
International Journal of Bifurcation and Chaos, Vol. 17, No. 10 (2007) 3493–3497
c© World Scientific Publishing Company

EIGENVALUE DECOMPOSITION AS
A GENERALIZED SYNCHRONIZATION

CLUSTER ANALYSIS

CARSTEN ALLEFELD
Nonlinear Dynamics Group and Research Unit “Conflicting Rules”,

University of Potsdam, P. O. Box 601553, 14415 Potsdam, Germany
allefeld@ling.uni-potsdam.de

MARKUS MÜLLER
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Motivated by the recent demonstration of its use as a tool for the detection and characterization
of phase-shape correlations in multivariate time series, we show that eigenvalue decomposition
can also be applied to a matrix of indices of bivariate phase synchronization strength. The
resulting method is able to identify clusters of synchronized oscillators, and to quantify their
strength as well as the degree of involvement of an oscillator in a cluster. Since for the case of
a single cluster the method gives similar results as our previous approach, it can be seen as a
generalized Synchronization Cluster Analysis, extending its field of application to more complex
situations. The performance of the method is tested by applying it to simulation data.
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1. Introduction

The eigenvalue decomposition of the equal-time
correlation matrix of a set of signals is one of
the standard tools of multivariate data analy-
sis (cf. [Anderson, 2003]). Recently, Müller et al.
[2005] demonstrated the usefulness of the eigenvalue
decomposition of the correlation matrix specifically
as a tool for the detection of phase-shape cor-
relations in multivariate data sets. They showed
that changes in the degree of synchronization in all
or a subset of signals are reflected in coordinated
changes in the highest and lowest eigenvalues, and
that information on the channels involved and the

type of their interaction can be obtained from the
corresponding eigenvectors.

While the correlation of time series may indi-
cate the synchronization of the oscillators they are
obtained from, the physical concept of synchro-
nization refers specifically to the adjustment of the
rhythms of oscillators, i.e. to the relative dynam-
ics of their phases rather than their amplitudes
[Pikovsky et al., 2001]. Moreover, there is a regime
in the dynamics of coupled chaotic oscillators in
which the phase difference is bounded while the
amplitudes remain uncorrelated [Rosenblum et al.,
1996], called phase synchronization. In this paper,
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we show that in order to focus the analysis on syn-
chronization relations, it is possible to replace the
matrix of correlation coefficients with a matrix of
indices of bivariate phase synchronization strength.
Combined with an additional step of sorting signals
into groups, eigenvalue decomposition can operate
as a Synchronization Cluster Analysis, generalizing
the previous approach of Allefeld and Kurths [2004].

2. Eigenvalue Decomposition of the
Synchronization Matrix

The correlation matrix C of a set of data channels
xi, i = 1, . . . , N , consists of the correlation coef-
ficients Cij ∈ [−1; 1] between channels. Its eigen-
values λk and eigenvectors vk are defined by the
equation

Cvk = λkvk, (1)

which in general has N different solutions, k =
1, . . . , N . In the following we assume that the eigen-
vectors are normalized, |vk| = 1, and the solu-
tions have been sorted according to the eigenvalues,
λ1 ≤ λ2 ≤ · · · ≤ λN .

The eigen-vectors and -values of C are real-
valued, and the eigenvalues are non-negative.
Because a matrix becomes the diagonal matrix of its
eigenvalues by being transformed into the basis of
its eigenvectors and the trace of a matrix is invariant
under such a transform, for every correlation matrix∑

λk = tr(C) = N holds. In the uncorrelated case
this is trivially fulfilled by λk = 1 for all k. Deviating
from this, each increase of an eigenvalue above 1 has
to be compensated by at least one other eigenvalue
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Fig. 1. (Left) Synchronization matrix consisting of three clusters of oscillators. (Right) Its eigenvectors and -values. Eigen-
vectors corresponding to eigenvalues >1 describe the cluster structure.

becoming smaller than 1, such that this value gives
a natural distinction between “large” and “small”
eigenvalues.

The quantification of phase synchronization is
based on the instantaneous phase φi of each oscilla-
tor i = 1, . . . , N . How these phases are determined
in the special case is not important here; if the given
data are time series, the standard approach is the
Hilbert transform for narrowband data, or the Mor-
let wavelet transform for broadband signals (for a
discussion, see [Pikovsky et al., 1997] or [Allefeld,
2004], Sec. 3.2). The statistical strength of phase
synchronization of two oscillators i and j can then
be defined as the “peakedness” of the distribution of
the phase difference φj−φi; here we use the measure

Rij =

∣∣∣∣∣
1
n

n∑

l=1

exp(i(φjl − φil))

∣∣∣∣∣ , (2)

where l = 1, . . . , n enumerates the realizations in
the given sample. For the continuum from no to
perfect phase synchronization, this measure takes
on values from 0 to 1. R can be seen as the modu-
lus of the complex correlation coefficient of signals
xi = exp(i φi), and its decomposition shares the
properties given above for C.

Since R is a nonlinear measure, in this case the
eigenvalue decomposition can no longer be inter-
preted with regard to a linear transform of data
channels into source channels. But still the result
of the decomposition can be used as a means to
analyze the structure of synchronization relations.
We will demonstrate this with two basic, artificially
constructed examples of synchronization matrices.
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Figure 1 shows the synchronization matrix for
a system consisting of three clusters of synchro-
nized oscillators (with no synchronization between
clusters and a different degree of involvement of
each oscillator in its cluster) along with the result
of the eigenvalue decomposition. There are three
eigenvalues larger than one, and the corresponding
eigenvectors describe clearly the extent of the clus-
ters as well as the degree of involvement of the indi-
vidual oscillators. There is also a correspondence
between the size and strength of internal synchro-
nization of the clusters and the three eigenvalues.
In contrast, the remaining eigenvectors seem not
to contribute to the description of the synchroniza-
tion clusters. The interpretation of the eigenvalue
decomposition of R therefore has these aspects:
(i) Synchronization clusters are identified by eigen-
values λk > 1. The eigenvalues themselves quantify

the strength of the clusters. (ii) For each cluster,
the corresponding eigenvector describes its internal
structure. Because

∑
i v

2
ik = 1, the index v2

ik quanti-
fies the relative involvement of channel (oscillator)
i in cluster k. (iii) Combining both, the “absolute”
involvement of channel i in cluster k can be quan-
tified by the participation index λkv

2
ik.

Figure 2 gives the result for a matrix consist-
ing of the same three clusters, but with additional
inter-cluster synchronization. Because of the cou-
pling between them, the three clusters no longer
appear in separate components of its eigenvalue
decomposition. There are still three λk > 1, but the
eigenvectors consist of superpositions of the clus-
ters. To account for this, the oscillators belonging
to the three clusters have to be identified explicitly.

This can be done by means of the participation
indices; the procedure is illustrated in Fig. 3. Each
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Fig. 2. Synchronization matrix consisting of three clusters with additional inter-cluster synchronization. The cluster structure
appears in the eigenvectors for λk > 1, but only in different superpositions.
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Fig. 3. Synchronization Cluster Analysis. (Left) Participation indices corresponding to λk > 1 for the synchronization matrix
of Fig. 2. Oscillators are attributed to that cluster for which its participation index is maximal: blue, green, or red. (Center)
Synchronization matrix with removed inter-cluster synchronization. (Right) Result of the eigenvalue decomposition of the
trimmed matrix; shown are the participation indices and cluster strengths.
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oscillator is attributed to that cluster for which
its participation is maximal. In this way, the three
clusters consisting of oscillators #1–5 (blue), 6–9
(green), and 10–12 (red) are correctly identified.
In a second step, all of the indices for inter-cluster
synchronizations are set to zero, and the eigenvalue
decomposition is repeated on the trimmed matrix.
For the result of this decomposition, the interpreta-
tion given above is valid again.

3. Generalized Synchronization
Cluster Analysis

The procedure described in the last section is an
approach to synchronization cluster analysis. The
method identifies clusters of synchronized oscilla-
tors and quantifies the strength of the clusters as
well as the degree of involvement of each oscilla-
tor in its cluster. In a previous paper, Allefeld and
Kurths [2004] introduced another approach that
was limited to a single cluster of synchronization;
it assumed that all of the oscillators belong to
the same cluster, and focused on the quantification
of the degree of oscillator participation. The algo-
rithm derived from the observation that under rela-
tively general conditions the synchronization indices
within a cluster can be written as the product of
factors RiC ,

Rij = RiC RjC for i �= j (Rii = 1), (3)

which can be interpreted as the synchronization
strength between oscillator i and the cluster itself,
its “to-cluster synchronization strength”.

We investigated the relationship between the
results of the two methods by applying them to sim-
ulation data that conforms to the presupposition
of a single factorizable synchronization cluster. For
N = 20 oscillators, the RiC were drawn randomly
from the uniform distribution over [0; 1]; then the
Rij were calculated based on 100 samples of the
phase difference from a wrapped normal distribu-
tion (cf. [Allefeld & Kurths, 2004]). Figure 4 shows
the result for the relation between the output of the
earlier method and the participation indices for the
strongest cluster. Though the mathematical back-
ground of both methods is clearly different, the plot
shows an almost functional dependency, which can
be roughly described by R2

iC = λNv2
iN . The region

of zero participation indices for R2
iC below about 0.2

comes from the attribution of weakly synchronized
oscillators to another cluster by the new method;
in this range the observed value can no longer be
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Fig. 4. Relation between the result of the single-cluster anal-
ysis (horizontal scale: estimate of R2

iC) and the participa-
tion indices given by eigenvalue decomposition (vertical scale:
λNv2

iN ) in 20 simulation runs.

reliably distinguished from no synchronization for
the given sample size. Since there is a clear rela-
tionship between the results of both methods in the
case where the assumptions of the earlier method
hold, the cluster analysis based on the eigenvalue
decomposition of the synchronization matrix can be
seen as a generalization of our previous approach to
synchronization cluster analysis.

4. Application to Simulated Phase
Synchronization

To check the performance of the new method, we
applied it to data obtained from the numerical sim-
ulation of a system that is known to exhibit clusters
of phase synchronization, previously investigated by
[Osipov et al., 1997] (see Eq. (1) & Sec. IV A).
The system consists of a chain of 20 phase-coherent
Rössler oscillators with a diffusive coupling in the
y-component of strength ε = 0.007. The natural
frequencies of the oscillators increase linearly along
the chain, in the range ω = 1 . . . 1.004. Phases were
defined as the angle in the x/y-plane. To also test
for the influence of small sample size and noise, we
additionally applied the algorithm to the synchro-
nization matrix obtained from data reduced to 100
approximately independent samples with 50% white
noise added to the time series data.

The result is shown in Fig. 5. The analysis iden-
tifies two clusters of synchronized oscillators (#1–16
& 17–20). There is an almost constant high partic-
ipation of oscillators in their cluster, resulting in
cluster strengths close to the number of involved
oscillators. Decreased participation occurs near the
border between the clusters, where the coupling
along the chain pulls oscillators away from the com-
mon dynamics of their group. The result for reduced
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Fig. 5. Analysis results (participation indices and cluster strengths) for a chain of nonidentical Rössler oscillators.
(Left) Based on original simulation data. (Right) Data reduced to 100 samples, plus 50% measurement noise.

sample size and measurement noise is very sim-
ilar to the original. Though participation indices
and cluster strengths are slightly smaller due to
the noise, the same two clusters are clearly iden-
tified. This result indicates that the cluster analy-
sis based on eigenvalue decomposition is relatively
robust against small sample size and noise.

5. Conclusion

We have introduced a new approach to synchro-
nization cluster analysis based on eigenvalue decom-
position. The new method can be seen as a
generalization of our previous approach, extending
its field of application to situations to include multi-
ple clusters. The algorithm was tested on simulation
data and shown to be robust against small sam-
ple size and noise. Future work will be on the use
of the method to investigate synchronization pat-
terns in EEG data. A Matlab implementation of
the algorithm can be obtained from the correspond-
ing author.
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