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Abstract. We analyze the effect of synchronization in networks of chemically cou-
pled multi-time-scale (spiking-bursting) neurons on the process of information
transmission within the network. Although, synchronization occurs first in the
slow time-scale (burst) and then in the fast time-scale (spike), we show that in-
formation can be transmitted with low probability of errors in both time scales
when the bursts become synchronized. Furthermore, we show that for networks
of non-identical multi-time-scales neurons, complete synchronization is no longer
possible, but instead burst phase synchronization. Our analysis shows that clus-
ters of burst phase synchronized neurons are very likely to appear in a network
for parameters far smaller than the ones for which the onset of burst phase syn-
chronization in the whole network happens

1 Introduction

Certain neurons in the brain exhibit a multi-time-scale behavior called spike-burst activity,
a recurrent transition between a fast (spikes) and a slow (rest) dynamics [1,2]. The spiking
dynamics consists of the action potentials [3], result of the exchange of fast currents such as
K+ of the external media with the neuron. On the other hand, the neuron may also exchange
slow currents such as Ca+2, which inhibits the occurrence of spikes generating the slow dynamics
almost a rest state, the hyperpolarization. The typical membrane potential of a spiking-bursting
neuron consists of bursts of multiple spikes followed by a rest state hyperpolarization.

These neurons have a great importance in different aspects of brain function such as move-
ment control and cognition [4–6]. There are evidences that synchronization may be related to
a series of processes in the brain. Experimental observations of neuron networks present syn-
chronized oscillations in response to sensory stimuli in a variety of brain areas [7,10,8,9]. In
the human perception process, the gamma wave is globally synchronized in space and time
[7]. Experiments with fear-conditioned mice have shown the synchronized activity of the theta
wave in the amygdalohippocampal network[10]. Nevertheless, the onset of synchronization in a
network may also lead to some diseases, e.g. Parkinson disease [11] and epilepsy [12].

Interestingly, different types of synchronization may take place in multi-time-scale neurons.
They may present bursting synchronization. And, a situation where both spikes and bursts are
synchronous. Typically, bursting synchronization arises for lower coupling strengths, whereas
complete synchrony requires a stronger coupling.

The coupling between neurons may occur via two different types of synapses, the electrical
or chemical synapses [3]. In the former case, the coupling occurs through gap junctions and its
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strength depends linearly on the difference between the membrane potentials. In order to real-
ize this synaptic connection the neurons must be very close to each other. Therefore, electrical
networks with long range connections are not possible, but one may find small arrays/rings
of locally electrically coupled neurons. In the chemical case, the synapse is mediated by neu-
rotransmitters and the connection occurs between the dendrites and the axons, therefore, it
allows long range connections, which generates complex network structures.

These synaptic inputs and external stimuli arriving in the network must be spread to many
areas or neurons in the network. How well these stimuli could be spread? This question is a key
point towards a better understanding of the brain and neuron network functioning. It concerns
both the architecture of the network and the dynamical behavior of the nodes.

In order to spread the stimuli the brain must first encode the information. The code used
may depend on the particular dynamical behavior of the oscillators the network is composed
of. It is generally agreed that, in certain situations, the brain encodes information using either
the time between spikes or between bursts [13–15]. In such a case, synchronization plays a
role in the information transmission, since synchronization may improve the timing between
spikes or bursts. Thus, the study of synchronization and desynchronization of neuronal spike-
burst behaviors from biophysical models may be helpful to understand further the information
processing in the brain.

We analyze the effect of synchronization on the information flow. We show that the in-
formation capacity depends on: (i) how the code is defined, whether one uses the burst or
the spikes; (ii) the synchronization level. Synchronization may occurs in distinct time-scales,
which can be suitably used for information transmission. Moreover, we show that clusters of
synchronization may appear on the network before the onset of synchronization in the network,
which provides a good environment for information transmission without the enhancement of
a collective behavior in a massive population of neurons.

2 Synchronization and Information

The classical idea of synchronization states that one can understand two synchronized oscillators
by studying only one of them, once they present the same dynamical behavior. This seems to
be a rather old concept. Back in the 16th century, Spinoza, a Dutch philosopher, had shared
this same idea, in a somewhat different context. In his work ethics [16] he states the following
proposition: ” Things which have nothing in common cannot be understood, the one by means of
the other; the conception of one does not involve the conception of the other, ” which captures
the modern idea of synchronization [17]. Synchronization ought to imply a collapse of the overall
evolution onto a subspace of the system attractor, reducing the dimensionality of the system.

Synchronization can be enhanced at different levels, that is, the constraints on which the
synchronization appears. Those can be in the trajectory amplitude, requiring the amplitudes
of both oscillators to be equal, giving place to complete synchronization [18–23]. Conversely,
the constraint could also be in a function of the trajectory, the phase, giving place to phase
synchronization (PS) [23,26,30,28,24,25,27,29]. In this case, one requires the phase difference
between both oscillators to be finite for all times, while no constraint on the trajectory amplitude
is imposed. The former case requires relatively strong coupling strengths, whereas, in general,
the later can arise for very small coupling strengths.

These different types of synchronization may arise depending on the nature of the oscillator
and on the coupling properties. Given two identical oscillators xi and xj coupled properly,
for strong enough coupling strengths, CS can be achieved. This means that both trajectories
present the same behavior:

lim
t→∞

|xi(t) − xj(t)| = 0. (1)

Synchronization in this case is associated with a transition of the largest transverse Lya-
punov exponent of the subspace xi = xj , also known as synchronization manifold [21,22], from
positive to negative values. In general, complete synchronization is only possible if the interact-
ing oscillators are identical. If their parameters mismatch the states can be close xi ≈ xj , but
not equal. For non-identical oscillators, other types of synchronization can appear [23,22]. Here
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we focus on PS. Denoting, ϑi,j(t) the phase of xi,j the condition for phase synchronization is
given by:

|nϑi(t) − mϑj(t)| ≤ ̺, (2)

where n and m are integers, and the inequality must hold for all times, with ̺ being a finite
number. Herein, we consider the case where n = m = 1, in other words 1 : 1 PS. The study of
PS has shown its relevance to important technological problems such as communication with
chaos [31,32], new insights into the collective behavior in networks of coupled chaotic oscillators
[33,34], pattern formation [35,23], Parkinson disease [11], epilepsy [12], as well as behavioral
activities [36].

2.1 Synchronization detection

The detection of CS is straightforward, due to the simple geometric constraints of the syn-
chronization manifold. One only requires Eq. (1) to be valid. Thus, for detection and analysis
purposes one may look at the amount ξij = xi(t) − xj(t); if it converges to zero in the limit of
large times, then complete synchronization is present. In a network composed of N oscillators,
one may analyze all transverse directions ξij , where i, j ∈ 1, 2, · · · , N . In practice one may ana-
lyze only the behavior of the largest transversal exponent associated with the synchronization
manifold.

The detection of PS is more problematic. In order to state the existence of PS, one has to
introduce a phase φ(t) for the chaotic oscillator, what is not straightforward. Even though the
phase is expected to exist to a general attractor, due to the existence of the zero Lyapunov
exponent [21,23], its explicit calculation, for a general oscillator, may be impossible. Actually,
even for the simple case of coherent attractors, the phase can be defined in different ways, each
one being chosen according to the particular case studied [37,38]. The calculation becomes
even harder if the oscillators are non-coherent, e.g., the funnel oscillator [23] or have no proper
rotation [32], as an example a double-scroll attractor. Therefore, in order to present a general
approach to detect PS, with practical applications, we must overcome the need of a phase.

We have shown that PS implies the existence of localized sets of the attractor [39], which is
generated by the observations of the attractor [40–44]. The basic idea consists in the conditional
observation of one oscillator constrained to an event occurrence in the other oscillator.

The event definition can be arbitrary. The only constraint is that it must be typical. There-
fore, the event could be a local maximum/minimum, the crossing of a dynamical variable with
a threshold, the entrance in an ε-ball, and so on. We also suppose that there is a function
phase φi, in such a way that φ̇i = Ωi (an instantaneous frequency), where Ωi is continuous and
0 < Ωi ≤ Υ . Under such hypotheses, we can state that: Given any typical event, with positive
measure, in the oscillator Σi,j, generating the times (tki,j)k∈N, if there is PS the observation of

xi at (tkj )k∈N generates a localized set Di.

2.2 Information

In this section, we analyze the relationship between the sets D and the capacity of informa-
tion transmission between coupled oscillators. In order to proceed with such an analysis, we
may assume that the oscillators are identical or nearly identical, such that the synchronized
trajectories are close to the synchronization manifold xj = xi.

The amount of information that two systems xi and xj can exchange is given by the mutual
information [45]:

I(xi,xj) = H(xi) − H(xi|xj), (3)

where H(xi) is the entropy of the oscillator xi and H(xi|xj) is the conditional entropy between
xi and xj , which measures the ambiguity of the received signal, roughly speaking the errors
in the transmission.
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As pointed out in Ref. [46] the mutual information can also be estimated by means of the
conditional exponents associated with the synchronization manifold. In this case, the mutual
information is given by:

I(xi,xj) =
∑

λ+
‖ −

∑

λ+
⊥, (4)

where λ+
‖ are the positive conditional Lyapunov exponents associated to the synchronization

manifold, the information produced by the synchronous trajectories, and λ+
⊥ are the positive

conditional Lyapunov exponents transversal to the synchronization manifold, related with the
errors in the information transmission. In PS, λ+

⊥ can be small, which means that one can
exchange information with a low probability of errors. So, PS creates a channel for reliable
information exchanging [46]. In order to estimate the upper bound for the information capacity,
we note that, in general,

∑

λ+
‖ ≤

∑

λ+, where λ+ are the positive Lyapunov exponents. Thus

I(xi,xj) ≤
∑

λ+ −
∑

λ+
⊥. Now, we need to estimate λ+

⊥, what can be done directly from the
localized sets.

The conditional transversal exponent can be estimated from the localized sets by a simple
geometric analysis. At the time tkj the oscillator Σj reaches the Poincaré plane at x∗

j while the

oscillator Σi is at xk
i = xi(t

k
j ). The initial distance between the trajectories is ∆xij = x∗

j − xk
i .

This distance evolves until the time tki when the oscillator Σi reaches the Poincaré plane at x∗
i ,

while the trajectory of Σj is at xk
j = xj(t

k
i ). The new distance is ∆x̃ij = x∗

i − xk
j . Therefore,

we have:

∆x̃ij = ∆xije
λ
+

⊥
|tk

i −tk
j |. (5)

So, the local transversal exponent is given by:

λ+
⊥ = lim

N→∞

1
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We only estimate the conditional exponent close to the Poincaré plane. Hence, if we change
the Poincaré plane the conditional exponent may also change. This means that there are some
events that carry more information than others. Note that the local conditional exponent gives
less information than observing the full trajectory, because we ignore the dynamics apart from
the Poincaré plane.

The rough idea is that the more synchronized the oscillators are, the more information they
can exchange. In order to illustrate this idea, we consider two oscillators x1 and x2, coupled
via a given function such that they may undergo a transition to CS. We introduce a signal in
the trajectory of x1 and then we try to read off the signal in the trajectory of x2. We may
have three regimes: (i) no synchronization; consider the decoupled oscillator, it is impossible to
receive information about the signal in x2. (ii) an intermittent synchronization regime; we will
be able to read off some parts of the signal introduced in x1. (iii) complete synchronization,
suppose that the signal which has been introduced is not able to destroy synchronization;
thus, all the signal (information) will be read off in x2. In a network, the connection between
synchronization and information is less clear.

3 Spiking-Bursting Neurons

For our purposes, it is worthy to note that a multi-time-scale dynamical system, such as a
spiking/bursting neuron, can be written in a singular perturbed form:

ẋ = F (x, z), (7)

ż = µG(x, z),

where x is the vector of fast variables, and z is a vector of slow variables. The fast variables
are modulated by the slow ones. The value of µ ≪ 1 gives the ratio between the fast/slow time
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scales. One can study the fast and slow subsystems separately to know exactly when each time
scale becomes synchronous, and then, we can understand the effect of having a synchronous
time-scale in the transmission of information. For now, let us consider two coupled bursting
oscillators:

ẋi = F (xi, zi) + gsyn

∑

j

cijH(xi,xj), (8)

żi = µG(xi, zi),

where cij is the coupling matrix (2 by 2 for the case of two neurons). The parameter gsyn is
the synapse strength, and H(xi,xj) is the coupling function. The synchronized motion in a
hyperplane given by the constrains x1 = x2 = x and z1 = z2 = z defines the synchronization
manifold. The analysis of stability of the synchronization manifold can predict whether there
exist a synchronized solution. The behavior of the largest transverse Lyapunov exponent fully
determines the linear stability of the synchronized solutions.

Herein, we consider the Hindmarsh-Rose neuron [47]. The dynamical variables are xi =
(xi, yi)

T and zi = zi, and the equations F and G read:

F (xi, zi) = (f(x,y), g(x,y))T = (yi + ax2
i − x3

i − zi + Iext, 1 + bx2
i − yi)

T , (9)

G(xi,yi) = (µ[s(xi − x0) − zi]).

The parameters are a = 3, b = −5, x0 = −1.6, µ = 0.006, and s = 4. We shall consider two
different coupling functions (or synaptic connection), namely the electrical synapse, and the
chemical one.

3.1 Electric Synapse

The coupling reads H(xi,xj) = H(xj) = (xj , 0)T , cii = −1, and cij = 1 if i 6= j. In this case,
the synchronized solution on the synchronization manifold takes the form:

ẋ = y + ax2 − x3 − z + Iext,

ẏ = 1 + bx2 − y, (10)

ż = µ[s(x − x0) − z].

Note that since x1 = x2 and
∑

j cij = 0 the contribution of the coupling vanishes on the

synchronization manifold. Let us consider ξ = x1 − x2 = (ξ, η), and ζ = z1 − z2 = ζ. As a
result we have:

ξ̇ = DxF (x, z)ξ + DzF (x, z)ζ − 2gsynE × ξ + O(ξ2), (11)

ζ̇ = DxG(x, z)ξ + DzG(x, z)ζ + O(ξ2),

where E = eij is a 2 × 2 matrix with e11 = 1 and 0 otherwise. Replacing the equations for F
and G, it yields the variational equation for the synchronous states:

ξ̇ = (2ax − 3x2 − 2gsyn)ξ + η − ζ, (12)

η̇ = 2bxξ − η,

ζ̇ = µ[sξ − ζ].

To determine whether the synchronized states are stable we analyze the conditional transver-
sal exponents of Eq. (12). The two largest ones are shown in Fig 1. As the coupling increases,
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the two neurons undergo a transition to CS. However, CS is preceeded first by a transition to
complete synchronization in the slow time-scale (burst) for gsyn =0.44 and then by a transition
to CS in the fast time-scale (spikes), for gsyn =0.47.

0.35 0.4 0.45 0.5
g

syn

-0.01

0

0.01

0.02
λ1
λ2

Fig. 1. The two largest transversal conditional exponents show that in the neurons coupled via electrical
synapse, the burstings become synchronous for a gsyn ≈ 0.44, a value smaller than when CS takes place,
gsyn ≈ 0.47, and the spikings become also synchronous.

The synchronization analysis can be done by means of the localized sets. We define the
event occurrence to be the crossing of the membrane potential with the threshold xth = 1.0.
Note that the event is defined in the fast time scale.

The perturbations of the synchronized solutions diverge from zero at gsyn = 0.1 [Fig. 2(a-
c)]; there is no synchronization. As we increase the coupling to gsyn = 0.465 the slow scale
undergoes a transition to CS, while the other perturbations remain away from 0 [Fig. 2(d,e)].
The analysis of the set D shows that there is phase synchronization in the fast time scale
[Fig. 2(f)]. So information can be transmitted at a low rate of errors in the fast scale, while
in the slow scale information can be transmitted without errors. Finally, at gsyn = 0.55 all
the perturbations decay to zero. Hence, the two neurons are synchronous in both time-scales
[Fig. 2(g,h)]. Since there is complete synchronization in the spike scale the set D converges to
a point.

For bursting complete synchronization [Fig. 2(d,f)] there are no positive transverse expo-
nents corresponding to the slow synchronization manifold. If we had constructed the sets D
with an event defined by the bursts, the set D would converge to a point, showing that the two
oscillators are complete synchronized in this time-scale. The localized sets would show that no
error in the information transmission is due to the bursts. Thus, information can be carried by
the bursts without errors.

Equation (4) estimates the information exchange for the system as a whole, both time-
scales. Whenever the synchronous behavior is stable in both scales the term

∑

λ+
⊥ vanishes.

Hence, Eq. (4) reads I(x1x2) =
∑

λ+
‖ ≈ HKS , where HKS stands for the Kolmogorov-Sinai

entropy of the coupled neurons. For burst synchronization, a positive transversal exponent
associated with the spike dynamics will generate errors in the information transmission. We
can estimate the amount of errors either by the localized set or by computing λmax

⊥ the largest
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Fig. 2. The behavior of the perturbations of the synchronized solution as a function of the coupling
strength. We construct the sets D; the event occurrence is given by the crossing of the membrane
potential, the x variable, with the threshold xth = 1.0. In (a,b) for gsyn = 0, the perturbations are
large, and the set D is not localized (c), which means that there is no synchronization. For gsyn = 0.47
there is no complete synchronization in the fast time scale (d), while complete synchronization in the
slow time scale is present (e). However, the set D is localized (f). Since we are using the event at the
spiking scale, the localization of the set D means that there is PS in the spikes. Finally, for gsyn = 0.55
both time-scales synchronize. The perturbations converge to zero (g,h) and the set D converge to a
point (i), meaning CS.

transverse Lyapunov exponent, Fig. 1. Either ways, we obtain the same results.
∑

λ+
‖ can be

estimated by the largest Lyapunov exponent λmax ≈ 0.018. Therefore, I(x1x2) ≈ λmax−λmax
⊥ ,

where λmax
⊥ ≈ 0.004. Since λmax

⊥ ≪ λmax, we obtain I(x1x2) ≈ λmax ≈ HKS . Therefore, we
conclude that, when the neurons present only burst synchronization, the most appropriate scale
to retrieve information is the bursting scale. However, information could also be retrieved, with
a low probability of errors, from the spiking scale

The synchronization of distinct time scales for electrically coupled neurons has been recently
analyzed [34]. In particular, it is also possible to carry out an analytical estimation for the
threshold for the burst synchronization onset, see [34] for a detailed analysis.

4 Chemical Synapses

We first consider a pulsatile function modeled as a static sigmoidal nonlinear input-output
function with a threshold and a saturation parameters. Afterwards, we shall consider other
coupling functions. For now, we have H(xi,xj) = [(xi − Vs)Γ (xj), 0]T . The coupling matrix
is the matrix E defined in the previous section. The reversal potential Vs > xi(t) for any xi

implies that the synapse is excitatory with Vs = 2.0. The synaptic coupling function is modeled
by the sigmoidal function

Γ (xj) =
1

1 + e−λ(xj−Θs)
(13)
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This coupling function is also called fast threshold modulation [48]. The parameters are
λ = 10, and Θs = −0.25, chosen in such a way that every spike within a single neuron burst
can reach the threshold. In this case, the synchronized solution takes the form

ẋ = ax2 − x3 + y − z − gsyn(x − Vs)Γ (x),

ẏ = 1 + bx2 − y, (14)

ż = µ[s(x − x0) − z].

Considering ξ = x1 − x2 = (ξi, ηi)
T , and ζ = z1 − z2 = ζi. The only variable with a non-

trivial derivation is ξ. All the others are easily obtained by calculating the Jacobian of the F and
G. Writing x1 = ξ+x2, we arrived at ξ̇ = ∂xfξ+∂yfη+∂zfζ +gsyn[ξΓ (x2)−ξ(x2−V )Γ ′(x2)].
Considering that x2 = x1, we have the variational equations

ξ̇ = (2ax − 3x2)ξ + η − ζ − gsynΓ (x)ξ + gsyn(x − Vs)Γ
′(x)ξ (15)

η̇ = 2bxξ − η,

ζ̇ = µ[sξ − ζ],

where

Γ ′(x) =
λe−λ(x−Θs)

[

1 + e−λ(x−Θs)
]2 , (16)

with the intrinsic current Iext = 3.2. For the studied parameters, and a coupling slightly bigger
than the one at which CS is obtained, the neurons undergo a transition to rest state and present
no longer a dynamical behavior.

To determine whether the synchronized states are stable, we analyze the Lyapunov expo-
nents of the variational Eq. (15), the transversal conditional exponents. Two of those are shown
in Fig. 3. As the coupling increases, similarly to the electrical coupling, first the bursting scale
becomes synchronous followed by CS when also the spiking scale becomes synchronous. The
information analysis is similar to the one made in the previous section.

5 Excitatory Networks of Identical Neurons

We consider a network formed by HR neurons. The theory developed in Ref. [49] predicts that
for networks of identical neurons, where all neurons receive the same number of synaptic inputs
k, the onset of CS is given by:

gsyn =
gn=2

syn

k
, (17)

where gn=2
syn is the coupling strength needed to achieve CS between two neurons. For a network

randomly connected of 9 HR neurons, where every neuron receives the same number k = 3 of
inputs, CS sets in at ḡsyn ≈ 0.425.

Note that, even though the isolated neurons are identical, before the onset of PS they have
a different dynamical behavior due to the coupling. So, the synchronization manifold does not
exist and there is no sense in trying to make the analysis in order to identify separately when
the different time scales synchronize. We found, numerically by the observations of the localized
sets, that PS in the whole network is already achieved at g∗syn ≈ 0.36. Clusters of PS, however,
appear for a much smaller value of the coupling strength, actually at gsyn ≈ 0.03.

Clusters of PS inside the network may offer a suitable environment for information ex-
changing. Each one can be regarded as a channel of communication, since they possess different
frequencies, each channel of communication operates in different bandwidths.

Such clusters of phase synchronized neurons are rather suitable for communication exchang-
ing. They provide a multichannel communication, that is, one can integrate a large number of
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Fig. 3. The two largest transversal conditional exponents show that also in the neurons coupled via
chemical synapse, the bursting become synchronous for a gsyn smaller than when CS takes place, and
the spiking become also synchronous.

neurons (chaotic oscillators) into a single communication system, and information can arrive
simultaneously at different places of the network. This scenario may have applications to digital
communication [32,50], and it may also guide us towards a better understanding of information
processing in real neural networks [12,51].

6 Mismatches in the Synaptic Strength

Still holding the constraint of the same number of input for all neurons, we can study the
influence of the mismatches in the synaptic strength. So, instead of considering a constant
strength, we rather consider it with a dependence on the space (network elements). For the
mismatch situation, we may write: gsyn(i, j) = gsyn +θij , where θij is the mismatch parameter.
If gsyn 6= 0, we can also write: gsyn(i, j) = gsyn(1 + θij/gsyn), introducing βij = θij/gsyn.
Therefore, Eq. (8) takes the form

ẋi = F (xi, zi) + gsyn

∑

j

(1 + βij)cijH(xi,xj), (18)

żi = µG(x, z).

where cij is the coupling matrix. Our numerical analysis has shown that for suitable mismatches
in the synapses strengths one can improve the appearance of clusters in the network. For
example, considering the last example with the HR network clusters appear at gsyn ≈ 0.03.
For a θij given by a Gaussian distribution with variance equal to 0.01 clusters of burst phase
synchronization appear even for gsyn(i, j) = θij , which means that gsyn = 0.

A theoretical analysis of this synaptic mismatch procedure can be done not only for the case
where the number of input is constant, but also for a general network. Eq. (19) has been consider
by Qi et al. [52]. Their analysis show that some clusters of completely synchronous neurons may
appear for neurons that have the same li =

∑

j(1 + βij)cij . The equation corresponding to the
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synchronized motion, xi = x and yi = y, is given by

ẋ = F (x, z) + gsynlH(x,x), (19)

ż = µG(x, z).

The analysis carried out in Ref. [52] shows that this equation admits a stable synchronous
solution if gsynl exceeds a threshold, which is network-structure free, in other words, it does
not depend on the network topology. Furthermore, if the neurons have different li complete
synchronization is no longer possible, however, the neurons may present burst synchronization.
So, if one wants to induce the appearance of clusters of synchronous neurons one may use a
mismatch in the synaptic strength. Each cluster will be formed by the neurons that possess the
same li.

7 Networks of Non-identical Neurons

In this section, we study the onset of synchronization in a network of spiking/bursting non-
identical neurons. We couple the neurons via an excitatory synapse. Since the neuron parameters
mismatch, CS is no longer possible, but rather PS. We detect PS and estimate the information
capacity between neurons in this type of network by means of the localized sets.

We also use a more realistic 4-dimensional HR model [53,47]. The neurons are described by
a set of four coupled differential equations:

ẋi = ayi + bx2
i − cx3

i − dzi + Ii + gsynCIsyn(x),

ẏi = e − yi + fx2
i − gwi, (20)

żi = µ(−zi + R(xi + H)),

ẇi = ν(−kwi + r(yi + l)),

where xi represents the membrane potential of the neuron Ni, yi is associated with fast currents
exchange and (zi, wi) with slow currents dynamics, Isyn(x) = (Isyn(x1), Isyn(x2), . . . , Isyn(xN ))
is the synaptic input vector and Isyn(xj) is the synaptic current that neurons Nj (post-synaptic)
injects in Ni (pre-synaptic), and C = {cij} is the N × N connectivity matrix where cij = 1
if neuron Nj is connected to neuron Ni, and cij = 0, otherwise, with j 6= i. This model has
been shown to be realistic, since it reproduces the membrane potential of biological neurons
[54], and it is able to replace a biological neuron in a damaged biological network, restoring its
natural functional activity [55]. It also reproduces a series of collective behaviors observed in a
living neural network [53]. The parameters of the model are the same as in Ref. [53], but the
intrinsical current Ii. We change Ii in order to obtain a spiking/bursting behavior and we use
it as a mismatch parameter.

The chemical synapses [56] are modeled by:

Isyn(xj) = S(t) (xrev − xj) , (21)

[1 − S∞(xi)] τṠ(t) = S∞(xi) − S(t),

where xj is the post-synaptic neuron, xrev is the reversal potential for the synapse, and τ is
the time-scale governing the receptor binding. S∞ is given by:

S∞(xi) =

{

tanh
(

xi−xth

xslope

)

, if xi > xth

0 otherwise
(22)

The synapse parameters are xth = −0.80, xslope = 1.00, xrev = −1.58. They are chosen in such
a way to obtain an inhibitory effect in the chemical synapse.

We consider a network of 100 non-identical HR neurons, regarded as Ni where i ∈ [1, . . . , 100],
connected via excitatory chemical synapses. The mismatch parameter is the intrinsic current Ii.
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For Ii = 3.12, the HR neuron presents a chaotic spiking/bursting behavior, the same found in bi-
ological neurons. We introduce mismatches around this value for all the neurons within the net-
work. Thus, given a random number ηi uniformly distributed within the interval [−0.05, 0.05],
we set Ii = 3.12 + ηi. To obtain an excitatory synaptic effect we use xrev ≥ xi(t), which means
that the pre-synaptic neuron always injects a positive current in the post-synaptic one. Since
the largest spike amplitude is around 1.9, we set xrev = 2.0.

Our network is a homogeneous random network, i.e. all neurons receive the same number
k of connections, namely k = 30. We constrain gsyn to be equal to all neurons. We identify
the amount of phase synchronous neurons by analyzing whether the sets Di are localized. An
example is presented in Fig. 4. We choose three neurons out of the 100 neurons forming the
network. Their membrane potential is depicted in Fig. 4 (a), we name these neurons as 1, 2 and
3. Only the neurons 2 and 3 present PS. Therefore, the set D12 (the subscript means that the
set is constructed considering the neurons 1 and 2) is not localized, Fig. 4(b). Whereas the set
D23 is localized, Fig. 4(c).
The onset of PS in the whole network takes place at g∗syn ≈ 0.0085; so all neurons become
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Fig. 4. Time series of three neurons of a network of 100 neurons. Neurons 2 and 3 present PS between
themselves but not with neuron 1 (a). The analysis of the sets D confirms this statement. In (b) we
construct the set D between neurons 1 and 2. The set spreads over the attractor, and few information
can flow between these two neurons. In (c) we show the set D constructed with the neurons 2 and 3,
which is localized.

phase synchronized. As the synapse strength crosses another threshold, g̃syn ≈ 0.45, the neurons
undergo a transition to the rest state, no longer presenting an oscillatory behavior. Clusters of
PS appear for ḡsyn ≪ g∗syn. In fact, right at gsyn ≈ 0.0005, PS clusters appear [Fig. 5(a)], then,
as we increase the coupling strength more and more clusters appear, see Fig. 5(b-d). Again, the
clusters are identified by analyzing the localized sets. These clusters seem to be robust under
small perturbations.
An important characteristic of the network is the mean field behavior. The emergence of a
collective behavior enhances a mean field that captures the dynamics of the neuron network.
Such a behavior can be problematic and might lead to the appearance of some diseases [12].
In this situation a massive population of neurons behaves in a similar fashion not allowing a
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Fig. 5. Clusters of PS for a random homogenous network of 100 non-identical HR neurons. A point i

and j indicates that the neuron i presents PS with neuron j. In (a) for gsyn = 0.0005 approximately
25 neurons are phase synchronized. In (b-d) we increase the coupling strength gsyn = 0.001, 0.002, and
0.003 respectively.

dynamical behavior apart from the collective one. And if the characteristic of an information
signal differs from the mean field behavior, for example having a different frequency, it will
hardly be spread through the network.

The appearance of PS clusters might be a special characteristic in such neural networks.
The neurons can transmit information in a multichannel way (through many oscillators) still
displaying a low mean field behavior. In Fig. 6(a) for gsyn = 0.0001 there is no synchronization
among the neurons within the network, and the mean field presents no dynamics, but a noise-
like signal, fluctuating around the mean value. As the clusters of PS appear, the mean field is
still very small. Then, when approximately 20% of the network is synchronized a field behavior
with a low frequency oscillation takes place [Fig. 6(b)].

The more phase synchronized neurons the higher the mean field becomes. As an example,
when approximately 35% of the neurons present PS, the mean field already captures the dy-
namics of the phase synchronized bursts [Fig. 6(c)]. For strong enough coupling, many clusters
of neurons with phase synchronized spikes appear, which also enhances a positive mean field
behavior in the fast time-scale [Fig. 6(d)].

The clusters do not always have the same frequency, which means that in addition to the
multichannel communication provided by the clusters, we can also transmit information in more
than one bandwidth. To characterize the bandwidths within the network we analyze the variance
in the average bursting time of the neurons. Since only the bursting scale is synchronized, we
are just interested in the average bursting time, which can be straightforwardly estimated with
a fast Fourier transformation FFT [57]. So, given the neuron Nj , we label its bursting average
time by 〈Tj〉. Then, we compute the variance of the average time on the ensemble of neurons.
For this, we first introduce the average time of the whole network, which is given by:

ζ =
1

n

n
∑

j=1

〈Tj〉. (23)
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Fig. 6. Mean field behavior for the network, calculated by averaging the membrane potential x. For
gsyn = 0.0001, all the neurons are not phase synchronized, which generates a steady mean field with
fluctuations. For g = 0.0005 clusters of PS appear. Even though the clusters have different frequencies,
the mean field presents a slow frequency (b). As we increase the synaptic strength gsyn = 0.003 more
clusters appears enhancing a mean field that captures the dynamics of the burst scale (c). For strong
enough coupling, the clusters of neurons with phase synchronized spikes appear followed by a dynamical
behavior of the mean field also on the fast time-scale (d).

Thus, the variance of the average time on the ensemble of neurons is readily written as:

σ2 =
1

n

n
∑

j=1

(〈Tj〉 − ζ)2. (24)

So, σ indicates how diverse are the bandwidths. The result σ2 × gsyn is depicted in Fig. 7. As
one can see in Fig 7, when the first clusters appear for gsyn ≈ 0.0005, the network becomes
more non-coherent, i.e. σ is increased, and clusters of different frequencies take place. A further
increasing of gsyn causes the appearance of more synchronized neurons and a reduction of σ.
At gsyn = 0.0085, the whole network undergoes a transition to burst PS, therefore σ = 0.

8 Conclusions

We analyze the effect of synchronization in networks of chemically coupled multi-time-scales
(spiking-bursting) neurons on the information transmission exchange process. We show that
synchronization occurs first in the slow time scale (burst) and then in the fast time scale
(spike), however, the information can be transmitted with a low probability of errors in both
scales at the onset of burst synchronization. Furthermore, we show that for networks of non-
identical multi-time-scales neurons complete, synchronization can be no longer achieved, but
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Fig. 7. Variance of the bandwidths within the network. For gsyn ≈ 0.0085 the whole network undergoes
a transition to PS.

rather the neurons may present burst phase synchronization. Our analysis shows that clusters
of burst phase synchronized neurons are very likely to appear in a network before the onset of
burst phase synchronization in the whole network.
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