lower ones.

(ii) Next, we count the “forbidden words” in the
distribution of words with length three — that
are the number of words which never or only
seldomly occur. A high number of forbidden
words stands for a rather regular behavior in
the time series. If the time series is highly com-
plex in the sense of Shannon, only a few for-
bidden words will be found.

(iii) To measure especially low variability, we intro-
duce the parameter “POLVAR20”. In this way
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successive symbols of another simplified alpha-
bet, consisting only of symbols “0” and “1”,
were analyzed. Here the symbol “0” stands
for a small difference between two successive
beats, whereas “1” represent those cases where
the difference between two successive beats
exceeds this special limit:

sn =
{

1 : |xn − xn−1| ≥ 20ms
0 : |xn − xn−1| < 20ms

(10)

Words consisting only of an unique type
of symbols (either all “0” or all “1”) were
counted. To get a statistically appropriate esti-
mate of the word distribution, we choose words
of length six, where again at maximum 64 dif-
ferent types of words can occur. “POLVAR20”
represents the probability of the word type
“000000” occurrence and is able to detect even
intermittent decreased variability. Note that
the special limit of 20 ms can be adapted to
other values if necessary, for instance in ani-
mal studies.

2.3.2. Renormalized entropy

Another approach which might be capable of assess-
ing complex properties of cardiac periodograms is
the “renormalized entropy”. The fundamental idea
is to determine the complexity of cardiac peri-
odograms related to a fixed reference. Based on
general considerations in thermodynamics, Klimon-
tovich suggested to compare the relative degree of
order of two different distributions by renormalizing
the reference distribution to a given energy. Saparin
[Saparin et al., 1994] proposed a procedure for cal-
culating this quantity from time series and applied
it to the logistic map. Applications of renormal-
ized entropy to physiological data were previously
introduced [Kurths et al., 1995; Voss et al., 1996b;
Wessel et al., 1994; Kopitzki et al., 1998]. That
method, however, suffers from a potential lack of
reproducibility for heart rate data. Therefore, we
developed another method for the computation of
renormalized entropy REAR based on an autore-
gressive spectral estimation [Wessel et al., 2000b].
In the following two paragraphs our new method is
briefly introduced.

To compare the relative degree of order of two
different distributions, the reference distribution is
renormalized to a given energy. The complexity
of any distribution in relation to a fixed refer-
ence distribution is estimated by solving an integral

equation. Considering two tachograms (time series
of beat-to-beat intervals) with the density distribu-
tion estimates f0(x) and f1(x) and using the esti-
mate f0(x) as a reference, the renormalized density
distribution f0(x) of f0(x) is defined as:

f0(x) :=
f0(x)T∫
f0(x)T dx

, (11)

where T is the solution of the integral equation∫
ln f0(x)(f0(x)−f1(x))dx = 0, (12)

The solution of (12) has to be determined numeri-
cally. The renormalized entropy RE of the distribu-
tion f1(x) is defined by the following interchanging
algorithm involving the Shannon-entropy of distri-
bution f(x) defined by

S(f(x)) = −
∫

f(x) · ln f(x)dx (13)

Procedure:

• Calculation of ∆1 = S(f1(x)) − S(f0(x)) with
the distribution f0(x) as the reference (f0(x) is
renormalized). The value of T is denoted T1 = T .

• Calculation of ∆2 = S(f0(x)) − S(f1(x)) with
the distribution f1(x) as the reference (f1(x) is
renormalized). The resulting T value is denoted
T2 = T .

• If T1 > T2, the distribution f0(x) is found to be
the more disordered one (in the sense of renor-
malized entropy — i.s.r.e.) and the renormalized
entropy RE is defined as RE = ∆1. Otherwise
f1(x) is the more disordered distribution (i.s.r.e.)
and the renormalized entropy is RE = −∆2.

Calculation of the renormalized entropy requi-
res estimating the tachogram distributions. Here we
use an autoregressive spectral estimation of the fil-
tered and interpolated tachogram. A known prob-
lem of autoregressive spectral estimations is the
bias which might appear even in idealized circum-
stances. To overcome this problem, a sinusoidal
oscillation with a fixed amplitude and frequency
was added to the time series. The amplitude of
40ms was chosen to obtain a dominant peak in the
spectral estimation and the frequency was set to
0.4 Hz, which is the upper limit of the high fre-
quency band [Task Force Heart Rate Variability,
1996] (Fig. 7). A spectral density estimation in the
interval [0, 0.42] Hz was used to include all physio-
logical modulations and the calibration peak. Using
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Fig. 7. Estimation of the tachogram distribution is the basis
for calculating renormalized entropy. Here, the autoregressive
spectral distribution (dotted area) together with the calibra-
tion peak at 0.4 Hz was used. Given a fixed reference distri-
bution the complexity of all distributions which should be
analyzed will be determined relative to this reference.

a reference tachogram from a healthy subject with
normal low and high frequency modulations, the
REAR method is designed so that either a decreased
HRV or a pathological spectrum leads to positive
values of the renormalized entropy.

2.3.3. Finite-time growth rates

Lyapunov exponents of a dynamical system reflect
average effective growth rates of infinitesimal uncer-
tainties over an infinite duration. However, time
series analysis is restricted to the analysis of finite
time series and thus it is difficult to estimate Lya-
punov exponents [Oseledec, 1968; Wolf et al., 1985;
Eckmann et al., 1986; Kurths & Herzel, 1987;
Smith, 1994]. Moreover, often we only have rather
short time series which do not allow estimating
Lyapunov exponents. Therefore, we concentrate on
quantifying the state-dependent short-term pre-
dictability through finite-time growth rates. Note
that these differ from the finite-time Lyapunov
exponents defined in [Lorenz, 1965; Abarbanel
et al., 1991; Brown et al., 1991; Yoden & Nomura,
1993; Ziehmann et al., 1999] as well as the finite-
time growth rates of [Nese, 1989], both of which
require the knowledge of the tangent maps thus the
equations governing the dynamics. In [Ziehmann
et al., 1999] we have discussed the significant dif-
ferences between these quantities.

Our finite-time growth rates are approxima-
tions based on the idea of Wolf et al. [1985] and
can be introduced in three steps.

(i) Firstly, pseudo phase spaces of the system
are constructed using delay coordinates [Takens,
1981]. Their dimension is denoted by n and the fixed
delay by τ.

(ii) Next, for each point in this constructed
phase space Ik = [xk, xk+τ , . . . , xk+(n−1)·τ ], k =
1, . . . , (N − (n − 1) · τ) of the measured tachogram

I = [x1, x2, . . . , xN ] the nearest neighbor Ik is deter-
mined. Ik is defined as that state which has the min-
imal Euclidean distance to the Ik. ‖Iu−Iv‖ denotes
the Euclidean distance of the state Iu to Iv, i.e.

‖Iu − Iv‖ =

√√√√n−1∑
j=0

(xu+j·τ − xv+j·τ )2. (14)

Then the minimal distance dk to the state Ik is
given by

dk = min
i=1,...,N−(n−1)·τ

|i−k|>(n−1)·τ

‖Ik − Ii‖,

k = 1, . . . , N − (n − 1) · τ (15)

and the nearest neighbor by

Ik = {Im| ‖Ik − Im‖ = dk},
k = 1, . . . , N − (n − 1) · τ. (16)

Note that the time lag of the nearest neighbor to
the base point has to be at least one window length,
i.e. |i − k| > (n− 1) · τ and we only consider points
as neighbors if their distance to the base point is
less than 10% of the attractor diameter (maximum
distance between any two points in the series).

(iii) Next, we analyze the evolution of the
states Ik and Ik during the time T. After these T
steps we get the states IT

k = [xk+T , xk+T+τ , . . . ,

xk+T+(n−1)·τ ] and I
T
k , respectively. The distance

between both states ‖IT
k −I

T
k ‖ represents the diver-

gence after T evolution steps. From the original dis-
tance of both states and the distance after T steps
we calculate the finite-time growth rate λ

(n,τ,T )
k :

λ
(n,τ,T )
k =

1
T

ln
‖IT

k − I
T
k ‖

‖Ik − Ik‖
,

k = 1, . . . , N − (n − 1) · τ. (17)

λ
(n,τ,T )
k quantifies the local short-term predictability

at the point Ik. If these λ
(n,τ,T )
k > 0, the distance

after the evolution time T increases; otherwise, it
decreases.

We calculate the finite-time growth rates for
each point of the delay phase space, which leads to
a time series of growth rates λ

(n,τ,T )
k . Its average,

the average growth rate λ(n,τ,T ),

λ(n,τ,T ) =
1

N − (n − 1) · τ + 1

N−(n−1)·τ∑
k=1

λ
(n,τ,T )
k

(18)

quantifies a global short-term predictability.
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For the analysis of HRV data we selected the
following controlling parameters. The dimension n,
i.e. the length of the selected tachogram parts varied
from 3 to 9. We choose this range to cover an inter-
val up to 9, which is a typical order of an autoregres-
sive model for short-term HRV tachograms [Wessel
et al., 1994]. The evolution time and the delay are
defined as T = 1, 2, 3 and τ = 1, 2, 3 respectively.

Additionally, to reduce random influences, we
consider a three and a five nearest neighbor
approach. According to Eq. (16) we determine the
five nearest neighbors I

1
k, . . . , I

5
k of the point Ik and

evolve all neighbors over the evolution time T . The
finite-time growth rates for the three and the five
nearest neighbor approach are derived from the aver-
age distances before and after the evolution time.

2.3.4. Recurrence quantification analysis

The method of recurrence plots (RP) was firstly
introduced to visualize the time dependent behav-
ior of a system’s dynamics, which can be pic-
tured as a trajectory xi ∈ Rn (i = 1, . . . , N) in
the n-dimensional phase space [Eckmann et al.,
1987]. It represents the recurrence of the phase
space trajectory to a certain state, which is a
fundamental property of deterministic dynamical
systems [Argyris et al., 1994; Ott, 1993]. The main
step of this visualization is the calculation of the
N × N -matrix

Ri, j := Θ(εi − ‖xi − xj‖), i, j = 1, . . . , N, (19)

where εi is a cut-off distance, ‖ · ‖ a norm (e. g. the
Euclidean norm) and Θ(x) the Heaviside func-
tion. Analogous to the last section (3), the phase
space vectors for one-dimensional time series ui

from observations can be reconstructed by using
the Takens time delay method xi = (ui, ui+τ , . . . ,
ui+(m−1) τ ) [Kantz & Schreiber, 1997]. The dimen-
sion m can be estimated with the method of false
nearest neighbors (theoretically, m = 2n + 1)
[Argyris et al., 1994; Kantz & Schreiber, 1997]. The
cut-off distance εi defines a sphere centered at xi.
If xj falls within this sphere, the state will be close
to xi and thus Ri,j = 1. These εi can be either con-
stant for all xi [Koebbe & Mayer-Kress, 1992] or
they can vary in such a way, that the sphere contains
a predefined number of close states [Eckmann et al.,
1987]. We use a fixed εi and the Euclidean norm
resulting in a symmetric RP. The binary values in
Ri, j can be simply visualized by a matrix plot with
the colors black (1) and white (0).

The recurrence plot exhibits characteristic
large-scale and small-scale patterns which are
caused by typical dynamical behavior [Eckmann
et al., 1987; Webber & Zbilut, 1994], e.g. diagonals
(similar local evolution of different parts of the tra-
jectory) or horizontal and vertical black lines (state
does not change for some time).

Zbilut and Webber developed the recurrence
quantification analysis (RQA) to quantify an RP
[Trulla et al., 1996; Webber & Zbilut, 1994; Zbilut
& Webber, Jr., 1992]. They define measures using
the recurrence point density and the diagonal struc-
tures in the recurrence plot, the recurrence rate, the
determinism, the maximal length of diagonal struc-
tures, the entropy and the trend. A computation
of these measures in small windows moving along
the main diagonal of the RP yields the time depen-
dent behavior of these variables and, thus, makes
the identification of transitions in the time series
possible [Trulla et al., 1996].

The RQA measures are mostly based on the dis-
tribution of the length of the diagonal structures in
the RP. Additional information about further geo-
metrical structures, such as vertical and horizontal
elements, are not included there. Gao has there-
fore recently introduced a recurrence time statistics,
which corresponds to vertical structures in an RP
[Gao, 1999; Gao & Cai, 2000]. In Fig. 8 an example
of a recurrence plot for the logistic map is given —
recurrent states are characterized by black rectan-
gles in this plot.

In the following, we extend this view on the ver-
tical structures and define measures of complexity
based on the distribution of the vertical line length.
Since we are using symmetric RPs here, it suffices
to only consider the vertical structures.

We consider a point xi of the trajectory and the
set of its associated recurrence points Si := {xk :
Ri, k

!= 1 ; k ∈ [1 · · ·N − 1]}. Denote a subset of
these recurrence points si := {xl ∈ Si : (Ri, l ·
Ri, l+1) + (Ri, l · Ri, l−1) > 0 ; l ∈ [1 · · ·N ], Ri, 0 =
Ri, N+1 := 0} which contains the recurrence points
forming the vertical structures in the RP at col-
umn i. In continuous time systems with high time
resolution and with a not too small threshold ε,
a large part of this set si usually corresponds
to the sojourn points described in [Gao, 1999;
Gao & Cai, 2000]. Next, we determine the length
v of all connected subsets {xj �∈ si;xj+1 . . .xj+v ∈
si;xj+v+1 �∈ si} in si · Pi(v) = {vl; l = 1, 2, . . . , L}
denotes the set of all occurring subset lengths
in si and from

⋃N
i=1 Pi(v) we determine the
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(a)

(b)

Fig. 8. Time series of the logistic map (xn+1 = a xn(1−xn))
for control parameter a = 3.679 (a) as well as the correspond-
ing recurrence plot (b). Embedding dimension was chosen
m = 1, time delay τ = 1 and distance cutoff ε = 0.1σ.

distribution of the vertical line lengths P (v) in the
entire RP.

Analogous to the definition of the determin-
ism [Webber & Zbilut, 1994; Marwan, 1999], we
compute the ratio between the recurrence points
forming the vertical structures and the entire set
of recurrence points

Λ :=

N∑
v=vmin

vP (v)

N∑
v=1

vP (v)

, (20)

and call it laminarity Λ [Marwan et al., 2002]. The
computation of Λ is realized for v which exceeds a
minimal length vmin. For maps we use vmin = 2.
Λ is the measure of the amount of vertical struc-
tures in the whole RP and represents the occurrence

of laminar states in the system, without, however,
describing the length of these laminar phases. It will
decrease if the RP consists of more single recurrence
points than vertical structures.

Next, we define the average length of vertical
structures

T :=

N∑
v=vmin

vP (v)

N∑
v=vmin

P (v)

, (21)

which we call trapping time T . The computation
also uses the minimal length vmin as in Λ. The mea-
sure T contains information about the amount and
the length of the vertical structures in the RP.

Finally, we use the maximal length of the ver-
tical structures in the RP

Vmax = max({vl ; l = 1, 2, . . . , L}) (22)

as a measure, which is the analogue to the standard
RQA measure Lmax [Webber & Zbilut, 1994].

Although the distribution of the diagonal line
lengths contains information about the vertical
line lengths, the two distributions are significantly
different.

For HRV analysis we choose embedding dimen-
sions of m = 3 . . . 12, a delay of τ = 1 and a distance
cutoff of ε = 50 . . . 200ms.

2.3.5. Large-scale dimension densities

The large-scale dimension density LASDID [Raab
& Kurths, 2001] is estimated using a normalized
Grassberger–Procaccia algorithm, which leads to a
suitable correction of systematic errors produced by
boundary effects associated with large scales of a
system. This allows for an analysis of rather short
and nonstationary data.

In order to calculate the correlation dimen-
sion D2 of a system with the Grassberger–
Procaccia algorithm [Grassberger & Procaccia,
1983], firstly the attractor has to be recon-
structed using phase space reconstruction. The
embedded time series consists of vectors {x(t) =
(x1(t), x2(t), . . . , xm(t))}, where m is the embed-
ding dimension. Then one has to calculate the cor-
relation integral

C(r,m) =
1

N(N − 1)

∑
i�=j

θ(r−|x(ti)−x(tj)|) (23)

where θ is the Heaviside function and r is the
radius around each point within neighboring points
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are counted for the correlation sum. D2 is then
defined as

D2 = lim
r→0

lim
m→∞

(
d log C(r,m)
(−d log(r))

)
, (24)

if this limit exists [Grassberger & Procaccia, 1983].
Because it is impossible to reach the limit r → 0
in numerical calculations, one has to estimate this
dimension from larger distances, i.e. the right-hand
side of Eq. (24) becomes a distant dependent func-
tion D2(r,m). For low-dimensional attractors and
small r there often exists a rather large region
in log2(r) where D2(r,m) is nearly constant. This
part is referred to as the scaling region [Grass-
berger & Procaccia, 1983]. For larger values of r,
D2(r,m) is decreasing because of boundary effects.
It has been shown, that with growing dimension
of the attractor the number of data points needed
to reach the scaling region is increasing exponen-
tially [Kantz & Schreiber, 1997; Raab & Kurths,
2001]. If the time series is too short, one only gets
that part of D2(r,m) where it is decreasing with
log2(r). With LASDID we are able to use this part
of D2(r,m), too.

This large-scale dimension density ρls(r,m)
is defined by normalizing the dimension density
D2(r,m)/m of all coordinates m of the embedded
system to the dimension density D2(r, 1) of one
coordinate of this system [Raab & Kurths, 2001]:

ρls(r,m) =
D2(r,m)

(mD2(r, 1))
. (25)

With this normalization we get a plateau for large
scales r yielding an estimate of ρls (cf. Fig. 9).

The advantage of LASDID is that it is possible
to estimate it from rather short and nonstationary
time series [Raab et al., 2006]. So we can cut typi-
cal RR-interval time series in M shorter pieces. For
each of these short pieces we calculate LASDID via
Eq. (25). This leads to a time series consisting of
ρls(t). For this time series we calculate the mean
value µρls

by

µρls
=

1
M

M∑
i=1

ρls(ti), (26)

the standard deviation

σρls
=

√√√√ 1
M − 1

M∑
i=1

(ρls(ti) − µρls
)2 (27)

and the coefficient of variation cvρls
by

cvρls
= σρls

/µρls
. (28)

Fig. 9. Comparison of LASDID (solid line) with the
Grassberger–Procaccia algorithm (GPA, dashed line) calcu-
lated for HRV data. With LASDID we get a plateau for scales
between 1/2 and 1/10 of the attractor diameter, correspond-
ing to log2(r) = −1 to −3.4. For the calculation we used only
2000 RR-intervals, so no scaling region can be found with the
Grassberger–Procaccia algorithm. The data was embedded
with τ = 1 and embedding dimension m = 4.

For the calculation of LASDID we use an
embedding-dimension of m = 4 and a delay of
τ = 1. But the results are qualitatively the same
with embedding dimensions between m = 4, . . . , 8
and delay times between τ = 1, . . . , 5.

2.3.6. Further nonlinear measures

In the previous sections several nonlinear measures
developed by our group were introduced. This sec-
tion gives a short survey about further nonlinear
methods. One very easy approach is the Poincaré
plot, where each value of the time series is plotted
as a function of the previous one. We find appli-
cations of the Poincaré plot in diverse fields such
as astronomy, geophysics, meteorology, mathemati-
cal biology and medicine [Ott, 1993]. In medicine it
was mainly used in HRV analyses [Woo et al., 1994;
Huikuri et al., 1996]. The Poincaré plot is on the
one hand a visual technique where the human eye
can recognize different patterns, and on the other
hand a quantitative one. There are some param-
eters describing the shape of the plot. A ball-like
or stick-like shape in the Poincaré plot has been
linked to an adverse prognosis [Woo et al., 1994;
Huikuri et al., 1996]. SD1 and SD2 visualized in
Fig. 10 are two well-known Poincaré plot mea-
sures. SD1 is defined as the standard deviation of
the Poincaré plot projection to the negative line
of identity, whereas SD2 is the standard deviation
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Fig. 10. The Poincaré plot from a 24-hour HRV recording
of a healthy 25-year-old man.

of the projection to the line of identity (Fig. 10).
SD1 quantifies the short-term variability and SD2

reflects both short-term and long-term variability.
The ellipse drawn in Fig. 10 with axes (SD1, SD2)
is only a visualization tool for the Poincaré plot vol-
ume and its choice is maybe not optimal because the
example in Fig. 10 shows a more cudgel-like shape.
However, it has not been proven that Poincaré
plot based parameters are able to measure nonlinear
behavior for HRV data [Brennan et al., 2001].

In physics, entropy is one of the basic measures
of the disorder of a system — in information the-
ory, the measure of information capacity. Related to
time series analysis, approximate entropy (ApEn),
introduced by Pincus [1991], provides a measure of
the degree of irregularity or randomness within a
series of data. The greater the unpredictability, or
complexity, in the time series, the larger the value
of ApEn. To calculate the degree of regularity of
a time series x(t1), . . . , x(tN ), the entropy of recur-
ring patterns is evaluated. Let Cm

i (r) denote the
local recurrence rate of vectors of length m that are
close to x(ti) = (x(ti), x(ti+1), . . . , x(ti+m−1)) for a
given distance r:

Cm
i (r) =

1
N − m + 1

N−m+1∑
j=1

θ(r − |x(ti) − x(tj)|)

(29)

where θ is the Heaviside function and | · | is the
maximum norm. Then the averaged Cm

i (r) denotes

the global recurrence rate according to

Cm(r) =
1

N − m + 1

N−m+1∑
i=1

Cm
i (r) (30)

The ApEn finally is given by

ApEn(m, r,N) =
1

N − m + 1

N−m+1∑
i=1

log Cm
i (r)

− 1
N − m + 1

N−m+1∑
i=1

log Cm+1
i (r)

(31)

and measures the difference between the logarith-
mic frequencies of similar runs of length m and runs
with the length m + 1. The smaller the ApEn value
the higher the regularity in the time series: If the
prevalence of recurrent patterns of length m and
m + 1 do not differ significantly, their difference is
small. The influence of noise or nonstationarity to
ApEn is very high; therefore, it should not be used
as a single measure to characterize signals. More-
over, there is an intrinsic bias in the ApEn calcula-
tion because the algorithm counts similar sequences
to a given sequence, including the sequence itself to
avoid a logarithm of 0 in the calculations.

It is important to note here that ApEn is a
measure of randomness, i.e. it assigns highest com-
plexity for white-noise series. In this manner ApEn
is equivalent to traditional measure of complexity
such as the Shannon entropy or the Lempel–Ziv
complexity [Ebeling et al., 2002]. The limitations of
ApEn led to the development of the sample entropy
(SampEn) by Richman and Moorman [2000], where
self-matches are excluded. For SampEn the local
recurrence rates are defined now as:

Cm
i (r) =

1
N − m

∑
j �=i

θ(r − |x(ti) − x(tj)|) (32)

and the sample entropy SampEn is given by

SampEn(m, r,N) = log

N−m∑
i=1

Cm(r)

N−m∑
i=1

Cm+1(r)

. (33)

SampEn has the advantage to be less dependent
on time series length and free of the bias caused by
self-matching.

Both, ApEn and SampEn, are evaluating differ-
ences between recurrent patterns of length m and
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m + 1, thus they evaluate regularity on one scale
only. Therefore, Costa et al. [2002] introduced the
multiscale entropy (MSE), where they applied Sam-
pEn to the original time series averaged at different
scales. The connection of entropy and scale leads to
consistent results that both completely ordered and
completely random signals are not really complex.

A further nonlinear tool exploits the ubiquitous
occurrence of power laws in nature. Power scaling
laws have been studied for example in disparate
fields such as meteorology, oceanography, medicine,
biology, chemistry and ecology [Li].

P (f) ∝ f−γ (34)

This phenomenon is thought to arise from the
system itself; the theory of self-organized critical-
ity was suggested to represent a universal organiz-
ing principle [Bak et al., 1987]. The distribution
of the power spectral density can be described by
the linear inverse power-law relationship of loga-
rithmic power to logarithmic frequency. By plot-
ting a loglog representation of the power spectrum,
a straight line is obtained with a slope of approx-
imately γ = 1. In the algorithm, a straight line
is fitted using linear regression, and the slope and
intercept are obtained. This power law describes a
“scale invariant” dynamics of similar patterns at
different scales, which is a property of fractals (cf.
Benoit B. Mandelbrot [1983]). For medical data,
however, sometimes the power law behavior may
be over-interpreted and then it is merely an epiphe-
nomenon. Pilgram et al. [Pilgram & Kaplan, 1999]
showed with a simple 1/f heart rate model that the
power-law structure occurred due to nonstationar-
ity over fairly short intervals and thus the statistical
result of a conceptually very different process.

Introduced by Peng and coworkers [Peng et al.,
1994; Peng et al., 1995], detrended fluctuation anal-
ysis (DFA) was developed to determine self-similar,
i.e. fractal-like correlation properties. This method
is rather insensitive to the effects of noise and non-
stationarity, and its considerable advantage is that
scaling exponents can be calculated even without
outlier removal. Variations from external stimuli
(such as respiration) are presumed to cause a local
effect (on heart rate), whereas variations due to
the inherent dynamics of the system are presumed
to exhibit long-range correlations. Firstly, the time
series x1, . . . , xN is mean subtracted and integrated:
y(k) =

∑k
i=1(xi − x̄), where x̄ denotes the mean

value of the time series x1, . . . , xN . Then the series
y(k) is divided into boxes of equal length n. In each

box of length n, a least squares line, representing
the trend in that box, is fitted to the data. The y
coordinate of the straight line segments is denoted
by yn(k). Next, y(k) is detrended by subtracting
the local trend, yn(k), in each box. The root-mean-
square fluctuation of this integrated and detrended
time series is calculated by

F (n) =

√√√√ 1
N

N∑
k=1

(y(k) − yn(k))2 (35)

This calculation is repeated over all box sizes to
get a functional relationship between F (n) and the
box size n. Typically, F (n) increases with the box
size n. A linear relationship on a log–log plot indi-
cates the presence of power law scaling. The scaling
exponent is the slope of the line relating log F (n)
to log n. For real life applications however, the lin-
ear relationship between log F (n) and log n often
has been noted to be distinct for small n (n ≤ 11)
and large n (n > 11), yielding two lines with two
slopes, labeled the scaling exponents α1 and α2,
respectively [Makikallio et al., 1998]. Theoretically,
the scaling exponent(s) will vary from 0.5 (uncor-
related randomness) to 1.5 (random walk process,
Brownian noise), but physiological signals usually
have scaling exponents around 1.

The DFA is a monofractal technique, it can
measure only one exponent characterizing a given
signal. Monofractals are homogeneous in the sense
that they have the same scaling law throughout
the entire signal. Multifractal techniques provide a
spectrum of multiple exponents. Many physiologi-
cal time series are inhomogeneous due to intrinsic
and extrinsic influences, suggesting that different
parts of the signals have different scaling proper-
ties. For example, Stanley introduced 1999 [Stan-
ley et al., 1999] a multifractal analysis technique
similar to DFA, which is capable of distinguishing
the heart rate dynamics of patients with congestive
heart failure from healthy control individuals. A
more detailed description of multifractality in bio-
logical signals can be found in the papers by Ivanov
[Ivanov et al., 1999; Ivanov et al., 2001]. For medical
data analysis however, it remains unclear whether
these techniques will lead to clinically significant
improvements.

2.4. Baroreceptor sensitivity

The analysis of the spontaneous baroreflex sensitiv-
ity (BRS) is very important for cardiac risk strati-
fication of different cardiovascular diseases [Bristow
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et al., 1969; Eckberg et al., 1971; Barron & Lesh,
1996; La Rovere et al., 2001]. The BRS is defined as
the instinctive change of the heart frequency (beat-
to-beat interval) related to increasing or decreasing
values in systolic blood pressure and is expressed
in ms/mmHg. There is evidence that a decreased
BRS may carry an adverse prognosis in cardiac
patients [Osterziel et al., 1995; Mortara et al., 1997;
La Rovere et al., 1998]. For several years, the
BRS was determined pharmacologically (phenyle-
phrine, nitro-prusside) [McCall & Humphrey, 1983;
Vanoli & Adamson, 1994] or mechanically [Cohen
et al., 1981; Mancia et al., 1984; Takahashi et al.,
1999] until in the 1980s innovative methods for BRS
estimation were developed which are based on spon-
taneous heart rate and blood pressure fluctuations
[Di Rienzo et al., 1985; Parati et al., 1988]. These
methods evaluate arterial baroreflex function in the
absence of external stimulations on the cardiovascu-
lar system, therefore defined as spontaneous. These
spontaneous techniques nowadays are state of the
art in research, but not in clinical practice. The
next paragraph provides a brief survey of these
approaches.

Di Rienzo and Parati introduced in the 1980s
the sequence method [Di Rienzo et al., 1985;
Parati et al., 1988] which was the first not requir-
ing drug-injections. This time-domain method scans
the beat-to-beat systolic pressure series to iden-
tify sequences with monotonic BP increases (or
decreases) and synchronous BBI increases (or
decreases). The slope of the regression line between
BBI and systolic blood pressure (SBP) values
within the sequence is taken as an estimate of
BRS. Robbe et al. introduced a transfer function
based method [Robbe et al., 1987] for estimating
the BRS. This method assumes that the BBI is
the output of a linear system in which systolic
pressure is the input. Another frequency domain
method was introduced by Pagani et al. [1988]
and uses the fact that spontaneous fluctuations of
SBP and BBI are linearly correlated at the respi-
ratory HF as well as at the LF frequency band.
The alpha method assumes that this correlation
is due to baroreflex cardiovascular control. If the
coherence between BBI and SBP exceeds a cer-
tain value, an estimate of BRS is calculated by the
root-squared ratio (αLF resp. αHF). An alternative
way to quantify BRS was introduced by Ducher
et al. [1995], where the relation between SBP val-
ues and BBI is assessed statistically. The statisti-
cal level of coupling is quantified by the Z-index,

which is a function of SBP and BBI. BRS finally
is derived from the shape of the Z-surface on the
SBP–BBI plane. Further approaches for estimating
BRS are based on mathematical modeling of car-
diovascular circulation. The model coefficients are
fitted from the experimental data and the BRS is
derived from the model parameters. Some examples
for these approaches are dynamic adjustment mod-
els [Baselli et al., 1988], autoregressive-moving aver-
age models [Patton et al., 1996], exogenous models
with autoregressive input [Porta et al., 2000], and
bivariate autoregressive models [Nollo et al., 2001;
Nollo et al., 2005]. Recently, Westerhof et al. [2004]
introduced the xBRS method, which is a direct
extension of the sequence method. Again BRS is
obtained as the slope of the regression line between
SBP and BBI. However, the sequences do not
need to be synchronous. Corresponding sequences
are found by a significant maximum of the cross-
correlation function between SBP and BBI in a
10-s window. In this way different response times
of heart rate to SBP changes can be considered.

We have developed the dual sequence method
(DSM) [Malberg et al., 1999; Malberg et al., 2002]
for the advanced spontaneous baroreflex sensitiv-
ity estimation. This method considers not only
bradycardic (blood pressure increase causes RR-
interval increase) and tachycardic (blood pressure
decrease causes RR-interval decrease) blood pres-
sure fluctuations as introduced in the sequence —
method [Di Rienzo et al., 1985; Parati et al.,
1988] [see Fig. 11(a)], but also defines slope
sectors quantifying the BRS-slope distribution
[see Fig. 11(b)]. Former studies showed that
the heart rate does not respond simultane-
ously to the blood pressure fluctuation [Man-
cia et al., 1984; Mancia et al., 1985]. Therefore,
DSM quantifies synchronous as well as postponed
heart rate response on the same BP fluctuation
[see Fig. 11 (c)].

In summary, the following parameter blocks are
calculated by DSM:

(i) the total number of slopes in the different sec-
tors within the time series,

(ii) the percentage of the slopes to the total num-
ber of slopes in the different sectors,

(iii) the numbers of bradycardic and tachycardic
slopes,

(iv) the shift operation from the first to the third
heart beat triple and

(v) the average slopes of all fluctuations.
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(a) (b)

(c)

Fig. 11. The dual sequence method for spontaneous BRS estimation includes in addition to the bradycardic and tachy-
cardic blood pressure fluctuations (classical sequence method, (a)) also the slope sector distribution (b). Moreover, not only
simultaneous (sync) but also delayed responses of heart rate to blood pressure increases (shift 3, variable delay) are analyzed.

The average BRS slope is defined as the beat-to-
beat interval difference related to SBP changes, esti-
mated by linear regression

BRS =
BBI
SBP

(36)

and expressed in ms/mmHg.
The parameters Pbrady and Ptachy character-

ize the incidence of increasing and decreasing SBP
tripels with regard to the total number of SBP val-
ues. Consequently, these parameters estimate the
basic cause of BRS activity. An reduced number
of ramps in SBP leads unavoidably to a reduced
number of HR responses. The parameters are
defined as:

Pbrady =
(

No. of increasing SBP ramps
total no. of SBP values

)
· 100%

Ptachy =
(

No. of decreasing SBP ramps
total no. of SBP values

)
· 100%.

(37)

The percentage of adequate HR responses (BRS
events) to the numbers of SBP ramps is described
by the parameter Activation. It is definded as:

Activation =
(

No. of BRS events
No. of SBP ramps

)
· 100%. (38)

In contrast to classical BRS methods, the DSM
defines slope sectors allowing to quantify the
BRS-slope distribution. Sectors with a range of
5 ms/mmHg have been proven to act as a suitable
partition. The slope sectors are defined as:

Slope Sector[ms/mmHg] :
′0 − 5′ (very low BRS-slopes,most noise)

Slope Sector[ms/mmHg] :
′ < 5′, ′5 − 10′, . . . , ′25 − 30′, ′ < 30′
(expected physiological BRS)

(39)

Then, the percentages of BRS events in different
slope sectors to the total BRS number can be esti-
mated. Moreover, these values are normalized to
the mean heart rate. For detailed definitions of the
DSM parameters we refer to the original contribu-
tion [Malberg et al., 2002]. These parameters are
calculated for bradycardic as well as for tachycardic
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fluctuations, which are synchronous or delayed, to
analyze a possibly delayed response of the heart rate
to the same blood pressure oscillation. Using this
DSM method, sequences of length three are quan-
tified; longer sequences turned out not to be useful
for spontaneous BRS estimation because of their
low occurrence.

2.5. Heart rate turbulence

Some years ago, the method of heart rate turbulence
(HRT) was introduced [Schmidt et al., 1999b], ana-
lyzing only ventricular premature complexes (VPC)
and the behavior of the surrounding normal beats.
The HRT method was shown to represent a signifi-
cant extension of variability analysis in myocardial
infarction patients [Schmidt et al., 1999b]. It was
demonstrated that the counter-regulation of the
NN-intervals (normal-beat to normal-beat, NNI)
directly after VPC yields further information for
the prognosis following myocardial infarction. After
a VPC, the heart rate increases for 1 or 2 beats,
then it decreases (cf. Fig 12).

HRT quantifies these heart rate changes by
two parameters, the turbulence onset (TO) and
the turbulence slope (TS). TO is defined as the
percentage difference between two post- and two
pre-arrhythmic beats

TO =
(NNI2 + NNI3) − (NNI−2 + NNI−1)

(NNI−2 + NNI−1)
· 100%,

(40)

where the numbers denote the beat number, with
the VPC being beat 0. In other words, TO is the
amount of heart rate increase following a VPC.
TS is defined as the maximal slope of five succes-
sive normal beats following the compensatory pause
after the VPC. In [Schmidt et al., 1999b] it was
suggested to calculate TS from 16 post-VPC beats.
In short, TS is the amount of heart rate deceler-
ation after the VPC caused heart rate accelera-
tion. For long-term ECGs the TO and TS values
for each VPC of one patient are averaged. Patients
after myocardial infarction with a good prognosis
were characterized by the following response: The
heart rate immediately after the VPC increases
compared to the heart rate before the VPC, thus
TO < 0. Moreover, there is a relatively strong heart
rate recovery after the VPC induced heart rate
increase, thus TS > 2.5ms/beat [Schmidt et al.,
1999b]. Patient who died in the follow up of this

(a)

(b)

(c)

Fig. 12. Heart rate turbulence phenomenon: The time series
in (a) shows a ventricular premature complex (VPC) in the
ECG. Apparently, the dynamics after the VPC is not influ-
enced. Looking however at the blood pressure oscillations (b),
one can recognize the following behavior: the first blood pres-
sure value after the VPC has approximately the same ampli-
tude as the last normal beat, afterwards we see a short blood
pressure decrease followed by an increase up to ten values
after the VPC (red line). This phenomenon is better visible
when plotting the beat-to-beat intervals from (a) versus time
(c). This tachogram is characterized by a decrease of BBI
after VPC (turbulence onset) and a pronounced BBI-wave
(turbulence slope).

study very often showed TO > 0, i.e. a heart rate
decrease immediately after the VPC, and no turbu-
lence slope.

HRT analysis is carried out preferably with
24-hour ECGs. However, shorter measurement
durations are not excluded by the method [Schmidt
et al., 1999b]. To analyze HRT also for short
term recordings, where only beat-to-beat intervals
were available, the classical NN-interval trigger,
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suggested by Schmidt et al. [1999b], was extended
for the detection of VPCs. VPC detection by this
trigger is based on the fact that the premature
beat has to be smaller than 80% and the following
post-extrasystolic pause has to exceed 120% of
the last five normal beats (under the condition:
NN-intervals > 200 ms, NN-intervals < 2000ms).
Another pre-requisite is that the five pre- and
18 post-extrasystolic heart beats are normal beats
(post-extrasystolic: NN-intervals after the compen-
satory pause). When using this trigger, however,
arrhythmias, artifacts, and extraction errors of
the noninvasive blood pressure measurement device
were found just in this range prior to and after
the VPC. For this reason, an automatic method
was introduced, which facilitates VPC evaluation
[Malberg et al., 2003, 2004].

2.6. Nonlinear model based data
analysis

One aim of this tutorial is to take a qualita-
tively new step: the combination of data analysis
and modeling. Our nonlinear-dynamics approach of
model-based data analysis is based on the concept
of maximal correlation, which is very powerful
to estimate dependencies of one or more espe-
cially nonlinear related variables [Renyi, 1970]. This
approach provides a nonparametric procedure to
detect and determine nonlinear relationships in
multivariate data sets. For simplification reasons we

start with the bivariate case. Let X and Y denote
two zero-mean data sets and

ρ(X,Y ) =
E[XY ]√

E[X2]E[Y 2]
, (41)

their linear correlation coefficient, where E[·] is the
expectation value. The basic idea of this approach
is to find such transformations θ(Y ) and φ(X)
that the absolute value of the correlation coefficient
between the transformed variables is maximized.
This leads to the maximal correlation [Hirschfeld,
1935; Gebelein, 1941; Renyi, 1970].

Ψ(X,Y ) := sup
θ,φ

|ρ(θ(X), φ(Y ))| (42)

The functions θ(Y ) and φ(X) for which the
supremum is attained are called optimal transfor-
mations. This concept generalizes the linear correla-
tion, where the linear correlation coefficient ρ(X,Y )
quantifies only linear dependencies

Y = aX + η (43)

while Ψ(X,Y ) quantifies nonlinear dependencies of
the form

Ψ(Y ) = φ(X) + η. (44)

Especially, if there is complete statistical depen-
dence [Renyi, 1970], i.e., Y is a function of X or
vice versa, the maximal correlation attains unity.
This is also true for the Eq. (44) with η = 0. In
Fig. 13 an example of estimating functional rela-
tionships is given. There, a cubic relationship with
multiplicative and additive noise is shown. Using

Fig. 13. A realization of a cubic function with multiplicative and additive noise is depicted (Y = (X + ε)3 + η, ε ∼ N(0; 0.2),
η ∼ N(0; 2)). The linear correlation amounts to r = 0.83. Using the nonlinear regression approach we get a higher dependence
with a maximal correlation of Ψ = 0.9 (φ — optimal transformation). The function Y = X3 is plotted for comparability
reasons.
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the concept of maximal correlation the nonlinear
relationship between X and Y can be revealed and
quantified.

In this tutorial we are mainly interested in the
estimation of the optimal transformations for the
multivariate regression problem

θ(Y ) =
k∑

i=1

φi(Xi) + η. (45)

This is an additive model for the (not necessar-
ily independent) input variables Y,X1, . . . ,Xk. The
regression functions involved can be estimated as
the optimal transformations for the multivariate
problem analogous to Eq. (42). To estimate them
nonparametrically, we use the Alternating Condi-
tional Expectation (ACE) algorithm [Breiman &
Friedman, 1985; Hastie & Tibshirani, 1990]. This
iterative procedure is nonparametric because the
optimal transformations are estimated by local
smoothing of the data using kernel estimators. We
use a modified algorithm in which the data are
rank-ordered before the optimal transformations
are estimated. This makes the result less sensitive
to the data distribution. The maximal correlation
and optimal transformation approach have recently
been applied to nonlinear dynamical systems espe-
cially to model river flow data [Chen & Tsay, 1993],
to identify delay in lasers [Voss & Kurths, 1997]
and partial differential equations in fluid dynam-
ics [Voss et al., 1999], to predict thermal displace-
ments in modular tool systems [Wessel et al., 2004a;
Wessel et al., 2004b] and to medical data analyses
[Wessel et al., 2000b; Wessel et al., 2006]. A more
general review on nonlinear system identification is
given in [Voss et al., 2004].

3. Clinical Applications

After having briefly introduced the methods of car-
diological biosignal processing this section of the
tutorial will give an overview of selected clinical
applications.

3.1. Risk stratification for sudden
cardiac death based on HRV data

More than ten years ago, we started applying the
concept of complexity measures to determine the
risk of sudden cardiac death based on HRV data
[Kurths et al., 1995]. Therefore, we analyzed the 30
minutes tachograms from 43 subjects, which were
recorded under rest conditions. This pilot study

included 21 healthy volunteers, 9 patients after
myocardial infarction with low electrical risk and
13 patients after myocardial infarction with doc-
umented life-threatening arrhythmias (sustained
ventricular tachycardia). We showed that by using
classical methods only, especially parameters from
the time domain, the individual risk cannot be
defined precisely enough. We found some indication
that two kinds of complexity measures are particu-
larly promising: symbolic dynamics and renormal-
ized entropy. In that paper we were the first to show
that one parameter is insufficient to satisfactorily
define the individual risk. A combination of several
quantities which refer to different aspects, such as
structural or dynamical aspects, seemed to be the
most promising way.

Later, a second study introduced new meth-
ods of nonlinear dynamics and compared these with
traditional methods of HRV and high resolution
ECG (HRECG) analysis in order to improve the
reliability of high risk stratification [Voss et al.,
1996b]. In this study, simultaneous 30 minutes
high resolution ECGs and long term ECGs were
recorded from 26 cardiac patients after myocar-
dial infarction. Again, they were divided into two
groups depending upon the electrical risk, a low
risk group (group 2, n = 10) and a high risk group
(group 3, n = 16). The control group consisted of 35
healthy persons (group 1). From these electrocar-
diograms we extracted standard measures in time
and frequency domain as well as measures from
the new nonlinear methods of symbolic dynamics
and renormalized entropy. Applying discriminant
function techniques to HRV analysis, the param-
eters of nonlinear dynamics led to an acceptable
differentiation between healthy persons and high
risk patients of 96%. The time domain and fre-
quency domain parameters were successful in less
than 90%. The combination of parameters from all
domains and a stepwise discriminant function sep-
arated these groups completely (100%). Use of this
discriminant function classified three patients with
apparently low (no) risk into the same cluster as
high risk patients. The combination of HRECG and
HRV analysis showed the same individual cluster-
ing but in addition increased the positive value of
separation. In conclusion, the methods of nonlinear
dynamics describe complex rhythm fluctuations and
separate pattern of nonlinear behavior in the heart
rate time series more successful than classical meth-
ods of time and frequency domains. This leads to an
improved discrimination between a normal (healthy
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persons) and an abnormal (high risk patients) type
of heart beat generation. Some patients with an
unknown risk exhibit similar patterns as high risk
patients and this suggests a hidden high risk. The
methods of symbolic dynamics and renormalized
entropy were particularly useful measures for clas-
sifying the dynamics of HRV.

The objective of a subsequent blinded study
was to prove that this multiparametric HRV anal-
ysis improves the result of risk stratification in
patients after myocardial infarction [Voss et al.,
1998]. Standard time domain, frequency domain
and nonlinear dynamics measures of HRV assess-
ment were applied to 572 survivors of acute myocar-
dial infarction. Three parameter sets each consisting
of four parameters were applied and compared with
the standard measurement of global heart rate vari-
ability HRVi. Discriminant analysis technique and
t-test were performed to separate the high risk
groups from the survivors. The predictive value of
this approach was evaluated with receiver opera-
tor (ROC) and positive predictive accuracy (PPA)
curves. The discriminant analysis showed a sepa-
ration of patients suffered by all cause mortality
in 80% (best single parameter 74%) and sudden
arrhythmic death in 86% (73%). All parameters
of set 1 (the Shannon entropy of the histogram,
the normalized very low frequency, the symbolic
dynamics parameter WPSUM02, the mean beat-
to-beat intervals from the most stationary stage)
showed a high significant difference (p < 0.001)
between survivors and nonsurvivors based on a two-
tailed t-test. The specificity level of the multivari-
ate parameter sets was at the 70% sensitivity level
(ROC) about 85–90%, whereas HRVi showed max-
imum levels of 70% (Fig. 14). The PPA in the all
cause mortality group was at the 70% sensitivity
level twice as high as the univariate HRV measure
and increased to more than fourfold as high within
the VT/VF group. For this population we could
conclude, that the combination of four parameters
from all domains especially from nonlinear dynam-
ics seems to be a better predictor of high arrhythmia
risk than the standard measurement of global heart
rate variability.

As shown in previous studies, standard time
and frequency parameters of HRV describe only lin-
ear and periodic behavior, while more complex rela-
tions cannot be recognized. On the other hand, the
“renormalized entropy” was proven to be capable
of assessing more complex properties. However, a
previously introduced method [Kurths et al., 1995;

Fig. 14. Receiver operator curves for the all cause mortal-
ity (ACM) group and parameter HRVi respectively parame-
ter set 1.

Voss et al., 1996b] using renormalized entropy suf-
fered from a potential lack of reproducibility and
time instability. To overcome these limitations, a
new concept of the method, REAR, was developed
(cf. Sec. 2.3.2) based on a nonlinear renormaliza-
tion of autoregressive spectral distributions [Wessel
et al., 2000a]. To test the hypothesis that renor-
malized entropy may improve the result of high
risk stratification after myocardial infarction, it
was applied to a clinical pilot study (41 subjects)
and to prospective data of the St. George’s Hos-
pital post-infarction data base (572 patients). The
study showed that the new REAR method is more
reproducible and more stable in time than a previ-
ously introduced method (p < 0.001). Moreover, the
results of the study confirmed the hypothesis that
on average, the survivors have negative values of
REAR (−0.11±0.18) whereas the nonsurvivors have
positive values (0.03 ± 0.22, p < 0.01). Further, the
study showed that the combination of HRV trian-
gular index and REAR leads to a better prediction
of sudden arrhythmic death than standard measure-
ments of HRV. In summary, the REAR method is an
independent measure in HRV analysis which might
be suitable for risk stratification in patients after
myocardial infarction.

3.2. Forecasting of life-threatening
cardiac arrhythmias

Ventricular tachycardia or fibrillation (VT) are
the main factors triggering sudden cardiac death
(Fig. 15). The objective of the pilot study in
1998 [Wessel et al., 2000c] was to find early signs
of sustained VT in patients with an implanted
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Fig. 15. 1000 beat-to-beat intervals (tachogram) before the onset of ventricular tachycardia or fibrillation (VT). In the
ECG this life-threatening arrhythmia is characterized by abnormal-looking QRS complexes with a rate greater than 100
beats/minute.

cardioverter-defibrillator (ICD). These devices are
able to safeguard patients by returning their hearts
to a normal rhythm via strong defibrillatory shocks;
additionally, they store the 1,000 beat-to-beat
intervals immediately before the onset of a life-
threatening arrhythmia. We studied these 1,000
beat-to-beat intervals of 17 chronic heart failure
ICD patients before the onset of a life-threatening
arrhythmia and at a control time, i.e. without
VT event. To characterize these rather short data
sets, we calculated heart rate variability parame-
ters from time and frequency domain, from sym-
bolic dynamics as well as the finite-time growth
rates. We found that neither the time nor the fre-
quency domain parameters show significant differ-
ences between the VT and the control time series.
However, two parameters from symbolic dynamics
as well as the finite-time growth rates discriminate
significantly both groups. We concluded that these
findings could be of importance in algorithms for
next generation ICDs to improve the diagnostics
and therapy of VT. We therefore initiated at that
time a multicenter study to collect not only 1,000
but 9,000 beat-to-beat intervals before the onset of
VT (MARITA-study: Multivariate Analysis of RR-
Intervals before the onset of TAchyarrhythmias).

In a further study, we tested whether or not
HRV changes can serve as early signs of VT and
predict slow and fast VT in patients with an ICD
[Meyerfeldt et al., 2002]. Therefore, we studied the
ICD stored 1,000 beat-to-beat intervals before the
onset of VT (131 episodes) and during a con-
trol time without VT (74 series) in 63 chronic
heart failure ICD patients. Standard HRV parame-
ters as well as two nonlinear parameters, namely
“POLVAR10” from symbolic dynamics and the

finite time growth rates “Fitgra9” were calculated.
Comparing the control and the VT series, no lin-
ear HRV parameter showed a significant difference.
The nonlinear parameters detected a significant
increase in short phases with low variability before
the onset of VT (for time series with less than
10% ectopy, p < 0.05). Subdividing VT into fast
(cycle length ≤270 ms) and slow (>270 ms) events
we found that the onset of slow VT was char-
acterized by a significant increase in heart rate,
whereas fast VT was triggered during decreased
heart rates, compared to the control series. In sum-
mary, our analysis indicates that one may develop
new automatic ICD algorithms based on nonlinear
dynamic HRV parameters to predict VT before it
starts.

In a new analysis of the pilot study from 1998
we proposed measures of complexity based on ver-
tical structures in recurrence plots [Marwan et al.,
2002]. These measures make the investigation of
intermittency of processes possible, even if they
are only represented by short and nonstationary
data series. For the logistic map these measures
(cf. Sec. 2.3.4) enabled us not only to detect tran-
sitions between chaotic and periodic states, but
also to identify laminar states, i. e. chaos–chaos
transitions. The traditional recurrence quantifica-
tion analysis failed to detect the latter transitions.
Applying our new measures to the HRV data of
the pilot study, we were able to detect and quan-
tify the laminar phases before the occurrence of
life-threatening cardiac arrhythmia. The differences
between VT and the control series were more signif-
icant for RQA parameters than for measures used
in [Wessel et al., 2000c]. This study also demon-
strated the importance of developing sophisticated
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Fig. 16. The probability of intermittently low variability POLVAR10 up to 90 minutes before the onset of VT (p < 0.001
only 5 and 10 minutes before VT).

nonlinear dynamical tools for the analysis (not only)
of medical data.

In 2004 finally, we presented the first results
of the MARITA study [Schirdewan et al., 2004].
In this study, one hundred eighty-six patients (153
men, mean age 61.0± 10.4) with an implanted ICD
(Biotronik, 9000 RR-intervals capacity) for recur-
rent VT provided 257 heart rate recordings before a
VT (94 patients) and 645 series during control con-
ditions: recordings at follow-up date without VT.
From these time series we analyzed 107 VT and 422
control recordings which were in sinus rhythm, more
than one hour long and had less than 10% ventric-
ular ectopy. For HRV analysis standard time- and
frequency parameters as well as nonlinear dynam-
ical measures were calculated. To determine the
time of sympathetic activation, we calculated all
HRV parameter for successive 5 minutes intervals
up to 90 minutes before the onset of VT. In this
data base, the mean RR-interval for VT was signif-
icantly lower than for the controls (752.4 ± 13.9 vs.
819.1±8.1, p < 0.0001), whereas the number of ven-
tricular premature beats was higher (230.5 ± 19.7
vs. 147.7 ± 10.5, p < 0.00001). Heart rate and ven-
tricular ectopy rate significantly increase already 90
minutes before VTA onset compared with control
conditions suggesting a state of sympathetic excita-
tion. Mean heart rate and the number of VPCs were
statistically significant for all comparisons. In addi-
tion the symbolic dynamics parameter, POLVAR10
detected a further sympathetic excitation 10 min-
utes before the onset of VT, whereas all other
parameters failed to detect these changes. Stepwise
discriminant function analysis gave a classification

rate between VT and control series of 77.1% with
a positive predictive accuracy of 51.4% and a nega-
tive predictive accuracy of 88.3%. These first results
of the MARITA study suggest, that monitoring of
heart rate dynamics in ICD patients can predict VT
events with a positive accuracy for VT of about
50%. Further analyses of this study led us to the
idea of a circadian ICD, where the positive pre-
dictive accuracy for VT could drastically increase
(International patent registration PCT/DE2005/
002040).

3.3. Cardiovascular variability
in hypertensive pregnancy
disorders

When using HRV-, BPV- or BRS-methods as mark-
ers for hypertensive pregnancy disorders, it is first
necessary to describe these parameters in normal
pregnancy [Voss et al., 2000]. To accommodate
the complexity of autonomic cardiovascular con-
trol, we added parameters of nonlinear dynamics
to conventional linear methods of time and fre-
quency domains. The BP of 27 women with nor-
mal pregnancy and 14 nonpregnant women were
monitored at a high resolution (200 Hz sampling
frequency) using a Portapres for 30 min. The preg-
nant women were divided into groups of “32 or
less” and “greater than 32” weeks of gestation.
Pregnant and nonpregnant women were classified
into subclasses of maternal age of less than 28
years resp. older. Except for two single parame-
ter domains, we found no significant differences in
HRV and BPV for pregnant women with different
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gestational age or different maternal age. More-
over, no significant differences in spontaneous BRS
could be found between pregnant women regard-
less of either their age or gestational age. In con-
trast, all measures of nonlinear dynamics of HRV as
well as all parameter domains of spontaneous BRS
showed significant changes between pregnant and
nonpregnant women, whereas BPV did not differ
between those groups. This complex assessment of
autonomic cardiovascular regulation has shown that
the parameters tested are stable in the second half
of normal pregnancy, and might have the poten-
tial to be excellent indicators of pathophysiologic
conditions.

After having demonstrated the potential of our
methods, we investigated the pathophysiology of
hypertensive pregnancy disorders, which are a lead-
ing cause of perinatal and maternal morbidity and
mortality. The aim of this study [Faber et al., 2004]
was to evaluate, whether HRV, BPV, and BRS dif-
fer between distinct hypertensive pregnancy dis-
orders. Continuous heart rate and blood pressure
recordings were performed in 80 healthy pregnant
women as controls (CON), 19 with chronic hyper-
tension (CH), 18 with pregnancy-induced hyperten-
sion (PIH), and 44 with preeclampsia (PE). The
data were assessed by time and frequency domain
analysis, nonlinear dynamics and BRS. BPV is
markedly altered in all three groups with hyper-
tensive disorders compared to healthy pregnan-
cies, whereby changes were most pronounced in PE
patients. Interestingly, this increase in PE patients
did not lead to elevated spontaneous baroreflex
events, while BPV changes in both other hyper-
tensive groups were paralleled by alterations in
baroreflex parameters. The HRV was unaltered in
CH and PE but significantly impaired in PIH.
We conclude that parameters of HRV, BPV, and
BRS differ between various hypertensive preg-
nancy disorders. Thus, distinct clinical manifesta-
tions of hypertension in pregnancy have different
pathophysiological, regulatory and compensatory
mechanisms.

Nowadays, the estimated prevalence of chronic
hypertension in pregnancy is 3% — more than
100,000 of the pregnant women in the United States
are affected per year. The aim of a further study
[Walther et al., 2005] was to investigate the adap-
tation of autonomic control during pregnancy based
on HRV analysis and to prove whether chronic
hypertension during pregnancy has an impact
on this adaptation. Thirty-five healthy pregnant

women (CON, age: median 28, range [24–30] years)
and 16 chronic hypertensive women (CH, age: 30
[25–33] years) were recruited for this longitudinal
study. Beginning at the 20th week of pregnancy,
the women were monitored every fourth week until
delivery. For the analysis of HRV, Portapres sig-
nals (200 Hz) were recorded for 30 minutes under
resting conditions. Pregnancies with CH had a sig-
nificantly elevated blood pressure compared to con-
trols (CON, 111 mmHg [105–132], CH, 140 mmHg
[132–148], p < 0.001). An increased heart rate
was found in both groups during the second half
of pregnancy. Consequently decreased HRV was
observed but more pronounced in CON. There was
a shift in the frequency bands indicated by an ele-
vation of the low-to-high frequency ratio (LF/HF)
in both groups due to a decrease in HF. VLF
increased exclusively in CON. Our data showed
no significant difference in heart rate variability in
pregnancies with CH and CON. Variations were
detectable longitudinally in normal pregnancies but
also, albeit to a smaller degree, in chronic hyperten-
sive pregnant women. Thus, our data indicate that
patients with long-term hypertension are still able
to respond to physiological changes required during
pregnancy.

Preeclampsia, a serious, pregnancy-specific dis-
order characterized by proteinuria and hyperten-
sion after the 20th week of gestation, is still the
leading cause for maternal and neonatal morbidity
and mortality and occurs in 3–5% of all pregnan-
cies. Since the etiology and causative pathogenetic
factors for this pregnancy complication are still
unknown, an early risk assessment using Doppler
sonography is aimed to improve clinical manage-
ment and outcome. However, the positive predictive
value of Doppler sonography is limited to approxi-
mately 30%, since women with a disturbed uterine
perfusion only partly develop one of the pregnancy
complications as preeclampsia, pregnancy-induced
hypertension (PIH), or intrauterine growth retarda-
tion (IUGR). Therefore, in a recent study [Walther
et al., 2006] we investigated 58 consecutive patients
with uterine perfusion disturbance and 44 paral-
lel recruited normal pregnancies who underwent
a Doppler sonography in the second trimester of
pregnancy (median 21 weeks, range [18–22] weeks)
at the Department of Obstetrics and Gynecology,
University of Leipzig. All pregnancies were single-
ton, and at the time of examination the women
were healthy, normotensive, without clinical signs
of cervical incompetence and on no medication.
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The uterine perfusion was defined as pathological
if there was bilateral notching and/or if the mean
pulsatility index (PI) of both arteries was greater
than 1.45 (using Doppler sonography). After the
Doppler examination, all women underwent non-
invasive continuous blood pressure monitoring via
finger cuff (100 Hz, Portapres device Model 2, BMI-
TNO, Amsterdam, The Netherlands) to analyze
HRV, BPV and BRS. All measurements were per-
formed over 30 minutes under standardized resting
conditions between 8 AM and 12 PM. From the Por-
tapres recordings, time series of beat-to-beat inter-
vals, of systolic as well as diastolic pressure values
were extracted to analyze HRV, BPV and BRS. The
Kruskal-Wallis test was applied to test intergroup
differences of clinical parameters whereas Mann–
Whitney U test was used to group according to
differences in variability parameters. Forward step-
wise linear discriminant analysis with a maximum
of three parameters was used to estimate the group
classification rates. The significance level was set
at p < 0.05. From 102 pregnancies 16 developed
a preeclampsia. Independent of uterine perfusion,
we investigated the general prediction of variabil-
ity parameters for preeclampsia. Stepwise discrim-
inant analysis identified three crucial parameters:
“HF” high frequency in diastolic blood pressure,
the number of tachycardic BRS in a range of 4–
6 ms/mmHg, the normalized very low frequency
component in HRV, which discriminated with a sen-
sitivity of 87.5%, a specificity of 83.7% and a PPA
of 50.0%. However, in the subgroup with abnor-
mal uterine perfusion, the same three parameters

achieved a sensitivity of 93.7%, a specificity of
85.7%, and improved the PPA to 71.4% with a neg-
ative predictive accuracy (NPA) of 97.3% (see also
Fig. 17).

Until now, a lot of effort has been made to
develop a simple and clinically feasible test for early
prediction of preeclampsia. However, previous stud-
ies using one-stage or two-stage doppler sonography,
alone or combined with humoral, endothelial or car-
diovascular parameters, did not achieve sufficient
sensitivity and positive predictive value or were
costly or invasive. Although parameters of HRV and
BPV as well as BRS were initially developed for risk
stratification in cardiology, the field of clinical appli-
cations broadened in recent years and these param-
eters of autonomic cardiovascular control are also
influenced in hypertensive pregnancies disorders.
Therefore, we tested the hypothesis whether this
method is applicable for prediction of preeclamp-
sia, since the preeclampsia-associated endothelial
dysfunction could be recognized early by these
parameters. While the incidence for preeclampsia
in the western population is 3–5% of all pregnancies
and a pathological uterine perfusion in the second
trimester is known to be an indirect sign of an inade-
quate trophoblast but increases the positive predic-
tive accuracy only to 30%, we demonstrate here that
three variability and BRS parameters allowed us to
predict preeclampsia weeks before clinical manifes-
tation with a PPA of 50.0%. Since no other devel-
oped singular method reached higher predictability,
our method consequently has higher PPA than all
described independent humoral factors or singular

Fig. 17. The high frequency in diastolic blood pressure (HF-DBP) versus the week of gestation (WOG). Already at the 20th
WOG there is a significant increase of HF-DBP in patients who later developed preeclampsia (PE).
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measured clinical parameters. But, when combined
with the Doppler sonography of uterine arteries, we
achieve the highest predictive level of all published
noninvasive trials. Especially the high positive pre-
dictive accuracy of 71.4% provides clinical relevance
to detect early pathological arterial stiffness. This
is underlined by the fact that our approach of con-
current measurement of uterine perfusion and vari-
ability parameters is a feasible, inexpensive and
noninvasive one-stop clinical assessment in the sec-
ond trimester. Therefore, the actually most precise
prediction of preeclampsia by concurrent measure-
ment of uterine perfusion and calculation of car-
diovascular beat-to-beat parameters in the second
trimester may promote an early therapeutic strat-
egy to reduce upcoming pathophysiological charac-
teristics of the disease and consequently to prevent
complications with high morbidity and mortality.

3.4. Cardiovascular control
in congestive heart failure

The BRS is an important parameter in the
classification of patients with reduced left ventricu-
lar function. Therefore, the aim of a special study
[Malberg et al., 2002] was to investigate BRS in
patients with dilated cardiomyopathy (DCM) and
in healthy subjects (controls), as well to com-
pare the values of BRS parameters with param-
eters of HRV and BPV. ECG, continuous blood
pressure and respiration curves were recorded for
30 minutes in 27 DCM patients and 27 control
subjects. The Dual Sequence Method (DSM, cf.
paragraph 2.4) includes the analysis of sponta-
neous fluctuations in systolic blood pressure and
the corresponding beat-to-beat intervals of heart
rate to estimate bradycardic, opposite tachycardic
and delayed baroreflex fluctuations. The number of
systolic blood pressure/beat-to-beat interval fluc-
tuations in DCM patients was reduced in compar-
ison with controls (DCM patients: male, 154.4 ±
93.9ms/mmHg; female, 93.7 ± 40.5ms/mmHg;
controls: male, 245.5 ± 112.9 ms/mmHg; female,
150.6± 55.8 ms/mmHg, p < 0.05). The average
slope in DCM patients was lower than in con-
trols (DCM, 5.3 ± 1.9 ms/mmHg; controls, 8.0 ±
5.4 ms/mmHg; p < 0.05). Discriminant function
analysis showed, that in the synchronous range of
the standard sequence method, the DCM and con-
trol groups could be discriminated with only 76%
accuracy, whereas the DSM gave an improved accu-
racy of 84%. The combination of six parameters of

HRV, BPV and DSM gives a classification accuracy
of 96%, whereas six parameters of HRV and BPV
could separate the two groups to only 88% accuracy.
Thus, DSM leads to an improved characterization
of autonomous regulation in order to differentiate
between DCM patients and healthy subjects. We
found, that BRS in DCM patients is significantly
reduced and apparently less effective.

New methods for the analysis of arrhyth-
mias and their hemodynamic consequences have
been applied in risk stratification, in particular to
patients after myocardial infarction [Schmidt et al.,
1999b]. However, the relation to cardiovascular vari-
ability parameters was unclear. Therefore, we con-
ducted a study [Malberg et al., 2003; Malberg
et al., 2004] in which we investigated the suitabil-
ity of short-term heart rate turbulence (HRT) anal-
ysis in comparison to HRV and BPV as well as
BRS analyses to characterize the regulatory differ-
ences between patients with DCM and healthy con-
trols. In this study, 30 minutes’ data of noninvasive
continuous blood pressure and ECGs of 37 DCM
patients and 167 controls measured under standard
resting conditions were analyzed. The results show
highly significant differences between DCM patients
and controls in heart rate and blood pressure vari-
ability as well as in baroreceptor sensitivity parame-
ters. Applying a combined heart rate-blood pressure
trigger, ventricular premature beats were detected
in 24.3% (9) of the DCM patients and 11.3% (19)
of the controls. This fact demonstrates the limited
applicability of short-term HRT analyses. However,
the HRT parameters exhibited significant differ-
ences in this subgroup with ventricular premature
beats (turbulence onset: DCM: 1.80 ± 2.72, con-
trols: −4.34 ± 3.10, p < 0.001; turbulence slope:
DCM: 6.75 ± 5.50, controls: 21.30 ± 17.72, p =
0.021). Considering all (including HRT) parameters
in the subgroup with ventricular beats, a discrimi-
nation rate between DCM patients and controls of
88.0% was obtained (max. 6 parameters). The cor-
responding value obtained for the total group was
86.3% (without HRT parameters). Although, pre-
mature beats were excluded before HRV analysis,
the highest correlation of HRT to HRV parame-
ters was 0.94 in controls and 0.87 in DCM patients.
The results of this study indicated that HRV and
HRT have at least the same prognostic value but
HRV parameters have a significantly higher appli-
cability. Moreover, we already showed in 1998 [Voss
et al., 1998] that the predictive value of HRV using
sophisticated parameters is significantly higher than
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the HRV index alone. We therefore think that the
HRV parameters with the optimal predictive values
as well as other ECG-based risk stratifiers should
be retrospectively determined and then compared
to HRT measurements. Our observations [Wessel
et al., 2004c] cast doubt on the conclusion of Barthel
et al. [2003] that HRT is the strongest ECG-based
risk predictor.

In a “news and views” article of NATURE
in 2002 Dante R. Chialvo [2002] has reported a
new and promising approach by Madalena Costa
et al. [2002] to distinguish healthy hearts from those
suffering congestive heart failure (CHF) or atrial
fibrillation (AF). The problem behind this is a sub-
ject of various attempts to characterize complex
dynamics, such as consecutive beat-to-beat inter-
vals of the heart. Costa et al. [2002] used the multi-
scale entropy MSE (cf. Sec. 2.3.6) which estimates
the average uncertainty of such intervals; in other
words MSE measures how strong the next beat-
to-beat interval will surprise us on average. Costa
et al. [2002] showed that the heart-beat time series
of healthy people asymptotically approaches a con-
stant value of entropy as the measurement scale is
increased, whereas heart beats of diseased hearts
show a departure from this “constancy of surprise”.
They mainly conclude that healthy and patho-
logic groups can be consistently differentiated using
MSE, while conventional algorithms fail. We would
like to point out two major weaknesses of this study:
Firstly, the age of the patients and the healthy
subjects they considered is significantly different,
and this is similar as to compare apples and oranges.
Secondly, in contrast to their main statement, we
show here that already a rather simple measure of
complexity from symbolic dynamics [Kurths et al.,
1995] is able to discriminate clearly between the
CHF patients and even age-matched healthy sub-
jects. Hence, no sophisticated techniques such as the
MSE are necessary. We can concentrate in this tuto-
rial on CHF patients because subjects with AF are
characterized by a very broad sail-shaped beat-to-
beat interval distribution, which is easily detectable
by the standard deviation or the histogram [Tateno
& Glass, 2001] of the original signal.
(i) Age dependence: It is well-known in cardiology
that HRV strongly depends on the age of the sub-
jects; younger individuals have a significantly higher
HRV than elderly ones [Weisfeldt et al., 1992]. Fig-
ure 1 of [Chialvo, 2002] or Fig. 3 of [Costa et al.,
2002] show that it is easy to discriminate between
healthy and CHF patients by means of their entropy

Fig. 18. Multiscale entropy values for the patients analyzed
in [Costa et al., 2002] by combining their Figs. 3 and 4.

measure. Additionally, Fig. 4 of [Costa et al., 2002]
demonstrates that it is also possible to distinguish
clearly between young and elderly volunteers. Sim-
ply combining Figs. 3 and 4 of [Costa et al., 2002] it
immediately becomes clear that CHF patients and
the elderly volunteers have approximately the same
entropy values (cf. Fig. 18). Surprisingly, Costa
et al. [2002] did not compare elderly healthy with
elderly CHF groups, but compared young healthy
subjects (32 ± 6 years) with elderly CHF patients
(56 ± 11 years [Goldberger et al., 2000]). This is
indeed as to compare apples and oranges. So it
can only be concluded from their analysis that the
younger healthy heart surprises more on all scales
than the elderly sick heart and, additionally, as the
elderly healthy heart!

(ii) Simple discrimination method: Moreover,
Chialvo [2002] stated that other approaches fail
to detect such differences found in [Costa et al.,
2002]. Next, we demonstrate that for discriminat-
ing healthy subjects from CHF patients no sophis-
ticated multiscale entropy measure is necessary.
We analyze the data of 15 CHF patients (11
male, 4 female, age: 56 ± 11) and the 24h time
series of 18 young healthy persons (13 female, 5
male, age: 34 ± 8) available from Physionet [Gold-
berger et al., 2000]. To go beyond the apples and
oranges comparison above, we additionally con-
sider the beat-to-beat intervals of 15 healthy elderly
subjects (11 male, 4 male, age: 56 ± 5). Three
time series from the CHF group had more than
10% ectopy and were inserted into a CHF sub-
group (CHF > 10%). After preprocessing, stan-
dard time and frequency domain parameters were
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calculated from the time series. These parameters
are based on linear techniques and statistically
characterize HRV. To classify additionally dynam-
ical changes, we use only one measure based on
the concept of symbolic dynamics which has been
recently successfully applied to other cardiologi-
cal problems [Kurths et al., 1995; Wessel et al.,
2000c]. The main finding in discriminating young
healthy from CHF patients is that there are enor-
mous discrepancies in heart rate regulation between
both groups. Hence, almost all standard parame-
ters already show highly significant differences. The
best univariate parameter, we have found, is the
simple measure POLVAR20 (cf. Eq. (10) in Chap-
ter 2) based on symbolic dynamics [Wessel et al.,
2000c], which detects intermittently decreased HRV
(CHF: 0.68–0.90 inter-quartile range — IQR, young
healthy: 0.05–0.13 IQR, p < 10−8, Mann–Whitney
U-Test) and completely discriminates the young
healthy and the CHF group. POLVAR20 charac-
terizes short phases of low variability from succes-
sive symbols of a simple alphabet, consisting of only
the symbols “0” and “1”. The elderly healthy per-
sons show intermediate POLVAR20 values (0.21–
0.42 IQR) which are significantly different to those
of the younger healthy group (p < 10−4) as well
as different from the CHF patients (p < 10−5).
Plotting POLVAR20 versus the age of the investi-
gated subjects demonstrates that the age-matched
elderly healthy can be separated almost completely
from the CHF group (Fig. 19; 93% correctly classi-
fied for a cut-off of 0.5). Summarizing, the healthy
heart surprises more than the sick heart. However,
the level of surprise coming from a healthy heart
decreases with age.

Finally, a correlation analysis between MSE
and linear as well as nonlinear HRV parameters
was performed. For all scales, high correlations
between several HRV parameters and multiscale
entropy were found. The closest connection, how-
ever, was found for MSE and the Shannon-entropy
of the histogram (r > 0.8 for all scales) demonstrat-
ing that MSE measures the degree of randomness
very similar to the simple Shannon-entropy. A com-
ment, correcting the work of Costa et al. [2002], was
published in Physical Review Letters [Wessel et al.,
2003].1

For HRV data it is well known that a metro-
nomic heart rate is pathological; the healthy heart is
influenced by multiple neural and hormonal factors

1NATURE however, declined a publication of the above contribution.

Fig. 19. Multiscale entropy values for the patients analyzed
in [Costa et al., 2002] by combining their Figs. 3 and 4.

that result in variations in RR-intervals. Even after
three decades of study, new techniques continue to
reveal properties of the time series of RR-intervals.
Approximately one decade ago, first papers were
published suggesting the fractal dimension [Osaka
et al., 1993; Yamamoto & Hughson, 1994b] as a
promising measure for HRV data. For this reason,
we applied this method to a group of 55 patients
with dilated cardiomyopathy (DCM) and 55 healthy
subjects as controls [Carvajal et al., 2005]. The 24-h
RR time series for each subject was divided into seg-
ments of 10,000 beats to determine the correlation
dimension (CD) per segment. A study of the influ-
ence of the time delay (lag) in the calculation of
CD was performed. Good discrimination between
both groups (p < 0.005) was obtained with lag val-
ues of 5 or greater. CD values of DCM patients
(8.4 ± 1.9) were significantly lower than CD values
for controls (9.5 ± 1.9). An analysis of CD values
of HRV showed that for healthy people, CD night
values (10.6 ± 1.8) were significantly greater than
CD day values (9.2 ± 1.9), revealing a circadian
rhythm. In DCM patients, this circadian rhythm
was lost and there were no differences between CD
values in day (8.8 ± 2.4) and night (8.9 ± 2.1).
One problem we recognized in our first analysis
was to find a scaling region for HRV data to calcu-
late the correlation dimension and to avoid pitfalls.
Therefore, we developed a new method to solve this
problem. The large-scale dimension density (LAS-
DID, cf. Sec. 2.3.5) is estimated from the time
series using a normalized Grassberger–Procaccia
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algorithm, which leads to a suitable correction of
systematic errors produced by boundary effects in
the rather large scales of a system. In this way,
it is possible to analyze very short and nonsta-
tionary data, such as HRV. Moreover, this method
allows us to analyze short parts of the data and
to look for differences between day and night.
In a recent paper, we reanalyzed the HRV data
from the 2002 Computers in Cardiology Challenge
(http://www.physionet.org/challenge/2002/) using
the concept of LASDID and additionally applied
this technique to data of healthy persons and of
patients with cardiac diseases [Raab et al., 2005;
Raab et al., 2006]. The circadian changes in the
dimension density enabled us to distinguish almost
completely between real data and computer gener-
ated data from Computers in Cardiology 2002 chal-
lenge using only one parameter. Furthermore, we
analyzed the data of 15 patients with atrial fib-
rillation (AF), 15 patients with congestive heart
failure (CHF), 15 elderly healthy subjects (EH)
as well as 18 young and healthy persons (YH).
With our method we were able to separate com-
pletely the AF (LASDID: 0.97 ± 0.02) group from
the others and, especially during daytime, the CHF
patients show significant differences to the young
and elderly healthy volunteers (CHF: 0.65 ± 0.13,
EH: 0.54 ± 0.05, YH: 0.57 ± 0.05, p < 0.05 for
both comparisons). Moreover, for the CHF patients
we found no circadian changes in LASDID (day:
0.65 ± 0.13, night: 0.66 ± 0.12, n.s.) in contrast to
healthy controls (day: 0.57±0.05, night: 0.67±0.07,
p = 0.00004). To the best of our knowledge, this
is the first method which involves just one sin-
gle parameter to accurately distinguish the consid-
ered groups from the 2002 Computers in Cardiology
Challenge. Using the concept of large scale dimen-
sion densities, for the first time, a nearly per-
fect classification was performed. Finally, the
application to data of different cardiac diseases
demonstrated the quality of being appropriate for
clinical use.2

The main intention of a recent contribution
[Wessel et al., 2006] was to test the hypothesis that
nonlinear autoregressive model-based data analysis
based on short-term heart rate variability improves
the results of risk stratification. For this purpose, a
nonlinear regression approach (cf. Sec. 2.6), namely,
the maximal correlation method was applied to the
data of 37 patients with dilated cardiomyopathy as

2Our contribution was the winning paper of the Computers in Cardiology Challenge 2005.

well as of 37 age- and sex-matched healthy subjects.
For simplicity reasons, we started with a linear
autoregressive model of order k given in Eq. (46).

Xj =
k∑

i=1

ai · Xj−i + η. (46)

For different model orders k up to 10, linear autore-
gressive modeling was performed. The model coef-
ficients themselves were considered as parameters
for discrimination between DCM and controls. The
model coefficients however, were significant only
up to order 2 (results not shown here). The resid-
ual variance η was significantly lower in the DCM
group, certainly caused by the lower HRV in this
group. The absolute values of the coefficients a1 and
a2 were higher for the controls, indicating a higher
dependence from the two predecessors for healthy
subjects. Based on the findings from linear autore-
gressive modeling, a nonlinear additive autoregres-
sive (NAAR)-model of order 2

Xj = φ1(Xj−1) + φ2(Xj−2) + η, j = 3, . . . , n
(47)

was investigated. For simplicity reasons, the left-
hand side of Eq. (47) was set to the identity and we
were interested in estimating the functional depen-
dence of Xj on its two predecessors. Therefore, the
maximal correlation method was used to estimate
the possibly nonlinear dependencies (as optimal
transformations) nonparametrically. To quantify
these relations, a third order polynomial fitting
of the optimal transformations was performed (cf.
Fig. 20). The fitting coefficients themselves (from
Eq. (48)) were considered as the parameters in car-
diac diagnostics. Using higher orders for polynomial
fitting turned out not to be useful in this study.

Xj = a1 · X3
j−1 + a2 · X2

j−1 + a3 · Xj−1 + a4

+ b1 · X3
j−2 + b2 · X2

j−2 + b3 · Xj−2 + b4

j = 3, . . . , n. (48)

Figure 20 visualizes the polynomial fitting of
φ1 and φ2 from Eq. (47) based on group aver-
ages. While the optimal transformations φ1 are sim-
ilar for the DCM and the control group (except
the small difference at larger beat-to-beat inter-
vals), the behavior of φ2 is totally different in both
groups. The coefficients b1 and b2, which represent
the quadratic and the cubic parts of the fitting and
are, therefore, lower than b3 and b4, are both higher
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Fig. 20. Averaged polynomials of the optimal transformations φ1 and φ2 for the DCM (dashed line) as well as for the control
group (solid line). (BBI beat-to-beat interval.)

in absolute value for the DCM subjects (data not
shown here) and lead to more oscillating behavior
of the fitting for this group. The coefficient b3, rep-
resenting the linear part of the fitting, is b3 = 0.045
for the control subjects and, hence, higher than
b3 = −0.61 for the DCM group. This means that
we have a linear tendency for a slight increase of φ2

with increasing beat-to-beat interval, whereas, the
DCM group exhibits a clear decrease. The dominant
part for the discrimination of both groups, however,
is the quadratic term b2 which is extremely higher
in the DCM group. Thus, for the interpretation of
these results all fitting coefficients have to be con-
sidered together.

We found that this approach is a powerful tool
in discriminating cardiac patients from healthy con-
trols — one model parameter discriminates best in
comparison to all other parameters in this study —
and promising for further model-based analyses.

3.5. Autonomic control after
cardiac surgery

Impairment of the baroreceptor reflex activity
reflects an alteration of the autonomous regula-
tion of the cardiovascular system and has proven
to precede fatal outcome in patients after acute
myocardial infarction. For that reason, a pilot

study was performed [Bauernschmitt et al., 2004] to
analyze baroreceptor sensitivity, heart rate variabil-
ity and blood pressure variability in patients early
after coronary surgery. 25 male patients undergo-
ing coronary artery bypass surgery were examined;
normal values were obtained from healthy volun-
teers. Arterial pressure signals were recorded from a
radial artery catheter for 30 minutes preoperatively
and in short intervals after surgery. Mechanical
manipulations and pharmacological interventions
were avoided during the sampling periods. Barore-
flex function was calculated according to the Dual
Sequence Method, heart rate variability and blood
pressure variability were calculated including non-
linear methods. Initial values of the patients did
not differ from healthy volunteers. The strength
of baroreflex sensitivity (increases of blood pres-
sure causing a synchronous decrease of heart rate)
is low 2 hours postoperatively. The number of
delayed tachycardic changes of heart rate, which are
caused by sympathetic activation, is only moder-
ately reduced when compared to values obtained
from healthy volunteers. Heart rate variability is
widely unchanged as compared to preoperative val-
ues; blood pressure variability showed an increase
of low-frequency components, again indicating sym-
pathetic predominance. Nonlinear analyses revealed
reduced system complexity at the beginning of the



3358 N. Wessel et al.

postoperative course. Obviously, there is a vagal
suppression 20 hours after surgery, while the sym-
pathetic tonus works in a normal range. This
unbalanced interaction of the autonomous system
is similar to findings in patients after myocardial
infarction. The predictive value of these markers has
to be elucidated in further clinical studies.

An important problem is that atrial fibrillation
(AF) occurs in 20–40% of patients after open heart
surgery, leading to increased morbidity and pro-
longed hospital stay. Earlier studies have demon-
strated, that depressed baroreflex function predicts
mortality and major arrhythmic events in patients
surviving myocardial infarction. Cardiac surgery
per se leads to decreased BRS and HRV, so the
aim of the present study [Bauernschmitt et al.,
2007] was to analyze the impact of the cardiovas-
cular autonomous system on the development of
post surgical AF. Fifty-one consecutively included
patients undergoing aortic valve replacement, coro-
nary artery bypass surgery or combined procedures
were included. Noninvasive blood pressure and ECG
were recorded the day before and 24h after surgery.
BRS, HRV and nonlinear dynamics were calcu-
lated using standard methods. Eighteen patients
developed AF during the first postoperative week,
while 33 remained in sinus rhythm throughout the
observation period. Patients with postoperative AF
showed a significantly reduced bradycardic BRS
prior to surgery. In both groups, surgery caused a
decrease of BRS and HRV. Analysis of nonlinear
dynamics revealed a tendency towards decreased
system complexity caused by the operation; this
trend was more pronounced in patients remaining in
sinus rhythm. Patients experiencing postoperative
AF obviously suffer from impaired baroreflex sensi-
tivity present already before surgery. These findings
may be used to guide prophylactic antiarrhythmic
therapy.

3.6. Cardiovascular control in
animal models

HRV is a relevant predictor of cardiovascular risk in
humans. A significant genetic influence on HRV is
suggested [Kupper et al., 2004], although the genes
involved are ill-defined. The Mas-protooncogene
encodes a G-protein-coupled receptor with seven
transmembrane domains highly expressed in testis
and brain. Since this receptor is supposed to inter-
act with the signaling of angiotensin II, which is an
important regulator of cardiovascular homeostasis,

heart rate and blood pressure were analyzed in
Mas-deficient mice. Using a femoral catheter the
blood pressure of mice was measured for a period
of 30 minutes and 250 data values per second were
recorded. The mean values and range of heart rate
and blood pressure were then calculated. Neither
heart rate nor blood pressure were significantly dif-
ferent between knockout mice and controls. How-
ever, high resolution recording of these parameters
and analysis of the data by nonlinear dynamics
revealed significant alterations in cardiovascular
variability in Mas-deficient animals. In particular,
females showed a strong reduction of HRV. Further-
more, the data showed an increased sympathetic
tone in knockout animals of both genders. The
marked alterations detected in Mas-deficient mice of
both genders suggest that the Mas-protooncogene is
an important determinant of heart rate and blood
pressure variability.

The analysis of the cardiac autonomic regu-
lation in patients with familiar hypertrophic car-
diomyopathy (FHC) revealed controversial results.
In order to investigate the role of autonomic dys-
function in the pathogenesis of FHC, transgenic
rats overexpressing either disease causing mutation
Asp175Asn or Glu180Gly in a-tropomyosin (TPM1)
were studied here for changes in hemodynamic
parameters and baroreflex regulation in compar-
ison to transgenic and nontransgenic controls by
telemetry [Wernicke et al., 2007]. HRV and BPV
were analyzed using time- and frequency domain,
as well as nonlinear measures. The Dual Sequence
Method was used for the estimation of the spon-
taneous baroreflex regulation. In transgenic rats
with either TPM1 mutation, changes in cardiac
autonomic control were detected during exercise,
but not at rest. In transgenic rats carrying muta-
tion Asp175Asn reduced total HRV was observed
based on the determination of RMSSD (p < 0.01).
In comparison, animals with mutation Glu180Gly
demonstrated increased sympathetic nervous activ-
ity, as evidenced by a ten-fold elevation of the low
frequency component and an increased low/high
frequency component ratio (p < 0.01). In animals
with either TPM1 mutation, a strong increase in
baroreflex activity was observed to keep blood pres-
sure and BPV parameters normal. While barore-
flex slopes remained unchanged, the frequency of
bradycardic and tachycardic fluctuations was ele-
vated 1.5-fold and 4.0-fold in rats carrying muta-
tion Asp175Asn and Glu180Gly, respectively (p <
0.001). Therefore, individual mutations in TPM1
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differently affect cardiac autonomic regulation. The
analysis of cardiac autonomic control, particularly
of baroreflex regulation, might represent a noninva-
sive approach for early diagnosis and the assessment
of the clinical course of FHC.

3.7. Heritability of heart rate
variability

We tested the hypothesis, that genes have an
influence on HRV [Voss et al., 1996a]. This
genetic influence was assessed in 62 twin pairs (30
monozygotic — MZ, 32 dizygotic — DZ). From all
twins, long-term electrocardiographic records were
obtained, edited, and analyzed. HRV analysis was
performed on the basis of parameters from time-
domain, frequency-domain, and nonlinear dynam-
ics. First, the parameter distances between the
two twins of a pair and between one of the two
and a third randomly selected person of another
age-matched twin pair (ST1) were compared. Sec-
ond, the parameter distances between the two
twins and the averaged parameter distances of
these two twins to all other age-matched persons
(ST2) were compared. Finally, the averaged dif-
ferences in parameter values between monozygotic
and dizygotic age-matched twin pairs were com-
pared. For statistical analysis, the nonparametric
Wilcoxon’s matched-pair signed rank test and para-
metric t-test for paired samples were applied. We
find that twin pairs show a significant lower dif-
ference in parameter values than other randomly
selected and age-matched couples (p < 0.001 in ST1
and ST2). This reflects a considerable familial influ-
ence. Most parameters of the time-domain, none
of the frequency-domain, and half of the nonlinear
dynamics show significant differences between twin
pairs and nontwin pairs. As a result of the com-
parison between monozygotic and dizygotic twin
pairs, a significant lower parameter difference in
the monozygotic pairs (p < 0.05) is found. These
results suggest that there is a genetic component in
heart rate generation and HRV, in addition to fam-
ily environmental influences. Analysis of HRV might
become a useful method in phenotyping severe
genetic changes in cardiovascular diseases.

Decreased HRV is associated with congestive
heart failure, post-myocardial infarction, ventricu-
lar arrhythmias, sudden cardiac death, and advanc-
ing age. A deletion/insertion polymorphism in the
angiotensin-converting enzyme gene and a substi-
tution (M235T) in the angiotensinogen gene have

been associated with risk for heart disease. The aim
of our study [Busjahn et al., 1998] was to determine
the heritability of HRV and related parameters
in monozygotic and dizygotic twins and to assess
the influence of angiotensin-converting enzyme and
angiotensinogen polymorphisms. We studied 95 MZ
pairs and 46 DZ pairs. We measured HRV and
related parameters, angiotensin-converting enzyme
and angiotensinogen levels, plasma norepinephrine,
angiotensin-converting enzyme, and angiotensino-
gen genotypes. We found that HRV and related
parameters were significantly influenced by genetic
variability, although nonshared genetic effects were
also important. Angiotensinogen and plasma nore-
pinephrine were generally correlated with decreased
HRV, whereas angiotensin-converting enzyme was
correlated with perturbations of normal rhythmic
HRV. Nevertheless, the DD angiotensin-converting
enzyme genotype was associated with increased
HRV (p < 0.05), whereas angiotensinogen polymor-
phisms had no effect. We conclude that HRV and
related parameters are in part heritable. Interest-
ingly, the DD angiotensin-converting enzyme geno-
type is associated with increased HRV.

3.8. Further applications

Approximate Entropy (ApEn, cf. Sec. 2.3.6) as a
measure of randomness provides some interesting
information on abnormalities in heart rate behav-
ior in relation to cardiac disorders. Decreased ApEn
values of heart beat fluctuations have been found to
precede spontaneous episodes of atrial fibrillation
(AF) in patients without structural heart disease
[Vikman et al., 1999]. In this study, a progres-
sive decrease in ApEn, indicating reduced complex-
ity of heart rate dynamics, was observed before
the onset of AF episodes. Furthermore, the val-
ues of ApEn before the onset of AF were lower
compared with the values obtained from matched
healthy control subjects. In a more recent study
[Vikman et al., 2005] these results could be con-
firmed, however a more predictive parameter for AF
was found: the turbulence onset (TO). TO was sig-
nificantly less negative during the 1 h preceding AF
than during the non-AF hours (0.71 ± 1.76 versus
−0.35±1.46, p < 0.00001). Less negative TO before
AF was observed among both, patients with struc-
tural heart disease (1.16 ± 1.73 versus 0.07 ± 1.23;
p < 0.0001) and patients with lone AF (0.17 ± 1.67
versus −0.85± 1.56; p < 0.0001). No significant dif-
ference was seen in the turbulence slope between
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the AF and control, and none of the traditional
frequency and time domain measures differenti-
ated between both; ApEn was significantly lower
before AF than during the non-AF hours (p < 0.01).
Increased predictability in heart rate behavior, mea-
sured by ApEn, also has been reported to precede
spontaneous episodes of ApEn after coronary artery
bypass surgery [Hogue, Jr. et al., 1998] Analysis of
HRV in this study was performed in three sequen-
tial 20-minute intervals preceding the onset of post-
operative AF (24 episodes in 18 patients). These
data were compared with corresponding intervals in
18 sex- and age-matched postoperative control sub-
jects who did not develop AF. The authors could
show that increased heart rate and decreased ApEn
were independently associated with AF. We have
to note here, that we are able to detect patients
with high risk for postoperative AF already at
the preoperative state using baroreflex sensitivity
measurements (see [Bauernschmitt et al., 2007]).
Although reduced complexity in heart dynamics has
been associated with postoperative complications
after vascular surgery [Fleisher et al., 1993], there
is no clear evidence that the changes in complex-
ity of heart rate behavior are related to the risk
for death. However, recent data [Perkiomaki et al.,
2003] suggest that increased temporal complexity of
repolarization predicts mortality in high risk ICD
patients with decreased left ventricular function.
ApEn also appears to have broad application to
hormone pulsatility analysis within endocrinology
[Pincus, 2000], bringing a new perspective to the
assessment of secretory patterns. ApEn seems to
be complementary to pulse detection algorithms
widely employed to evaluate hormone secretion
time-series. Pincus states, that ApEn is applicable
to systems with at least 50 data points and to broad
classes of models: It can be applied to discriminate
both general classes of correlated stochastic pro-
cesses, as well as noisy deterministic systems. Sam-
ple Entropy (SampEn) as a refined ApEn measure
was applied to a dense array electroencephalogram
signals [Ramanand et al., 2004]. The objective of
this study was to gain insight into complexity vari-
ations related to changing brain dynamics for elec-
troencephalogram recorded from the three cases of
passive, eyes closed condition, a mental arithmetic
task and the same mental task carried out after a
physical exertion task. It is observed that SampEn
is a robust quantifier of complexity suited for short
physiological signals such as the electroencephalo-
gram and it points to the specific brain regions

that exhibit lowered complexity during the mental
task state as compared to a passive, relaxed state.
In the case of mental tasks carried out before and
after the performance of a physical exercise, Sam-
pAn can detect the variations brought in by the
intermediate fatigue inducing exercise period. This
enhances its utility in detecting subtle changes in
the brain state that can find wider scope for appli-
cations in electroencephalogram based brain stud-
ies. Further studies showed applications of SampEn
for heart rate recovery after exercise [Javorka et al.,
2002], for heart rate dynamics in schizophrenic sub-
jects [Kim et al., 2004] as well as the quantifi-
cation of neonatal heart rate before the clinical
diagnosis of sepsis [Cao et al., 2004]. Occasion-
ally, traditional complexity measure have yielded
contradictory findings when applied to real-world
datasets obtained in health and disease states. The
multiscale entropy (MSE) method [Costa et al.,
2002, 2005] was suggested to overcome these con-
tradictions. The authors applied the MSE methods
to the fluctuations of the human heartbeat under
physiologic and pathologic conditions. The method
consistently indicates a loss of complexity with
aging, with an erratic cardiac arrhythmia (atrial
fibrillation), and with a life-threatening syndrome
(congestive heart failure). Further, these different
conditions have distinct MSE curve profiles, sug-
gesting diagnostic uses. The authors conclude a gen-
eral “complexity-loss” theory of aging and disease.
Moreover, they applied the MSE method to the
analysis of coding and noncoding DNA sequences
and find that the latter have higher MSE, consis-
tent with the emerging view that so-called “junk
DNA” sequences contain important biological infor-
mation. However, detrended fluctuation analysis
also reveals a loss of heart rate dynamics in patients
with heart failure. Altered fractal correlation prop-
erties have been associated with mortality in heart
failure patients [Ho et al., 1997]. The investigation
of a relatively large population with CHF suggests
that reduced short-term scaling exponent is closely
related to the risk of mortality [Makikallio et al.,
2001a]. The short-term scaling exponent also has
been suggested to be a specific risk marker of car-
diac death in the elderly [Makikallio et al., 2001b].
As with ApEn, altered short-term fractal-like scal-
ing properties of HRV have been observed to pre-
cede the spontaneous onset of AF among patients
without a structural heart disease [Vikman et al.,
1999]. Moreover, the short-term scaling exponent
has been shown to change towards more random
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directions in ectopic tachycardia reflecting distur-
bances in autonomic regulation or in ectopic atrial
pacemakers per se [Huikuri et al., 1999]. Using the
Poincaré plot technique HRV was compared in 30
subjects receiving external Qi therapy (EQT) or
placebo control therapy, in a crossover design exper-
iment [Lee et al., 2005]. Subjects who received the
EQT reported more pleasant and calm emotions
than did the placebo group. Qi therapy reduced
the heart rate and increased HRV as indicated by a
reduced low frequency/high frequency power ratio
of HRV. The Poincaré plot index of HRV and
approximate entropy was greater in the EQT group
than in the control group. These findings suggest
that EQT stabilizes the sympathovagal function
and cardiac autonomic nervous system by inducing
more positive emotions than the placebo therapy.
In conclusion, EQT may act by stabilizing both the
autonomic nervous system and the emotional state.
The latter study demonstrated the great opportu-
nity for traditional Chinese therapy for the human
cardiovascular system.

Another important issue is the impact of res-
piration, especially the breathing pattern variabil-
ity. In [Bien et al., 2004] it was tested whether
it can serve as a potential weaning predictor
for postoperative patients recovering from sys-
temic inflammatory response syndrome. Seventy-
eight mechanically ventilated patients who had
undergone abdominal surgery were included when
they were ready for weaning. They were divided into
success (n = 57) and failure (n = 21) groups based
upon their weaning outcome. Successful weaning
was defined as patients free from the ventilator
for over 48 h, whereas a weaning failure was con-
sidered as reinstitution of mechanical ventilation
within 48 h of extubation. Poincaré plot param-
eters in the failure group were significantly lower
than those in the success group. The author con-
cluded, that small breathing pattern variability is
associated with a high incidence of weaning fail-
ure in postoperative patients with such a disease,
and this variability may potentially serve as a wean-
ing predictor. The important impact of respiration
to cardiovascular regulation is summarized in the
following review [Bernardi et al., 2005]. Therein it
is stated, that respiration is a powerful modulator
of HRV, and of baro- or chemoreflex sensitivity.
This regulation occurs via a mechanical effect of
breathing by synchronizing all cardiovascular vari-
ables at the respiratory rhythm (cf. also [Schafer
et al., 1998]), particularly at a slow rate coincident

with the Mayer waves in arterial pressure (approxi-
mately 6 cycles/min). The authors could show that
slow breathing increases baroreflex sensitivity and
reduces chemoreflex sensitivity, leading to increased
parasympathetic and reduced sympathetic activity.
The opposite can be seen during mental stress tests.
Thus, appropriate modulation of breathing, can
improve/restore autonomic control of cardiovascu-
lar and respiratory systems in relevant diseases such
as hypertension and heart failure, and might there-
fore help improve exercise tolerance, quality of life,
and ultimately, survival.

4. Conclusion and Outlook

Allegorically, the human heart may be compared
with the engine of a car — both make bodies move.
Although unnoticed, the healthy heart continuously
provides oxygen supply. However, by doing so, it
beats irregularly in contrast to the regular work
of a car engine. The intervals between heart beats
widely fluctuate and the diagnostic value of this
complex variability has been an important challenge
for physicians, biologists and, more recently, also
for physicists. During the last decades it was shown
that tools from linear system theory can provide
valuable information. More recently, tools from non-
linear dynamics substantially improved the diag-
nostic value beyond that achieved by using solely
linear parameters. However, there are still impor-
tant challenges in understanding the dynamics of
diseases intimately linked to the challenge of dis-
covering the general principles that govern complex
biological processes. Despite statistical data sug-
gesting the predictive power of various cardiovascu-
lar indexes, none of these methods is in widespread
clinical use at the moment. Therefore, more clini-
cal studies using new and traditional methods are
needed, before a clinical applicability can be defi-
nitely established.

Cardiovascular diseases are the main cause of
death in western industrialized countries. With
regard to recent social developments, there is an
extraordinary demand for new computer-controlled
diagnostic techniques to obtain a differentiated pic-
ture of the possibly damaged heart and to develop
new biomedical devices for risk stratification. Car-
diovascular variability analyses as well as body
surface potential mapping and cardiac magnetic
field mapping represent diagnostic tools which have
recently made substantial progress. All methods try
to identify new physiological information which may
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be used for diagnostics, prognosis and risk stratifica-
tion, for clinical treatment and for pharmacologic or
genetic research. One basic issue in all cardiovascu-
lar variability studies is the choice of a suitable mea-
suring technique and the connected processing unit.
A task force on HRV for the achievement of com-
parable results was established in 1996 [Task Force
Heart Rate Variability, 1996]. The created guide-
lines became generally accepted, however, they suf-
fer from three major limitations:
(i) The first limitation is that a 100 Hz sampling rate
is sufficient. This is not true. We have shown [Voss
et al., 1996c] that especially for high risk patients
the relative error due to low sampling rate amounts
to 15%. We propose a sampling frequency of at least
500 Hz [Malberg & Wessel, 2006].

(ii) The second limitation is the recommendation
for manual editing of the beat-to-beat time series.
The task force states, that automatic filters which
exclude some intervals from the original sequence
(e.g. the 20% rule) should not replace manual edit-
ing “as they are known to behave unsatisfactorily
and to have undesirable effects leading potentially
to errors” [Task Force Heart Rate Variability, 1996].
In our experience, the manual editing of the time
series produces even more serious errors. Using
a sophisticated preprocessing algorithm, it is now
possible to analyze automatically large HRV data
bases with big success (cf. [Voss et al., 1998]). How-
ever, obviously even sophisticated algorithms may
produce errors and cannot compete with an experi-
enced observer.

(iii) The third limitation is that no recommenda-
tions for nonlinear analyses are given. This tutorial
gives an overview of linear as well as nonlinear
methods, compares them and can therefore serve
as a reference especially for nonlinear analyses.
These nonlinear methods can lead to a substantial
improvement of reliable diagnostics, because they
are better suited to characterize the inherent non-
linear regulation. We have shown that a combina-
tion of linear and nonlinear approaches leads to a
significantly improved classification rate.

In addition to the HRV analysis, lately mor-
phologic ECG parameters were established. There-
fore, we expect that the combination of methods
introduced in this tutorial with parameters of the
T-wave and of the QT-time will improve the classi-
fication rates in risk stratification. Today, the devel-
opment of ECG techniques undergoes a renaissance

with fast technological progress. In the future, long-
term Holter ECGs have to include more and more
nonlinear variability, morphologic ECG as well as
coupling parameters (e.g. cardiorespiratory syn-
chronization). Knowledge based systems will help
to assign sophisticated parameters to physiological
phenomena enabling automatic text generation for
medical diagnostics. Moreover, automatic analyses
of cardiovascular regulation in relation to physical
activity and circadian variability will be possible.
A further approach, which could be implemented
in new devices, is the HRT method analyzing only
ventricular premature beats and the behavior of
the surrounding normal beats. This method should
have significantly extended the variability analy-
sis in myocardial infarction patients. However, we
could show that in combination with linear and
nonlinear methods a diagnostic increase can hardly
be reached. Analyzing the variability of the sys-
tolic and diastolic blood pressure is a supplementary
approach of cardiovascular characterization. With
regard to clinical use, this is a relatively complex
and expensive procedure applied only in research
hospitals except from invasive measurements in
intensive care units. Applying similar parameters
as for HRV analyses, independent diagnostic infor-
mation could be won. The analysis of the sponta-
neous BRS in research is an established and mean-
ingful procedure for the analysis of cardiovascular
regulation. This method investigates the heart rate
reflex from instinctive blood pressure changes. If
this reflex arises frequently and sufficiently strong
it can serve as a diagnostic and prognostic positive
indicator. Despite its enormous diagnostic power,
the spontaneous BRS analysis could not yet be
established routinely. The problem for clinical appli-
cation of this method is again the high expense
for a suitable blood pressure measurement device.
All these methods from cardiovascular physics led
to rapid developments in medicine. However, the
transfer of scientific results into technical devices
is problematic because of the very expensive and
clinically extensive evaluation. On the other hand,
the increasing occurrence of cardiovascular diseases
and the reduction of healthcare expenses lead to
an increasing demand on new therapeutical tools
which should fulfill the following requirements:
• cost saving,
• preferably noninvasive nature,
• minimization of the patient’s risk,
• capability of home care,
• higher diagnostic power.
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Therefore, devices have to be developed which
are able to convey the same information contained
in the blood pressure signals but which are remark-
ably cheaper.

The field of intensive care unit monitoring will
be strongly changed by including cardiovascular
physics parameters. Monitoring systems will enable
an early prediction and prevention of serious car-
diovascular events and lead to better recovering
prognoses after serious medical interventions. The
biosignals monitored in the intensive care unit will
be analyzed with regard to special autonomous veg-
etative regulation processes. Some exemplary reg-
ulation processes which can be characterized via
cardiovascular physics parameters are the barore-
flex, the chemoreflex, the sympathetic blood ves-
sel tone and sleep stage changes. To improve the
medical significance, univariate analyses of the mon-
itoring signals will be included in these stratifica-
tions. These univariate analyses comprise methods
from time- and frequency domain as well as meth-
ods from nonlinear dynamics. Using multivariate
model-based data analyses the medical staff will be
provided with additional information about the cur-
rent state of the patient which is not available today.
The information about the autonomous regulation
will be used in combination with clinical parame-
ters, such as medication, age, gender, concomitant
diseases for recovering prognoses and risk stratifi-
cation. In this way, an improved recovery prognosis
is possible enabling a minimization of patients risk,
an individual intensive care therapy as well as a
reduction of healthcare expenses.

Important developments are also to be expected
for the model based methods. These approaches
on the one hand aim at modeling one or more
regulation processes, and on the other hand pro-
vide model parameters which should be used to
answer clinically relevant questions. In this tuto-
rial we have introduced an approach which is
very promising in data-driven modeling and model-
based data analysis [Wessel et al., 2000b; Wessel
et al., 2004a; Wessel et al., 2004b; Wessel et al.,
2006]. We have found that the maximal correlation
method is a powerful tool for medical data anal-
yses and for solving mechanical engineering prob-
lems. This general method is therefore promising
for further model-based analyses not only in car-
diovascular physics. There is an enormous demand
for the latter field also in pharmacological and
genetic research, because interactions of different
genotypes and pharmaceutics with cardiovascular

regulation are almost unknown. Insofar, the further
development of model based approaches repre-
sents an important contribution for new thera-
peutical therapies. One promising example is our
idea of a circadian ICD for an individual predic-
tion of life-threatening events (International patent
registration PCT/DE2005/002040).

We could demonstrate in this tutorial, that
data analyses and modeling methods from cardio-
vascular physics lead to significant improvements
in different medical fields. Patients as well as the
whole society would benefit from a rapid use of these
potentials in clinical practice.
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