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An ensemble approach is presented for the reconstruction of a phase synchronization diagram
from time series. As an example system, we analyze a forced Colpitts oscillator to show that
synchronization diagram reconstructed by a single nonlinear model depends sensitively upon the
model parameters, which should be estimated with a considerable amount of care. This depen-
dence can be crucial for a precise recovery of the synchronization phenomena. To overcome this
weakness, an ensemble approach is introduced. Two types of techniques, namely, (I) ensemble
regression and (II) ensemble classification, are developed to show that they provide much more
robust and reliable reconstruction of the synchronization diagram compared to the conventional
single modeling approach.
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1. Introduction

Synchronization is a fundamental phenomenon of
coupled or forced nonlinear oscillators, which are
common in nature and engineering. Up to date, four
basic types of chaotic synchronization, namely, com-
plete synchronization [Fujisaka & Yamada, 1983;
Pecora & Carroll, 1990], generalized synchroniza-
tion [Rulkov et al., 1995; Kocarev & Parlitz, 1996;
Josic, 1998], phase synchronization [Rosenblum
et al., 1996], and lag synchronization [Rosen-
blum et al., 1997], have been found. Phase
synchronization (PS) of coupled or periodically
forced nonlinear systems has found many appli-
cations both in laboratory experiments and natu-
ral systems [Kurths, 2000; Pikovsky et al., 2001;

Boccaletti et al., 2002]. The next important step
is to analyze the synchronization phenomena from
time series data observed from such experimen-
tal or natural systems. So far, several techniques
have been developed to detect PS in the underlying
coupled nonlinear systems from bivariate or multi-
variate data [Kurths, 2000; Pikovsky et al., 2001;
Rosenblum et al., 2002; Osipov et al., 2003;
Romano et al., 2005]. Although such techniques
have been shown to be quite efficient even for noisy
and nonstationary data, the problem of modeling
the synchronization phenomena from data remains
open. By using such models, it is of special inter-
est to infer a synchronization diagram, which yields
the regimes of PS, non-PS, and borderlines between
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both, depending upon the system parameters such
as the coupling strength and the frequency mis-
match between interacting nonlinear oscillators. By
recovering such synchronization diagram from only
a few sets of experimental data, a deeper insight into
the underlying coupled systems can be gained. This
problem formulation is quite practical for situations
in which an extensive synchronization experiment is
not possible and only limited data sets can be exper-
imentally recorded. To retrieve the synchronization
regime, construction of a nonlinear model, which
is parameterized by forcing conditions, such as the
coupling strength and the forcing frequency, from
the recorded data is essential. In a recent study,
we have introduced a novel technique for construct-
ing such a parameterized family of nonlinear mod-
els based on an artificial neural network and its
parameter reduction by the singular value decom-
position [Tokuda et al., 2001]. Our technique has
been successfully applied to prototypical PS mod-
els, asymmetric vocal fold model [Tokuda & Herzel,
2005], and also to experimental data from a paced
plasma discharge tube [Tokuda et al., 2001] and a
chaotic CO2 laser [Tokuda et al., 2004]. For practi-
cal application of our approach to a variety of real
experimental systems, it is important to note that
this technique has a strong dependence upon the
model selection, especially on the parameter esti-
mation of the nonlinear models. The approach is
not very reliable because the result is so sensitive
to the estimated model parameters. The main pur-
pose of the present letter is to introduce the idea
of ensemble technique [Hansen & Salamon, 1990;
Meir, 1995; Krogh & Sollich, 1997; Naftaly et al.,
1997] in order to realize a robust reconstruction of
the synchronization diagrams from time series data.

2. Modeling Technique

First, we state our problem. Suppose we have a
forced nonlinear oscillator whose dynamical state
and forcing signal are simultaneously recorded into
bivariate time series {x(t), y(t)}. As the forcing
signal, sinusoidal forcing y(t) = Esin(νt) is con-
sidered. Among several dynamical components of
the nonlinear oscillator, only a single variable
x(t) is observed. For M sets of different forcing
conditions {νi, Ei}i=1,...,M , the bivariate data are
recorded. Based on the M sets of the bivariate data
{x(t), y(t)}, our task is to predict for which param-
eters of the forcing frequency ν and amplitude E
the forced system is in the regime of PS.

This condition is practical for experimental sit-
uations, under which an extensive exploration of
the synchronization property is not possible. For
instance, in neuroscience, a response characteris-
tic of a single neuron to sinusoidal forcing provides
an important clue. Due to its limited life-time,
however, it is almost impossible to investigate the
response property of the physiological neuron to
every combination of the forcing frequency and the
amplitude. It is therefore an awaited technique to
estimate the synchronization diagram from only few
sets of recorded data.

Our modeling technique is as follows. We embed
the bivariate time series {x(t), y(t)} into delay coor-
dinates X(t) = {x(t), x(t − τ), . . . , x(t− (d− 1)τ)},
Y (t) = {y(t), y(t−τ), . . . , y(t−(d−1)τ)} (d: embed-
ding dimension, τ : time lag) and suppose accord-
ing to the embedding theorem [Takens, 1981; Sauer
et al., 1991] that there exists the following underly-
ing dynamics

dX

dt
= F (X(t), Y (t)). (1)

The main point of our modeling is to construct a
nonlinear function F̃ , that approximates Eq. (1). If
the original forced dynamics is precisely modeled,
the regime of PS as well as non-PS in the parameter
space of the forcing frequency ν and amplitude E
can be predicted by studying the model F̃ instead of
the original forced system. The modeling procedure
is summarized as follows.

(P1) The embedding dimension d and the time lag
τ are determined. The embedding dimension can be
chosen via conventional techniques such as the false
nearest neighbor technique [Abarbanel, 1996]. To
determine the time lag, the first zero-crossing point
of the autocorrelation function is exploited.

(P2) By Euler’s discretization, the dynamical equa-
tion (1) is approximated as

X(t + 1) = X(t) + ∆t·F̃ (X(t), Y (t)), (2)

where ∆t stands for a sampling interval. Although
it is a delicate procedure to discretize continuous-
time nonlinear dynamics by the Euler’s formula, it
has been reported earlier that the Euler’s scheme
with a relatively large sampling ∆t is capable
of approximating the global structure of chaotic
dynamics including bifurcations [Tokuda et al.,
1996]. Then, the nonlinear model F̃ (X,Y ) is real-
ized by a three-layer feed-forward neural network
[Rumelhart et al., 1986], having 2d-units in the
input layer, d-units in the output layer, and h-units
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in the middle layer. To fit the nonlinear model to the
data, the model parameters Ω are optimized with
respect to the cost function

ED(Ω) =
∑

E,ν

ND−K∑

t=(d−1)τ

K∑

k=1

{X̃(t + k,E, ν)

−X(t + k,E, ν)}2, (3)

where the summation
∑

E,ν applies to all data
{x(t), y(t)} (t = 1, 2, . . . , ND) recorded with differ-
ent forcing conditions {νi, Ei}i=1,...,M , ND stands
for the number of the data points, and X̃(t + k)
corresponds to kth iterated state of the dynamics
X̃(t+k) = X̃(t+k−1)+∆t · F̃ (X̃(t+k−1), Y (t))
started from X̃(t) = X(t). The parameter opti-
mization is carried out by minimizing the cost func-
tion ED by the quasi-Newton method [Luenberger,
1973].

(P3) By free-running of the nonlinear model (2),
which is forced by the sinusoidal term Y (t) =
{Esin(νt), Esin(νt − τ), . . . , Esin(νt − (d − 1)τ)},
the frequency ν̃ of the forced model is computed. A
unit phase of 2π is defined as a duration between
one local minimum of the first component of X and
the following one. By counting the number Nm of
the local minima during a period Tf , the frequency
of the free-running model (2) can be computed as
ν̃ = 2π Nm/Tf . The relative frequency difference
between the model and the forcing is then given as
∆ν = (ν̃ − ν)/ν. By changing the forcing ampli-
tude E and frequency ν of the forcing term in (2),
synchronization diagram, which shows dependence
of the frequency difference ∆ν on the forcing con-
dition {E, ν}, is drawn.

The key point of the present technique lies
on the generalization capability of the nonlinear
models. Namely, the model should provide good
approximations not only on the recorded conditions
{νi, Ei}i=1,...,M but further on unknown conditions,
which have not yet been experimented. The well
known problem for this modeling is the over-fitting,
where the model fits too closely to the recorded data
and predicts poorly on unknown data points. Hence,
optimization of the nonlinear models requires a deli-
cate procedure. To deal with this problem, we intro-
duce an ensemble averaging technique [Hansen &
Salamon, 1990; Meir, 1995; Krogh & Sollich, 1997;
Naftaly et al., 1997]. The basic idea of the ensem-
ble averaging is to construct many different non-
linear models from the data and to utilize all the
models as an ensemble in order for the prediction

[Langer & Parlitz, 2004]. In our approach, such ele-
ments of nonlinear models are collected by using
neural networks F̃ (Ωi) (i = 1, . . . , Q) having the
same architecture but having different parameter
values Ωi, which are obtained by the optimiza-
tion procedure of (P2) started from different ran-
dom initial condition. For the reconstruction of the
synchronization diagram, Q sets of nonlinear mod-
els are incorporated in the following two different
ways, namely, (I) ensemble regression (ER) and (II)
ensemble classification (EC).

(I) In the ER approach, the ensemble model G
is constructed by averaging Q sets of nonlinear
models as

G(X(t), Y (t)) =
1
Q

Q∑

i=1

F̃ (Ωi,X(t), Y (t)).

In the procedure (P3), the ensemble model G
is utilized for the free-running as X(t + 1) =
X(t) + ∆t · G(X(t), Y (t)) to predict the regime of
synchronization.

(II) In the EC approach, each nonlinear model
F̃ (Ωi) is simulated to make a prediction on whether
a forcing condition (E, ν) gives rise to synchroniza-
tion or not. If majority of the models “vote” for
synchronization, the condition (E, ν) is determined
as a synchronized condition and otherwise as a non-
synchronized condition.

We note that the present ensembling procedure
increases the computational cost. Compared with
the conventional approach based on a single non-
linear model, the ensemble approach, which uti-
lizes Q nonlinear models, roughly requires Q times
more computations. Despite this computational dis-
advantage, it is worthwhile developing a more reli-
able technique to reconstruct the synchronization
diagram.

3. Application to the Forced
Colpitts Oscillator

Let us apply our technique to a periodically forced
version of the Colpitts oscillator [Kennedy, 1994]:

C1
dVC1

dt
= IL − βg(VC2),

C2
dVC2

dt
= −VE + VC2 + Ecosνt

R
− IL − g(VC2),

L
dIL

dt
= VC − VC1 + VC2 − RLIL,
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where g(V ) = (IS/β) exp(V/VT ). Realistic circuit
condition is simulated by the fourth order Runge–
Kutta method with an integration step of π/8192
using the following parameter values: C1 = 4.7µF,
C2 = 4.7µF, R = 0.39 kΩ, L = 0.0027 H, RL =
0.025 kΩ, β = 200, VT = 0.026 V, IS = 1.4 ·
10−10 mA, VC = 3.3 V, VE = −3.3 V. Figure 1
shows chaotic attractor from the Colpitts oscilla-
tor in the (VC2 , IL) space. Around (VC2 , IL) ≈ (0.5,
7), a single rotation center is discernible. Such a
property associated with a single center is termed
phase-coherence, which provides a unique phase for
chaotic attractor independent of the phase defi-
nition [Pikovsky et al., 2001]. Due to this phase-
coherent property, the phase can be well defined for
the Colpitts oscillator. Among various definitions
proposed as a phase of chaotic attractor, this study
defines a unit phase of 2π as a duration between a
local minimum of the third component IL and the
following one. By numerical simulation of the forced
equations, we have clearly observed a chaotic PS,
giving rise to a well-pronounced Arnold tongue in a
region of relatively weak forcing strength.

For three sets of different forcing conditions
{ν,E} = {0, 0}, {12.02, 0.12}, {12.63, 0.12}, the cor-
responding bivariate time series {IL(t), Ecosνt}
were recorded from the Colpitts oscillator and its
forcing. As indicated by crosses in Fig. 2(a), the
data sets were collected from the nonsynchronized
chaotic regime, since this regime provides a rich
data for retrieving the synchronization structure
[Tokuda et al., 2001]. The sampling interval was
set to be ∆t = π/256, whereas the total recording
interval was set as 1200∆t (i.e. ND = 1200). In the
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Fig. 1. Chaotic attractor from the Colpitts oscillator in the
(VC2 , IL) space.

modeling process of (P1), the embedding dimension
and the time lag were chosen as (d, τ) = (3, 11∆t).
In (P2), number of units in the middle layer of
the neural network was determined as h = 14 by
the cross-validation technique. With respect to 400
sets of different initial conditions uniformly dis-
tributed over [−0.5, 0.5], 400 sets of model param-
eters {Ωi : i = 1, 2, . . . , 400} were obtained. The
maximum iteration number for the quasi-Newton
method was set to be 104, whereas the integra-
tion interval of the cost function (3) was set to be
K = 32. Among 400 sets of the obtained model
parameters {Ωi : i = 1, 2, . . . , 400}, 285 sets, which
give rise to a natural frequency, associated with
self-sustained oscillations of the model (2) without
forcing, ranging between 12.02 < ν̃ < 12.630, were
extracted and they were randomly selected to con-
struct the ensemble model. The random selection
was carried out in a way that a same single model
was not selected twice as elements of one ensemble
model.

Figure 2(a) shows the synchronization diagrams
of the forced Colpitts oscillator and ten sets of
the nonlinear models without utilizing the ensemble
technique (Q = 1). Abscissa and ordinate respec-
tively indicate the forcing frequency and amplitude,
varied as (ν, E) ∈ [12 : 12.65] × [0 : 0.18]. Inside and
outside of the borderline correspond to the regimes
of PS and non-PS, respectively. The condition for
PS is defined as |∆ν| < 0.002. Although the bor-
derlines of the ten models tend to reproduce sim-
ilar configuration to the original borderline, some
model borderlines are deviated largely from the true
one. This indicates that reconstruction of the PS
diagrams from data sensitively depends upon the
model parameters, which should be estimated care-
fully. Moreover, estimation of the borderline based
upon a single model is not highly reliable due to its
large confidence interval. Figure 2(b), on the other
hand, shows synchronization diagrams of the orig-
inal and ten sets of ensemble classification models
with Q = 17. The difference in the ten sets is due
to different selection of the ensemble elements from
285 single models F̃ (Ωi). The borderlines of the
ten ensemble models reproduce the basic configu-
ration of the original borderline almost precisely.
Compared with Fig. 2(a), the variation among the
nonlinear models are much smaller, giving rise to
a highly reliable and robust reconstruction of the
PS diagram. We note that the estimated border-
line is less precise on the right-hand side than
on the left-hand side. The cause of this right–left
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Fig. 2. Synchronization diagrams of the original forced Col-
pitts system (black bold line in both (a) and (b)), ten differ-
ent single nonlinear models (dotted lines in different colors in
(a)), and ten different realizations of the ensemble classifica-
tion technique with Q = 17 (dotted lines in different colors
in (b)). The cross points in (a) correspond to the forcing con-
ditions utilized for the data modeling. Inside and outside of
the borderline correspond to the regime of PS and non-PS,
respectively. The forcing frequency and the amplitude are
varied as (ν, E) ∈ [12 : 12.65] × [0 : 0.18].

unbalance, which seems to be due to an inherent
property of the underlying Colpitts system, is at
this point not well understood.

To quantify the similarity between the origi-
nal and the model PS diagrams, a normalized mean
squared error (NMSE) was computed as follows. On
N × N grid points uniformly distributed over the
parameter space (ν, E) ∈ [12 : 12.65] × [0 : 0.18],
frequency difference ∆ν(νi, Ej) are computed for
i, j = 1, . . . , N . If the point (i, j) is in a PS regime,
that is, |∆ν(νi, Ej)| < 0.002, we denote its state
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Fig. 3. Dependence of the normalized mean squared error
(NMSE) on the ensemble size Q. The solid line corresponds
to the ensemble classification, whereas the dotted line corre-
sponds to the ensemble regression. The NMSE was averaged
over 100 different realizations of the ensemble method. The
error bars correspond to the standard deviation. (a) and (b)
correspond to the case of utilizing the original time series and
the surrogate data, respectively, for the modeling.

by η(i, j) = 1. Otherwise, the state is denoted by
η(i, j) = −1. The NMSE of the model {ηm(i, j)}
against the original {ηo(i, j)} is then computed by
E =

∑
i,j {ηm(i, j)−ηo(i, j)}2/

∑
i,j {ηo(i, j) −ηo}2,

where ηo = (1/N2)
∑

i,j ηo. Figure 3(a) shows the
dependence of the NMSE (N = 20) on the size
of the ensemble Q. The NMSE was averaged over
100 different realizations of the model selection,
whereas the error-bars indicate the standard devia-
tion. For both ER and EC curves, we see that, as the
ensemble size Q is increased, the NMSE decreases
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monotonically, realizing an improved reconstruc-
tion of the synchronization diagram. An increase
in the ensemble size results in a smaller error-bar,
which implies a robust estimation of the synchro-
nization diagram with smaller confidence intervals.
We also note that smaller errors for the EC curve
indicate that the EC is more effective than the
ER. Our preliminary experiments, however, sug-
gest that the relationship between EC and ER
strongly depends upon the quality of individual
elements of the single nonlinear models. The ER
provides a good improvement when the individual
nonlinear models are rather poor. Further inves-
tigation is necessary to obtain more conclusive
results.

Finally, we present a surrogate data analysis
[Theiler et al., 1992] to examine our modeling
technique. In this analysis, dynamical correla-
tion between two components of the data {IL(t),
Ecosνt} used for our modeling is destroyed as
follows. First, dynamical component IL(t) from
the Colpitts oscillator remains unchanged. Then,
a shift change in time is made for the forc-
ing signal as Ecosν(t + δt), where δt stands for
the shift constant. The obtained surrogate data
{IL(t), Ecosν(t + δt)} shuffles dynamical correla-
tion between the two components.

From two sets of the bivariate time series
{IL(t), Ecosνt} forced respectively with conditions
{ν,E} = {12.02, 0.12}, {12.63, 0.12}, their corre-
sponding surrogate data {IL(t), Ecosν(t + δt)} were
created. It is essential that the shift constant was
set differently as δt = 15∆t, 30∆t for the two data
sets. Together with the nonforced data {IL(t), 0},
the surrogate data were exploited for the ensem-
ble reconstruction of the PS diagram. The modeling
conditions were set exactly the same as the previous
ones. Figure 3(b) shows dependence of the NMSE
on the ensemble size Q. In contrast to the case that
no surrogate data were utilized [Fig. 3(a)], large
NMSE values close to E ≈ 1, indicating unreli-
able reconstruction of the PS diagram, have been
obtained. With an increase in the ensemble size
Q, no significant decrease in the error is observed
for both ER and EC curves. This implies that the
dynamical correlation between the bivariate data is
essential for the reconstruction of the PS diagram.
The present ensemble technique detects such a cor-
relation highly sensitively to recover synchroniza-
tion structure of the underlying forced nonlinear
system.

4. Conclusions

In conclusion, an ensemble technique has been
introduced for the reconstruction of the synchroni-
zation diagrams from time series. With an appli-
cation to simulated data from the forced Colpitts
oscillator, we have shown that the ensemble tech-
nique provides much more robust and reliable
results compared to the conventional single model-
ing technique. Our future studies will focus on (1)
effect of observational and dynamical noise on the
ensemble technique, (2) combinatory use of both
ER and EC techniques, (3) extension of the present
approach to nonphase-coherent system such as the
funnel-type Rössler oscillator by adopting a recent
technique of detecting phase in a nonphase-coherent
system [Romano et al., 2005], and (4) application of
this approach to experimental data from real elec-
tronic circuits.
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