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Summary. After reviewing several physiological findings on oscillations in the elec-
troencephalogram (EEG) and their possible explanations by dynamical modeling, we
present neural networks consisting of leaky integrator units as an universal paradigm
for neural and cognitive modeling. In contrast to standard recurrent neural net-
works, leaky integrator units are described by ordinary differential equations living
in continuous time. We present an algorithm to train the temporal behavior of leaky
integrator networks by generalized backpropagation and discuss their physiologi-
cal relevance. Eventually, we show how leaky integrator units can be used to build
oscillators which may serve as models of brain oscillations and cognitive processing.

1 Introduction

The electroencephalogram (EEG) measures the electric potential of the brain
that is generated by large formations of certain neurons, the pyramidal cells.
These nerve cells roughly possess an axial symmetry and they are aligned in
parallel perpendicular to the surface of the cortex [14, 55, 70]. They receive ex-
citatory input at the superficial apical dendrites from thalamic relay neurons
and inhibitory input at the basal dendrites and at their somata from local
interneurons [14, 55, 21, 55, 70]. Excitatory and inhibitory synapses cause
different ion currents through the cell membranes thus leading to either de-
polarization or hyperpolarization, respectively. When both types of synapses
are simultaneously active, a single pyramidal cell behaves as a microscopic
electric dipole surrounded by its characteristic electrical field [14, 46].

According to the inhomogeneity of the cortical gray matter a mass of
approximately 10,000 synchronized pyramidal cells form a dipole layer whose
fields sum up to the so-called local field potentials that polarize the outer
tissues of the scalp thereby acting as a low pass filter [14, 21, 46, 55]. These
filtered sum potentials are macroscopically measurable as the EEG at the
surface of a subject’s head.
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One of the most obvious features of the EEG are oscillations in certain
frequency bands. The alpha waves are sinusoidal-like oscillations between 8 –
13 Hz, strongly pronounced over parietal and occipital recording sites which
reflect a state of relaxation during wakefulness, with no or only low visual at-
tention. Figure 1 shows a characteristic power spectrum for the alpha rhythm:
There is one distinguished peak superimposed to a 1/f background EEG.
When a subject starts paying attention, the powerful slow alpha waves disap-
pear while smaller oscillations with higher frequencies around 14 – 30 Hz (the
beta waves) arise [5, 17, 59]. We will refer to this finding, sometimes called
desynchronization of the EEG, as the alpha blocking [5].4

Alpha waves are assumed to be related to awareness and cognitive pro-
cesses [48, 6, 39, 57]. Experimental findings suggest that thalamocortical feed-
back loops are involved in the origin of the alpha EEG [10, 14, 17, 58, 59, 70].

Modeling brain rhythms has a long tradition. Wilson and Cowan [65] were
the first who used populations of excitatory and inhibitory neurons innervat-
ing each other (see Sect. 3.2). They introduced a two-dimensional state vector
whose components describe the proportion of firing McCulloch-Pitts neurons
[45] within a unit volume of neural tissue at an instance of time. This kind of
ensemble statistics leads to the well-known sigmoidal activation functions for
neural networks [30] through the probability distributions of either synapses
or activation thresholds (see also [21]). The model further includes the re-
fractory time in which a neuron that has been activated just before cannot
be activated again, and the time coarse of postsynaptic potentials as pulse
response functions. This model has been strongly simplified by Wilson [64]
leading to a network of only two recurrently coupled leaky integrator units
(see Sec. 2). Wilson reported limit cycle dynamics of this system for a certain
range of the excitatory input playing the role of a control parameter. However,
this network does not exhibit an equivalent of the alpha blocking, because the
frequency of the oscillations becomes slower for increasing input.

Da Silva et al. [15] pursued two different approaches: a distributed model
of the thalamus where relay cells and interneurons are considered individually
and a “lumped” model analogous to the one of Wilson and Cowan [65] but
without refractory time and even more complicated postsynaptic potentials.
In order to determine the sum membrane potential of each population as a
model EEG one has to compute the convolution integral of the postsynaptic
potential pulse response functions with the spike rate per unit of volume.
Linearizing the activation functions allows a system theoretic treatment of
the model by means of the Laplace transform and thus computing the power
spectrum analytically (see Sec. 4). Da Silva et al. [15, 16] have shown that

4 The term “desynchronization” is misleading since it has no direct relation to
synchronziation in the sense of e.g. [3, 2]. From the viewpoint of data analysis
it simply means: decreasing power in the alpha band of the spectrum. However,
the biophysical theories of the EEG explain the loss of spectral power by a loss
of coherence of neuron activity, i.e. less synchronization [5, 59, 57].



Neural and cognitive modeling 3

their model of thalamical or cortical feedback loops actually exhibits a peak
around 10 Hz, i.e. alpha waves, in the spectrum. Though, they were also not
able to demonstrate the alpha blocking.

Later, Rotterdam et al. [60] generalized that model to spatio-temporal
dynamics by considering a chain of coupled cortical oscillators. A similar ap-
proach has been pursued by Wright and Liley [67, 66] who discussed a spatial
lattice of coupled unit volumes of excitatory and inhibitory elements obeying
cortical connectivity statistics. The convolution integrals of the postsynaptic
potentials with the spike rates were substituted by convolution sums over dis-
crete time. The most important result which we shall appreciate here, is that
the power spectrum shows the alpha peak, and, that there is a “shift to the
right” (towards the beta band) of this peak with increasing input describing
arousal, i.e. the alpha blocking.

Additionally, Liley et al. [43] suggested also a distributed model of cortical
alpha activity using a compartmental description of membrane potentials [40].
In such approach, nerve cells are thought to be built up by cylindrical com-
partments that are governed by generalized Hodgkin-Huxley equations [31].
Liley et al. [43] reported two oscillatory regimes of this dynamics: one having
a broad-band spectrum with a peak in the beta range and the other narrowly
banded with a peak around the alpha frequency.

We shall also appreciate the field theoretic models of neural activity
[35, 34, 68, 69, 51]. In these theories the unit volumes of cortical tissue are con-
sidered being infinitesimally small. Therefore the systems of coupled ordinary
differential equations are substituted by nonlinear partial differential equa-
tions. Robinson et al. [51] have proposed such a theory in order to describe
thalamocortical interactions and hence the alpha EEG.

Another approach that could lead to the explanation of the EEG is Hebb’s
concept of a cell assembly [28] where reverberatory circles form neural oscil-
lators. We shall see in Sect. 4.3 how such cycles may emerge in an evolving
network.

On the other hand, Kaplan et al. [37] and Smolensky and Legendre [54]
argued how neural networks could bridge the gap between the sub-symbolic
representation of single neurons and “a symbol-like unit of thought” in models
of cognitive processes. Kaplan et al. proposed the cell assembly as an assembly
of neural units that are recurrently connected to exhibit reverberatory circles
in which information needs to cycle around until the symbolic meaning is fully
established. They presented a series of experiments in which they made use
of physiological principles that should be present in the functioning of cell
assemblies: temporally structured input, the dependency on prior experience,
competition between assemblies and control of its activation. A main result
is that after a cell assembly is provided with input, its activation gradually
increases until an asymptotic activation is reached or the input is distracted.
After distraction of the input the activation gradually decreases until it comes
back to its resting level.
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2 Leaky Integrator Networks

2.1 Description of leaky integrator units

When the neural signals are exchanged between different cell assemblies that
are typically involved in brain functions, oscillations due to the recurrent con-
nections between the neurons should become visible. A possible way to model
this behavior is by describing each cell assembly by a leaky integrator unit,
that integrates input over time while the internal activation is continuously
decreased by a dampening leakage term. We shall present the relationship
between cell assemblies and leaky integrator units in Sec. 3.2. However, also
single neurons can be described by a leaky integrator unit, though with quite
different leakage constants, as we shall see in Sec. 3.1. In terms of standard
units (as e. g. used by Rumelhard et al. [53] a leaky integrator unit looks like
the one depicted in Fig. 2.

The activation of this leaky integrator unit is described by

dxi(t)
dt

= −xi(t) + (1− αi) xi(t) + αif(yi(t))

= −αixi(t) + αif(yi(t)) (1)

τi
dxi(t)

dt
+ xi(t) = f(yi(t)) . (2)

The symbols have the following meanings:
dxi(t)

dt Change of activation of unit i at time t
xi(t) Activation of unit i at time t
yi(t) Netinput of unit i at time t
αi Leakage rate of unit i
τi = α−1

i Time constant of unit i
f Activation function of each unit;

usually sigmoidal-shaped (e.g., logistic as in Eq. (5)), or linear.

The leakage rate αi tells how much a unit depends on the actual netinput.
Its value is between 0 and 1. The higher the value of α, the stronger the
influence of the previous level of activation and the less the influence of the
actual netinput. α = 1 means that the previous activation doesn’t have any
influence and the new activation is only determined by the netinput (this
is the case e. g. for the standard units used by the PDP group [53]). α = 0
means that the actual netinput does not have any influence and the activation
remains constant. (1−α could also be regarded as the strength of its memory
with respect to earlier activations.)

The netinput of unit i is given as the sum of all incoming signals:

yi(t) =
∑

j

wijxj(t) + bi + Iext
i (t) . (3)

With



Neural and cognitive modeling 5

yi(t) Netinput of unit i at time t
wij Weight of connection from unit j to unit i
bi Bias of unit i
Iext
i external Input to unit i

Equation (1) is very similar to the general form of neural networks equa-
tions for continuous-valued units (described e. g. in [30]). The difference lies
in the presence of the leakage term α that makes the current activation de-
pendent from its previous activation. We motivate Eq. (1) by the equivalent
recurrent network of Fig. 2 and we shall use it in Sec. 2.2 subsequently to
derive a generalized backpropagation algorithm as a learning rule for tempo-
ral patterns. On the other hand, Eq. (2) is well-known from the theory of
ordinary differential equations. Its associated homogeneous form

τi
dxi

dt
+ xi = 0

describes simply an exponential decay process. Therefore, the inhomogeneous
Eq. (2) can be seen as a forced decay process integrating its input at the right
hand side.

Hertz et al. [30, p. 54] discuss a Hopfield network of leaky integrator units
which is characterized by Eq. (2) with symmetric synaptic weights wij . Such
network is a dynamical system whose attractors are the patterns which are
to be learned. Moreover, Hertz et al. [30, p. 55] consider another dynamical
system

τi
dxi(t)

dt
+ xi(t) =

∑

j

wijf(xj(t)) + bi + Iext
i (t) (4)

having the same equilibrium solutions as Eq. (2). As we shall see in Sec.
3.1, Eq. (4) appropriately models small networks of single neurons. However,
given a proper activation function fact, the range of possible activations is
resticted to a bounded interval (e. g. ]0,1[ for a logistic function). This leads
to a bounded phase space and accordingly is easier to use for proofs [64] or
numerical simulations. The time course of activation for a leaky integrator
unit using a logistic activation function

f(x) =
1

1 + e−βx
(5)

with respect to input and leakage rate is shown in Figs. 3 (a) and (b).

2.2 Training leaky integrator networks

In order to use leaky integrator units to create network models for simulation
experiments, a learning rule that works in continuous time is needed. The fol-
lowing formulation is motivated by [47] and describes how a backpropagation
algorithm for leaky integrator units can be derived.



6 beim Graben et al.

In a first step, Euler’s method is used to change from differential equations
to difference equations:

xi(t + ∆t) ≈ xi(t) +
dxi(t)

dt
∆t

⇒ dxi(t)
dt

≈ xi(t + ∆t)− xi(t)
∆t

. (6)

Combining Eq. (1) and Eq. (6) yields

x̃i(t + ∆t) = (1−∆t)x̃i(t) + ∆t {(1− αi)x̃i(t) + αif(ỹi(t))}
= (1−∆tαi) x̃i(t) + ∆tαif(ỹi(t)) (7)

where tildes above variables (x̃ ) denote continuous functions that have been
made discrete.

Figures 3 (a) and (b) show the time-course of activation for a leaky inte-
grator unit with different values of external input I and leakage parameters
α with I 6= 0 for t ∈ [0, 20]. In order to train a network, one needs to define
an error function

E =
∫ t1

t0

ferr [x (t), t] dt . (8)

Here we choose the least mean square function

E =
1
2

∑

i

∫ t1

t0

si [xi(t)− di(t)]
2 dt (9)

di(t) is the desired activation of unit i at time t and si is the relative im-
portance of this activation where s = 0 means unimportant and s = 1 most
important.

If one changes the activation of unit i at time t for a small amount, one
gets a measure how much this change influences the error function:

ei(t) =
∂ferr [x (t), t]

∂xi(t)
(10)

with
ferr =

1
2

∑

i

si [xi(t)− di(t)]
2

.

With Eq. (9) as error function we get

ei(t) = si [xi(t)− di(t)] . (11)

Equations (10) and (11) describe the influence of a change of activation
only for t. In a neural net that is described by Eqs. (1) and (3) each change
of activation at t also influences the activation at later times t′ (t < t′). The
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amount of this influence can be described by using time-ordered derivations
[63, 62]:

z̃i(t) =
∂+E

∂x̃i(t)

:=
∂E

∂x̃i(t)
+

∑

t′>t

∑

j

∂+E

∂x̃j(t′)
∂x̃j(t′)
∂x̃i(t)

(12)

with j = 1, 2, . . . , n n number of units
t′ = t + ∆t, t + 2∆t, . . . , t1 t1 last defined time

z̃i(t) measures how strong a change of activation of unit i at time t influences
the error function for all times.

Performing the derivations in Eq. (12) with Eqs. (9), (11), (7) and (3) and
setting t′ = t + ∆t gives:

∂E

∂x̃j(t)
= ∆tei (13)

∂x̃i(t + ∆t)
∂x̃i(t)

= (1−∆tαi) + ∆tαiwiif
′(ỹi(t)) (14)

∂x̃j(t + ∆t)
∂x̃i(t)

= ∆tαjwjif
′(ỹj(t)) (15)

for all units j that are connected with unit i .

All other derivations are zero. With this one gets

z̃i(t) = ∆tei + (1−∆tαi) z̃i(t + ∆t)

+
∑

j

∆tαjwjif
′(ỹj(t))z̃j(t + ∆t) . (16)

The back-propagated error signal z(t) is equivalent to the δ in standard back-
propagation. After the last defined activation di(t1) there is no further change
of E, so zi(t1 + ∆t) = 0.

Making use of Euler’s method in the opposite direction one finds that the
back-propagated error signal can be described by the following differential
equation:

dzi(t)
dt

= αizi(t)− ei −
∑

j

αjwjif
′(yj(t))zj(t) . (17)

With Eq. (16) it is possible to calculate how the error function changes if one
changes the parameters αi and wij . Each variation also changes the activation
xi. The influence of this activation on E can be calculated using the chain
rule of derivations.

If wij changes for ∆t for ∂wij then the influence of this change on the
error function can be described by
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∂E

∂wij

∣∣∣∣
t+∆t

t

:=
∂+E

∂xi(t + ∆t)
∂xi(t + ∆t)

∂wij

= zi(t + ∆t)αixj(t)f ′(yi(t))∆t . (18)

A change of ∂wij during the whole time t0 ≤ t ≤ t1 produces:

∂E

∂wij
= αi

∫ t1

t0

zi(t)xj(t)f ′(yi(t)) dt . (19)

For the influence of a change in αi on E one finds

∂+E

∂αi

∣∣∣∣
t+∆t

t

=
∂E

∂xi(t + ∆t)
∂xi(t + ∆t)

∂αi

= zi(t + ∆t) {f(yi(t))− xi(t))}∆t . (20)

For the whole time:

∂E

∂αi
=

∫ t1

t0

zi(t) {f(yi(t))− xi(t))} dt . (21)

Now we have nearly all equations that are needed for training a neural
net of leaky integrator units. Finally we must keep in mind the fact that the
leakage term α must be between 0 and 1. This can be done by using

α =
1

1 + e−ᾱ
(22)

and learning ᾱ instead of α. With this replacement one finds

∂E

∂ᾱi
=

1
1 + e−ᾱi

(
1− 1

1 + e−ᾱi

)

∫ t1

t0

zi(t) {f(yi(t))− xi(t)} dt . (23)

2.3 Overview of the learning procedure

To start the training, one needs to have the following information:

1. topology of the net with number of units (n) and connections
2. values of the parameters w0 and ᾱ0 at t = 0
3. activations x (t0) at t = 0
4. time-course of the input (Iext(t), t0 ≤ t ≤ t1)
5. time-course of the desired output (d(t))
6. activation function f for each unit
7. error function E
8. time-step size ∆t that resembles the required resolution of the time-course

(∆t = 0.1 turned out to be a good default value).
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The goal is to find a combination of w and ᾱ that gives a minimum for
E.

1. At first one has to calculate the netinput Eq. (3) for each unit successively
and for each time-step forward in time. Simultaneously, the activations are
calculated with Eq. (7).

2. With Eq. (9) one calculates the main error E and the error vector e(t)
using Eq. (11).

3. Then the error signals are propagated backwards through time with Eq.
(16), making use of the condition z̃i(t1 + ∆t) = 0.

4. Now one calculates the gradient of each free parameter with respect to
the error function E with the discrete versions of Eqs. (19) and (23):

∂E

∂wij
=

1
1 + e−ᾱi

t1∑
t=t0

z̃i(t + ∆t)x̃j(t)f ′(ỹi(t))∆t (24)

∂E

∂ᾱi
=

1
1 + e−ᾱi

(
1− 1

1 + e−ᾱi

)

t1∑
t=t0

z̃i(t) {f(ỹi(t))− x̃i(t)}∆t . (25)

5. After this, the parameters are changed along the negative gradient (gra-
dient descent):

wij = wij − ηw
∂E

∂wij
(26)

ᾱi = ᾱi − ηᾱ
∂E

∂ᾱi
. (27)

With ηw and ηᾱ as learning rates. (η = 0.1 is commonly a suitable starting
value.) The gradient can be used for steepest descent, conjugate gradient
or other numeric approximations (see e. g. [49]).

6. Having obtained the new values w and ᾱ, the procedure goes back to step
1 and is continuously followed until the main error falls below a certain
value in step 2 or this criterium is not reached after a maximal number of
epochs.

(For a model that uses this type of learning algorithm for leaky integrator
units see [42]). In the context of modeling oscillating brain activity, recurrent
networks of leaky integrator units become interesting. Section 4 will describe
a simple example.
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3 From Physiology to Leaky Integrator Models

3.1 Leaky integrator model of single neurons

Let us consider the somatic membrane of a neuron i in the vicinity of the
trigger zone. For the sake of simplicity we shall assume that the membrane
behaves only passively at this site. For further simplification we do not describe
the trigger zone by the complete Hodgkin-Huxley equations [31] but instead
as a McCulloch-Pitts neuron [45], i.e. as a threshold device: the neuron fires
if its membrane potential Vi(t) exceeds a threshold θ from below due to the
law of “all or nothing” [36]. Because of that the membrane potential Vi(t)
becomes translated into a spike train which can be modeled by a sum of delta
functions

Ri(t) =
∑

k:Vi(tk)=θ

dVi(tk)
dt

>0

δ(t− tk) . (28)

Now, we can determine the number of spikes in a time interval [0, t] [40] which
is given by

Ni(t) =
∫ t

0

Ri(t′) dt′ ,

Thus, from the spike rate per unit time we regain the original signal

d
dt

Ni(t) = Ri(t) . (29)

In the next step, we consider the membrane potential Vi in the vicinity of
the trigger zone which obeys Kirchhoff’s First Law (see Fig. 4), i.e.

∑

j

Iij =
Vi − Vm

rm
+ ci

dVi

dt
, (30)

here, Vm is the Nernst equilibrium potential of the leakage channels with
resistance rm. ci is the capacitance of the membrane of neuron i and Iij is
the current through the membrane at the chosen site coming from the jth
synapse.

These synaptic currents depend upon both, the potential difference Ṽij−Vi

between the synapse j and the trigger zone of i and the intracellular resistance
along the current’s path rij . Therefore

Iij =
Ṽij − Vi

rij
(31)

applies. Inserting Eq. (31) into Eq. (30) yields

∑

j

Ṽij − Vi

rij
=

Vi − Vm

rm
+ ci

dVi

dt
,
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and after some rearrangements

rmci
dVi

dt
+ Vi


1 +

∑

j

rm

rij


 = Vm +

∑

j

rm

rij
Ṽij . (32)

After letting Vm = 0 without loss of generality and introducing the time
constants

τi =
rmci

1 +
∑

j
rm

rij

(33)

and provisory synaptic weights

w̃ij =
rm

rij

1 +
∑

j
rm

rij

, (34)

we eventually obtain

τi
dVi

dt
+ Vi =

∑

j

w̃ij Ṽij . (35)

Next, the postsynaptic potentials Ṽij require our attention. We assume
that an action potential arriving at the presynaptic terminal of the neuron
j releases on average one transmitter vesicle.5 The content of the vesicle dif-
fuses through the synaptic cleft and reacts with receptor molecules embedded
in the postsynaptic membrane. After possibly involved chemical reactions de-
scribed by kinetic differential equations [40], opened ion channels give rise to
a postsynaptic pulse response potential Sij(t). Because we characterize the
dendro-somatic membranes as linear systems here, the postsynaptic potential
elicited by a spike train Rj(t) is given by the convolution

Ṽij(t) = Sij(t) ∗Rj(t) . (36)

Let us make a rather crude approximation here by setting the postsynaptic
response function proportional to a delta function:

Sij(t) = gijδ(t) (37)

where gij is the gain of the synapse j → i. Then the postsynaptic potential
is given by the product of the gain with the spike rate of the presynaptic
neuron j according to Eq. (29). Finally, we must take the stochasticity of the
neuron into account. This is achieved by replacing the membrane potential
Vj at the trigger zone by its average obtained from the distribution function,
which leads to the characteristic sigmoidal activation functions [4], e.g. the
logistic function (see Eq. (5))
5 The release of transmitter is a stochastic process that can be approximately

described by a Bernoulli distribution [36], and hence, due to the limit theorem of
de Moivre and Laplace, being normally distributed.
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Rj(t) = f(Vj(t)) =
1

1 + e−β[Vj(t)−θ]
. (38)

Collecting Eqs. (35, 36) and (38) together and introducing the proper
synaptic weights

wij = gijw̃ij , (39)

yields the leaky integrator model of a network of distributed single neurons

τi
dVi

dt
+ Vi =

∑

j

wij f(Vj(t)) (40)

which is analogue to Eq. (4).

3.2 Leaky integrator model of neural populations

According to Freeman [20] (see also [22]) a neuronal population (“KI” set)
consists of many reciprocally connected neurons of one kind, either excitatory
or inhibitory. Let us consider such a set of McCulloch-Pitts neurons [45] dis-
tributed over a unit volume i of neural tissue. As the state variables Qi(t)
we introduce the proportions of firing cells (either excitatory or inhibitory, in
contrast to [65]) in volume i at the instance of time t [65, 67].

A neuron belonging to volume i will fire if its netinput Vi (analogue to the
membrane potential at the trigger zone, see Sec. 3.1) crosses the threshold θ.
But now, we have to deal with an ensemble of neurons possessing randomly
distributed thresholds within the unit volume i. We therefore obtain an en-
semble activation function [21] by integrating the corresponding probability
distribution density D(θ) of thresholds [65],

f(Vi) =
∫ Vi

0

D(θ) dθ . (41)

Depending upon the modality of the distribution D(θ) the activation function
could be a sigmoidal or even more complicated. For unimodal distributions
such as Gaussian or Poissonian ones, f(Vi) might be approximated by the
logistic function Eq. (38). As for the single neuron model, the netinput is
obtained by a convolution

Vi(t) =
∫ t

−∞
S(t− t′)

∑

j

wij Qj(t′) dt′ (42)

with “synaptic weights” wij characterizing the neural connectivity and whether
the population is either excitatory or inhibitory.

In the following we shall simplify the model of Wilson and Cowan [65] by
neglecting the refractary time. The model equations read then
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Qi(t + τi) = f




∫ t+τi

−∞
S(t− t′)

∑

j

wij Qj(t′) dt′


 , (43)

such that Qi(t + τi) is the proportion of cells being above threshold in the
time interval [t, t + τi]. Expanding the left hand sides into a Taylor series at t
and assuming again that S(t− t′) = δ(t− t′), we obtain

τi
dQi(t)

dt
+ Qi(t) = f


∑

j

wij Qj(t)


 , (44)

a leaky integrator model again, though characterized by Eq. (2).

4 Oscillators from Leaky Integrator Units

4.1 Linear model

In this section we demonstrate that a damped harmonic oscillator can be
obtained from a simple model of two recurrently coupled leaky integrator
units with linear activation functions. Figure 5 shows the architecture of this
model.

The network of Fig. 5 is governed by the equations

τ1
dx1

dt
+ x1 = w11x1 + w12x2 + p (45)

τ2
dx2

dt
+ x2 = w21x1 + w22x2 (46)

where x1 denotes the activity of unit 1 and x2 those of unit 2. Correspondingly,
τ1 and τ2 are the time constants of the units 1 and 2, respectively. The synaptic
weights wij are indicated in Fig. 5. Note, that the weights w11 and w22 describe
autapses [29]. The quantity p refers to excitatory synaptic input that might
be a periodic forcing or any other function of time.

Equations (45, 46) can be transformed into two second-order ordinary
differential equations

d2x1

dt2
+ γ

dx1

dt
+ ω2

0 = p1 (47)

d2x2

dt2
+ γ

dx2

dt
+ ω2

0 = p2 , (48)

where we have abbreviated

γ =
τ1(1− w22) + τ2(1− w11)

τ1τ2
(49)
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ω2
0 =

w11w22 − w12w21 − w11 − w22 + 1
τ1τ2

(50)

p1 =
1
τ1

dp

dt
+

1− w22

τ1τ2
(51)

p2 =
w21

τ1τ2
p (52)

Now, Eqs. (47, 48) describe two damped, but decoupled, harmonic oscillators
with external forcing when γ ≥ 0 and ω2

0 > 0, i.e. one unit must be excitatory
and the other inhibitory.

4.2 Simple nonlinear model

Next, we discuss a simple nonlinear system consisting of three coupled leaky
integrator units that provides a model of the thalamocortical loop. Figure 6
displays its architecture.

According to Fig. 6 the model equations read

τ1
dx1

dt
+ x1 = −αf(x3(t)) (53)

τ2
dx2

dt
+ x2 = βf(x1(t)) (54)

τ3
dx3

dt
+ x3 = γf(x2(t)) . (55)

Setting all τi = 1 and rearrangement yields

dx1

dt
= −x1 − αf(x3(t))

dx2

dt
= −x2 + βf(x1(t))

dx3

dt
= −x3 + γf(x2(t)) .

These equations define a vector field F with Jacobian matrix

DF =




−1 0 −αf ′(x3(t))
βf ′(x1(t)) −1 0

0 γf ′(x2(t)) −1


 .

For the activation function we chose f(x) = tanh x which can be obtained
by a coordinate transformation from the logistic function Eq. (38). Therefore,
F (x1, x2, x3) = 0 and we can look whether the center manifold theorem [25]
could be applied. The Jacobian at (0, 0, 0) is

DF (0) =



−1 0 −α
β −1 0
0 γ −1



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having eigenvalues

λ1 = −1− 3
√

αβγ

λ2 = −1 +
1
2
(1− i

√
3) 3

√
αβγ

λ3 = −1 +
1
2
(1 + i

√
3) 3

√
αβγ .

Since λ1 < 0 for α, β, γ ≥ 0, we seek for such weight parameters making
Re(λ2|3) = 0. This leads to the condition

αβγ = 8 , (56)

which can be easily fulfilled, e.g. by setting

α = 4, β = 1, γ = 2 .

In this case, the center manifold theorem applies: the dynamics stabilizes along
the eigenvector corresponding to λ1 exhibiting a limit cycle in the center man-
ifold spanned by the eigenvectors for λ2 and λ3. Figure 7 shows a numerical
simulation of this oscillator.

4.3 Random recurrent neural networks

In the last subsection we describe a random graph carrying leaky integrator
units described by Eq. (40) at its nodes. We shall see that the onset of oscilla-
tory behavior is correlated with the emergence of super-cycles in the topology
of the network provided by an evolving directed and weighted Erdős-Rényi
graph of N nodes where all connections between two nodes are equally likely
with increasing probability [1, 12, 11].

A directed Erdős-Rényi graph consists of a set of vertices V that are ran-
domly connected by arrows taken from an edge set E ⊂ V × V with equal
probability q. The topology of the graph is completely described by its ad-
jacency matrix A = (aij) where aij = 1, if there is an arrow connecting the
vertex j with the vertex i (i.e. (j, i) ∈ E for i, j ∈ V ) while aij = 0 other-
wise. A directed and weighted Erdős-Rényi graph is then described by the
weight matrix W = (wij) which is obtained by element-wise multiplication of
the adjacency matrix with constants gij : wij = gij aij . Biologically plausible
models must satisfy Dale’s law expressing that excitatory neurons have only
excitatory synapses while inhibitory neurons only possess inhibitory synapses
[18]. Therefore, the column vectors of the weight matrix are constrained to
unique sign. We achieve this requirement by randomly choosing a proportion
p of the vertices to be excitatory and the remainder to be inhibitory.

In our model the weights become time-dependent due to the following
evolution algorithm:

1. Initialization: W(0) = 0.
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2. At evolution time t, select a random pair of nodes i, j.
3. If they are not connected, create a synapse with weight wij(t+1) = +δ if

j is excitatory, and wij(t + 1) = −δ if j is inhibitory. If they are already
connected, enhance the weight wij(t + 1) = wij(t) + δ if wij(t) > 0 and
wij(t + 1) = wij(t)− δ if wij(t) < 0. All other weights remain unchanged.

4. Repeat from (ii) for a fixed number of iterations L.

As the “learning rate” we choose δ = 1 while the connectivity increases during
the time L.

The contribution of the ith neuron to the local field potential of the model
is estimated by the inhomogeneity of Eq. (40),

Fi(t) =
∑

j

wij f(xj) . (57)

Then the model EEG is given by the sum of the local field potentials of all
excitatory nodes

E(t) =
∑

i+

Fi(t) . (58)

We create such random recurrent neural networks (“R2N2s”) of increasing
size of N = 100, 200, 500, and 1000 nodes. Since about 80% of cortical neurons
are excitatory pyramidal cells, p = 80% of the network’s nodes are chosen to
be excitatory. For each iteration of the network’s evolution, the dynamics of
its nodes is examined. After preparing them with normally distributed initial
conditions (µ = 0, σ = 1), Eq. (40) is solved numerically for an ensemble of
K = 10 time series of length T = 100 with a step-width of ∆t = 0.0244. Local
field potential and EEG are computed according to Eqs. (57) and (58).

From the simulated EEGs, the power spectra are computed and averaged
over all K realizations of the network’s dynamics. In order to monitor sudden
changes in the topologies of the networks, three characteristic statistics are
calculated:

(1) The mean degree (the average number of vertices attached to the
nodes) 〈k〉 of the associated undirected graphs, described by the symmetrized
adjacency matrix As = (A + AT )/2,

(2) the total distribution

d(l) =
tr (Al)

lN , (59)

of cycles of exactly length l [1, 12, 11, 33, 9, 52, 56]. In Eq. (59), tr (Al)
provides the total number of (not necessarily self-avoiding) closed paths of
length l through the network. Since any node at such a path may serve as the
starting point and there are l nodes, the correct number of cycles is obtained
by dividing by l. Finally, N =

∑
l tr (Al)/l is a normalization constant. From

the cycle distribution, we derive
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(3) an order parameter s for topological transitions by the averaged slopes
of the envelope of d(l), where the envelopes are estimated by connecting the
local maxima of d(l). The above mentioned procedure is repeated for each net-
work size M = 10 times where we have chosen L100 = 150, L200 = 400, L500 =
800, and L1000 = 1700 iterations of network evolution.

Figure 8 shows four representative networks in the critical phase charac-
terized by the smallest positive value of the cycle order parameter s, averaged
over the M = 10 network simulations when sudden oscillations occur in the
node’s dynamics (visible in Fig. 8(a) and indicated by the peaks in the power
spectra [Fig. 8(b)]). The cycle distributions d(l) [Fig. 8(c)] display a transition
from geometrically decaying to exponentially growing functions. As Fig. 8(b)
reveals, the power spectra display a broad 1/f continuum. Superimposed to
this continuum are distinguished peaks that can be sloppily regarded as the
“alpha waves” of the model.

According to random graph theory, Erdős-Rényi graphs exhibit a percola-
tion transition when a giant cluster suddenly occurs for 〈k〉 = 1 [1, 12, 11]. A
second transition takes place for 〈k〉 = 2 indicating the appearance of mainly
isolated cycles in the graph. Isolated cycles are characterized by a geometri-
cally decaying envelope of the total cycle distribution. Our simulations suggest
the existence of a third transition when super-cycles are composed from merg-
ing smaller ones. This is reflected by a transition of the total cycle distribution
d(l) from a geometrically decaying to an exponentially growing behavior due
to a “combinatorial explosion” of possible self-intersecting paths through the
network (super-cycles are common in regular lattices with 〈k〉 ≥ 3). We detect
this transition by means of a suitably chosen order parameter s derived from
d(l) as the averaged slope of its envelope. For decaying d(l), s < 0 and for
growing d(l), s > 0. The appearance of super-cycles is associated with s ≈ 0 if
d(l) is approximately symmetric in the range of l. In this case, sustained oscil-
lations emerge in the network’s dynamics due to the presence of reverberatory
circles.

5 Cognitive Modeling

In this Chapter we have reviewed neurophysiological findings on oscillations
in the electroencephalogram as well as certain approaches to model these
through coupled differential equations. We have introduced into the theory
of networks of leaky integrator units and presented a general learning rule to
train these networks in such a way that they are able to behave in continu-
ous time reproducing temporal patterns. This learning rule is a generalized
backpropagation algorithm that has been applied for the first time to model
reaction times from a psychological experiment [42]. Therefore, leaky inte-
grator networks provide a unique and physiologically plausible paradigm for
neural and cognitive modeling.
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Mathematically, leaky integrator models are described by systems of cou-
pled ordinary differential equations which become nonlinear dynamical sys-
tems by using sigmoidal activation functions. Networks of leaky integrator
units may display a realm of complex behavior: limit cycles, multistability,
bifurcations and hysteresis [65]. They could therefore supply models of percep-
tional instability [41] or cognitive conflicts [23] as has already demonstrated
by Haken [26, 27] using the so-called synergetic computers. As [27, p. 246]
pointed out, the order parameter equations of synergetic computers are ana-
logue to neural networks whose activation function is expanded into a power
series. However, these computers are actually leaky integrator networks as can
be seen in the following calculation.

Basically, synergetic computers are time-continuous Hopfield nets [30] gov-
erned by a differential equation

dx
dt
−

K∑

k=1

ηkvk(v+
k x) = −B

K∑

k′ 6=k

(v+
k′x)2(v+

k x)x− C(x+x)x (60)

where x(t) denotes the activation vector of the network; the K vectors vk are
training patters with adjoints v+

k such that orthonormality relations v+
k vl =

δkl hold. In this notation x+y =
∑

i xiyi means the inner product of the row
vector x+ with a column vector y yielding a scalar. On the other hand, the
outer product yx+ of a column vector y with a row vector x+ is a matrix
with elements yixj .

Therefore, the second term of the left hand side of Eq. (60) can be rewritten
as

K∑

k=1

ηkvk(v+
k x) =

K∑

k=1

ηk(vkv+
k )x =

(
K∑

k=1

ηkvkv+
k

)
x = Wx

where

W =
K∑

k=1

ηkvkv+
k

is the synaptic weight matrix obtained by Hebbian learning of the patterns
vk with learning rates ηk.

The notion “synergetic computer” refers to the possibility to describe the
network (60) by the evolution of order parameters which are appropriately
chosen as the “loads” of the training patters vk in a kind of principal compo-
nent analysis. We therefore separate activation space and time by the ansatz

x(t) =
∑

k

ξk(t)vk + w(t)

where ξk(t) = v+
k x(t) and w(t) is a fast decaying remainder. Multiplying Eq.

(60) from the left with vl and exploiting the orthonormality relations, we
eventually obtain
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dξl

dt
− ηlξl = −B

K∑

k 6=l

ξ2
kξl − C

(∑

k

ξ2
k

)
ξl . (61)

Dividing by −ηl = 1/τl yields then the leaky integrator equations for the order
parameters with rescaled constants B′, C ′ and a cubic activation function

τl
dξl

dt
+ ξl = B′

K∑

k 6=l

ξ2
kξl + C ′

(∑

k

ξ2
k

)
ξl . (62)

The “time constants” play then the role of attention parameters describing
the amount of attention devoted to a particular pattern. These parameters
might also depend on time, e.g. modeling habituation.

From a formal point of view, also the attention model of Lourenço [44], the
cellular neural networks of Chua [13] (see also [7, 24, 61]), the disease model
of Huber et al. [32] can be regarded as leaky integrator networks.

Also higher cognitive functions such as language processing and their neu-
ral correlates such as event-related brain potentials (ERPs) [23, 8, 19] might
be modeled with leaky integrator networks. Kawamoto [38] used a Hopfield
net with exponentially decaying activation and habituating synaptic weights
to modeling lexical ambiguity resolution. The unit’s activations in his model
are governed by the equations

xi(t + 1) = f


δxi(t) +

∑

j

wijxj(t)


 . (63)

Setting δ = 1 − α = 1 − τ−1 and approximating f ′(x) ≈ 1 for the typical
activations, yields after a Taylor expansion

f


δxi(t) +

∑

j

wijxj(t)


 ≈ f


∑

j

wijxj(t)


 + f ′


∑

j

wijxj(t)


 δxi(t)

the leaky integrator equation Eq. (2).
Smolensky and Legendre [54] consider Hopfield nets of leaky integrator

units that can be described by Lyapunov functions E. They call the function
H = −E the harmony of the network and argue that cognitive computations
maximize this harmony function at the sub-symbolic level. Additionally, the
harmony value can also be computed at the symbolic level of linguistic repre-
sentations in the framework of harmonic grammars or optimality theory [50].
Regarding the harmony as an order parameter of the network would also allow
to modeling neural correlates of cognitive processes, e.g., ERPs.

To conclude, leaky integrator networks provide a universal paradigm of
neural and cognitive modeling with discrete units in continuous time, comple-
mentary to field theoretic approaches.



20 beim Graben et al.

Acknowledgements

This work has been supported by the Deutsche Forschungsgemeinschaft (re-
search group “Conflicting Rules in Cognitive Systems”), and by the Helmholtz
Institute for Supercomputational Physics at the University of Potsdam.

References

1. R. Albert and A.-L. Barabási. Statistical mechanics of complex networks. Rev.
Mod. Phys., 74(1):47 – 97, 2002.

2. C. Allefeld and J. Kurths. An approach to multivariate phase synchroniza-
tion analysis and its application to event-related potentials. Int. J. Bifurcation
Chaos, 14(2):417 – 426, 2004.

3. C. Allefeld and J. Kurths. Testing for phase synchronization. Int. J. Bifurcation
Chaos, 14(2):405 – 416, 2004.

4. D. J. Amit. Modeling Brain Function. The World of Attractor Neural Networks.
Cambridge University Press, Cambridge (MA), 1989.
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Fig. 1. Power spectrum of the alpha EEG at one parietal electrode site (PZ).
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Fig. 2. Simulation of a leaky integrator unit (a) and a recurrent combination of two
standard units (b). The function of the leakage term α is mimicked by two parallel
standard units with a logistic and a linear activation function, respectively.
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Fig. 3. Time-course of activation (a)for different input with ∆t = 0.1, α = 0.3 and
b = −2.2; (b) Time-course of activation for different leakage rates with ∆t = 0.1,
Iext = 4.3 und b ≈ −2.2.
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Fig. 5. Architecture of an oscillator formed by leaky integrator units.
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Fig. 6. Thalamocortical oscillator of three leaky integrator units: 1 pyramidal cell;
2 thalamus cell, 3 cortical star cell.
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Fig. 8. (a) Representative simulated time series during the oscillatory transition
(critical phase) for four different network sizes: N = 100 (dotted), N = 200 (dashed-
dotted), N = 500 (solid), and N = 1000 (dashed). (b) Power spectra of simulated
time series. (c) Total distributions of cycles [Eq. (59)] for the same networks.
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