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Abstract: The present work aims at analyzing the structure of cortical connectivity during the attempt
to move a paralyzed limb by a group of spinal cord injured (SCI) patients. Connectivity patterns were
obtained by means of the Directed Transfer Function applied to the cortical signals estimated from
high resolution EEG recordings. Electrical activity were estimated in normals (Healthy) and SCI
patients on twelve regions of interest (ROIs) coincident with Brodmann areas. Degree distributions
showed the presence of few cortical regions with a lot of outgoing connections in all the cortical net-
works estimated irrespectively of the frequency band investigated. For both of the groups (SCI and
Healthy), bilateral cingulate motor area (CMA) acts as hub transmitting information flows. The effi-
ciency index, allowed to assert the ordered properties of such estimated cortical networks in both pop-
ulations. The comparison of such estimated networks with those obtained from random networks, eli-
cited significant differences (P < 0.05, Bonferroni-corrected for multiple comparisons). A statistical
comparison (ANOVA) between SCI patients and healthy subjects showed a significant difference (P <
0.05) between the local efficiency of their respective networks. For three frequency bands (theta 4-7 Hz,
alpha 8-12 Hz, and beta 13-29 Hz) the higher value observed in the spinal cord injured population
entails a larger level of internal organization and fault tolerance. This fact suggests a sort of compensa-
tive mechanism as local response to the alteration in their MIF areas, which is probably due to the indi-
rect effects of the spinal injury. Hum Brain Mapp 28:1334-1346, 2007.  ©2007 Wiley-Liss, Inc.
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¢ Cortical Network Analysis in Control and SCI Subjects ¢

INTRODUCTION

The concept of functional connectivity is viewed as cen-
tral for understanding the organized behavior of anatomic
regions in the brain during their activity. This organization
is thought to be based on the interaction between different
and differently specialized cortical sites. Cortical connectiv-
ity estimation aims at describing these interactions as con-
nectivity patterns, which reflect direction and strength of
the information flows between the cortical areas involved.
In order to achieve this, several methods were applied on
data gathered using both hemodynamic and electromag-
netic techniques (Brovelli et al., 2004; Buchel and Friston,
1997; Gevins et al., 1989; Urbano et al.,, 1998). So far, the
estimation of functional connectivity on EEG signals has
been addressed by applying either linear or non-linear
methods which can both disclose the direct flow of infor-
mation between scalp electrodes in time domain, although
with different computational demands (Clifford, 1987;
Inouye et al., 1995; Nunez, 1995; Stam and van Dijk, 2002;
Tononi et al., 1994). In the latest years, a multivariate spec-
tral technique called Directed Transfer Function (DTF) was
proposed (Kaminski et al., 2001) to determine directional
influences between any given pair of channels in a multi-
variate data set. This estimator is able to characterize at
the same time direction and spectral properties of the
brain signals, requiring only one multivariate autoregres-
sive (MVAR) model to be estimated from all the EEG
channel recordings. The DTF technique has been demon-
strated (Kaminski et al., 2001) to rely on the key concept of
Granger causality between time series (Granger, 1969),
according to which an observed time series x(n) results in
another series y(n), if the knowledge of x(n)’s past signifi-
cantly improves prediction of y(n); if the relation between
time series is not reciprocal, then x(n) may cause y(n),
without y(n) necessarily yielding x(n). This lack of reci-
procity provides the direction of the information flow
between elements.

High Resolution EEG

Recently this multivariate method was applied to corti-
cal waveforms estimated on realistic brain models by high
resolution EEG recordings (Astolfi et al., in press; Babiloni
et al, 2005). In fact, high resolution EEG techniques
include the use of a large number of scalp electrodes, real-
istic models of the head derived from structural magnetic
resonance images (MRIs) and advanced processing meth-
odologies related to the solution of the linear inverse prob-
lem. These methodologies allow the estimation of cortical
current density from sensor measurements (Grave de Per-
alta and Gonzalez Andino, 1999). Thus, functional connec-
tivity estimation aims at describing brain interactions
among several cortical areas with their direction and
strength. The structure of these patterns allows us to treat
them as real networks and to make some considerations
about their topology by means of the graph theory.

Graph Theory

Since a graph is a mathematical representation of a net-
work, which is essentially reduced to nodes and connec-
tions between them, a way to characterize topographical
properties of real complex networks was proposed using a
graph theoretical approach (Sporns et al., 2004; Strogatz,
2001; Wang and Chen, 2003). It was realized that func-
tional connectivity networks estimated from EEG or mag-
netoencephalographic (MEG) recordings can be analyzed
with tools that have been already generated for the treat-
ments of graphs as mathematical objects (Stam, 2004). This
is interesting since the use of mathematical indexes for
summarizing some graph properties allows for the genera-
tion and the testing of particular hypotheses on the physi-
ologic nature of the functional networks estimated from
high resolution EEG recordings.

Small-World Networks

Watts and Strogatz have shown that graphs with many
local connections and few random long distance connec-
tions are characterized by a high cluster index C and a
short path length L (Watts and Strogatz, 1998). Such near
optimal models are designated as “small-world” networks.

Many types of real networks have been shown to share
these small-world features (Strogatz, 2001). Patterns of ana-
tomical connectivity in neuronal networks are particularly
characterized by high clustering and a small path length
(Watts and Strogatz, 1998). Networks of functional connec-
tivity based upon fMRI BOLD signals or MEG recordings
have also been shown to have small-world features (Sal-
vador et al.,, 2005; Stam, 2004). Recently, a more general
setup has been tested in order to investigate real networks
(Boccaletti et al., 2006). Global and local efficiency are simi-
lar to the path length and cluster index respectively, but
they are more suitable for weighted and unconnected
graphs. One of the advantages of the efficiency-based for-
malism is that a single measure, the efficiency E (instead
of the two different measures L and C used in the Watts-
Strogatz formalism), is sufficient to define the small-world
behavior (Latora and Marchiori, 2001).

Scale-Free Networks

Besides, some real networks are mostly found to be very
unlike the random graph in their degree distributions. It
was demonstrated that such degree distributions follow a
power law trend (Barabasi and Albert, 1999). Those net-
works, called “scale-free”, also exhibit the small-world
phenomenon, but tend to contain few nodes that act as
highly connected “hubs”, although most of the nodes have
low degrees. Scale-free networks are very peculiar in how
they respond to damages. An interesting characteristic of
such networks is that they are extremely tolerant of ran-
dom failures. In fact they can absorb random failures up
to about 75% of their nodes before they collapse; however,
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they are more vulnerable to intentional attacks on their
“hubs”. Attacks that simultaneously eliminate as low as
about 18% of a scale-free network’s hubs can collapse the
whole structure (Albert et al., 2000).

The use of graph tools seems to be particularly adequate
to characterize functional connectivity patterns estimated
with the DTF algorithm from high resolution EEG or MEG
data. In particular, these tools were applied to a set of
high resolution EEG data during the execution of a foot
movement in a healthy population and during the attempt
of the same movement in a group of spinal cord injured
(SCI) patients. The question is whether the “architecture”
of the functional connectivity in SCI patients, evaluated by
graph analysis, may differ from healthy behavior. We
wonder if SCI patients could show a more efficient cortical
network in order to compensate the altered behavior of
their primary motor areas because the spinal injury.

By using tools derived from graph theory, some indexes
related to the topology of the cortical networks estimated
were derived.

In particular, the main experimental questions investi-
gated in this work are the following:

1. Is the efficiency index significantly different in the
cortical connectivity networks estimated from normal
and SCI subjects during the performance of the same
task?

2. If it does exist, is such a difference dependent on the
frequency contents of the cortical activity?

3. Are the efficiency values estimated in the two popula-
tions” networks different from those obtained in
“random” graphs having the same dimensions?

METHODS

High Resolution EEG Recordings in
SCI Patients and Healthy Subjects

All experimental subjects participating in the study were
recruited by advertisement. Informed consent was
obtained from each subject after the explanation of the
study, which was approved by the local institutional ethics
committee.

The healthy group consisted of five volunteers (age, 26—
32 years; five males). They had no personal history of neu-
rological or psychiatric disorder, were not taking medica-
tion, and were not abusing alcohol or illicit drugs.

The SCI group consisted of five patients (age, 22-25
years; two females and three males). Spinal cord injuries
were of traumatic aetiology and located at the cervical
level (C6 in three cases, C5 and C7 in two cases, respec-
tively); patients had not suffered a head or brain lesion
associated with the trauma leading to the injury.

For EEG data acquisition, subjects were comfortably
seated on a reclining chair, in an electrically shielded,
dimly lit room. They were asked to perform a brisk pro-
trusion of their lips (lip pursing) while they were perform-

ing (healthy subjects) or attempting (SCI patients) the right
foot movement.

The choice of this joint movement was suggested by the
possibility to trigger the SCI patients” attempt at foot
movement. In fact patients are not able to move their
limbs; however they could move their lips. By attempting
a foot movement associated with a lips protrusion, they
provided an evident trigger after the volitional movement
activity. Such a trigger has been recorded to synchronize
the period of analysis for both the populations considered.

The task was repeated every 6-7 s, in a self-paced man-
ner, and the 100 single trials recorded were used for the
estimate of functional connectivity by means of the
Directed Transfer Function (DTF, see following paragraph).
A 96-channel system (BrainAmp, Brainproducts, Germany)
was used to record EEG and EMG electrical potentials by
means of an electrode cap and surface electrodes respec-
tively. The electrode cap was built according to an exten-
sion of the 10-20 international system to 64 channels. Struc-
tural MRIs of the subject’s head were taken with a Siemens
1.5T Vision Magnetom MR system (Germany).

Cortical Activity and Functional
Connectivity Estimation

Cortical activity from high resolution EEG recordings
was estimated using realistic head models and cortical sur-
face models with an average of 5,000 dipoles, uniformly
disposed. Estimation of the current density strength, for
each one of the 5,000 dipoles, was obtained by solving the
Linear Inverse problem, according to techniques described
in previous papers (Astolfi et al., in press; Babiloni et al.,
2005). By using the passage through the Tailairach coordi-
nates system, twelve Regions Of Interest (ROIs) were then
obtained by segmentation of the Brodmann areas (B.A.) on
the accurate cortical model utilized for each subject. Bilat-
eral ROIs considered in this analysis are the primary
motor areas for foot (MIF) and lip movement (MIL), the
proper supplementary motor area (SMAp), the standard
pre-motor area (BA6), the cingulated motor area (CMA)
and the associative area (BA7). As an example for the dif-
ferent steps involved in the generation of the high resolu-
tion EEG model employed in this study, Figure 1 presents
a superimposition of the electrode montage with actual
head structures as well as the cortical areas employed as
regions of interest.

For each EEG time point, the magnitude of the 5,000
dipoles composing the cortical model was estimated by
solving the associated Linear Inverse problem (Grave de
Peralta and Gonzalez Andino, 1999). Then average activity
of dipoles within each ROI was computed. In order to
study the preparation for an intended foot movement, a
time segment of 1.5 s before the lips pursing was analyzed;
lips movement was detected by means of an EMG.

Although motor responses could be analyzed at the
same way, we would concentrate on the “intention-to-
move” time interval in order to have results that could be
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Figure I.

Left: Four steps involved in the generation of the Lead Field ma-
trix for the estimation of cortical current density from EEG
recordings. From left to right, from top to the bottom: MRI
images from a healthy subject, generation of the head models
and superimposition with electrodes cap. On the right of the fig-
ure the Regions of Interest (ROIs), taken into account for suc-

Beta Band

cessive connectivity estimations, are illustrated. Cortical activity
was estimated on the cortical areas of interest from the high re-
solution EEG recordings performed in both the populations.
[Color figure can be viewed in the online issue, which is available
at www.interscience.wiley.com]
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used successively in the Brain Computer Interface context.
BCI is a recent field of research in which brain signals
related to movement intention can be suitably treated to
control external devices. This fact would improve the con-
dition of SCI patients in a next future.

Resulting cortical waveforms, one for each predefined
ROI, were then simultaneously processed for the estima-
tion of functional connectivity by using the Directed Trans-
fer Function. DTF is a full multivariate spectral measure,
used to determine the directed influences between any
given pair of signals in a multivariate data set (Kaminski
et al., 2001). In order to be able to compare the results
obtained for data entries with different power spectra, the
normalized DTF was adopted. It expresses the ratio of
influence of element j to element i with respect to the
influence of all the other elements on i. Equations used for
the implementation of the DTF applied on data analysis
are described in previous papers (Astolfi et al., 2005; Babi-
loni et al.,, 2005). Application of this method to the ROIs
waveforms returns a cortical network for each frequency
band of interest: (theta 4-7 Hz, alpha 8-12 Hz, beta 13-29
Hz, 30-40 Hz). Only estimated DTF connections that are
statistically significant (at P < 0.001) after a contrast with
the surrogate distribution of DTF values on the same ROIs
obtained with a Montecarlo procedure were considered for
the network to be analyzed with graph theory’s tools. This
procedure enables us to consider only those functional
links that are not due to chance.

As an example of the networks estimated for the two
populations analyzed, Figure 2 shows the average cortical
network estimated in the beta frequency band for the SCI
group and for the healthy group during the motor
attempt/execution of the task. The Figure shows the aver-
age intensity of 30% of the greater connections belonging
to two experimental subjects at least. The cortex of one
particular subject was used for display purposes, being the
computations performed on the realistic ROIs of each indi-
vidual cortex. One arrow from the cortical region X to the
cortical region Y describes the existence of a stable causal
relation between them. Estimated cortical waveform in the
X region “Granger”’-causes the estimated cortical wave-
form in the Y region, in the particular frequency range.

Graph Analysis

Application of graph theory to small networks is rather
new when compared to standard application of such

theory in biological context. However, recently the need
for the use of graph analysis applied to small networks
has been underlined (Hilgetag et al., 2000; Stam et al,,
2006a,b). Although application of graph theory to 28 raw
EEG signals has been already addressed (Micheloyannis
et al., 2006), we underline that achieving cortical wave-
forms allows the possibility to represent nodes as particu-
lar Brodmann areas of the cortex (Babiloni et al., 2005).
The use of raw EEG signals, in the context of graph theory,
returns less powerful results since nodes within the net-
work represent electrodes on the scalp, which could have
indirect links with the cortical areas beneath them.

In order to achieve topological features, a cortical net-
work has to be converted into a directed unweighted
graph (digraph). In this study, connection matrix contains
DTF values for each directed pair of ROIs and can be con-
verted to an adjacency matrix A by considering a thresh-
old T that represents the number of the most powerful
connections to be considered. If the number of links in the
DTF matrix exceeds T, less powerful connections will be
removed until that threshold is reached. Also, T can be
expressed as connection density, that is, the ratio between
the number of all the effective connections and the number
of all possible connections within the graph. In order to
study the topology of the networks at different connection
densities or costs (Latora and Marchiori, 2003), a range of
values (0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5) was
explored.

Once the cortical network has been converted, it is possi-
ble to characterize the digraph in terms of its degrees,
degree distributions, global, and local efficiency.

Degrees and Distributions

The simpler attribute for a graph’s node is its degree of
connectivity, that is, the total number of connections with
other nodes. The arithmetical average of all node’s degree
(k) is called mean degree of the graph. Indeed, this mean
value gives little information about the behavior of degree
within the system. Hence, it is useful to introduce P(k), the
fraction of vertices in the graph that have degree k. Equiv-
alently, P(k) is the probability that a vertex chosen uni-
formly at random has degree k. A plot of P(k) for any
given network can be constructed by making a histogram
of the degrees of vertices. This histogram is the degree dis-
tribution for the graph and it allows better understanding
of the degree allocation in the system. Here, because the

Figure 2.

Average connectivity networks among ROls, for SCI group
(upper left) and healthy group (upper right), obtained from DTF
in the Beta frequency band during the foot-lip task. They show
the 30% of the most powerful edges. Only edges shared by at
least two experimental subjects are shown. Nodes follow the
disposition of ROls on the cortex, represented at the bottom of

the figure. Head is seen from above, with nose towards the bot-
tom of the page; left hemisphere is on the right part of the fig-
ure. Flows direction is represented by an arrow, while intensity
is coded by its color and size. Each node is labeled with the ROI
acronym. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]
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Average values of local efficiency at different values of threshold
in the two experimental populations for the representative beta
frequency band. Red line represents values for SCI networks
while blue line refers to Healthy networks. The square inside
displays the sub-interval of thresholds for which E,,. remains sig-
nificantly (P < 0.05) different between the two groups. Yellow
ellipse localizes the threshold used (30%) in order to illustrate
all following results. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]

Theta Band

graph is directed, the in-degree k;, and the out-degree kot
for each node must be considered separately. They repre-
sent the total number of connections incoming (afferent) to
a vertex and outgoing (efferent) from the same vertex,
respectively. Degrees have obvious functional interpreta-
tions. A high degree-in indicates that a neural region is
influenced by a large number of other areas, while a high
degree-out indicates a large number of potential functional
targets. For large networks both distributions Pi,(k) and
Pout(k) over the entire digraph may be inspected for scale-
free attributes such as power laws (Albert and Barabasi,
2002). Besides, contrasting biological degree distributions
with those obtained from same-sized random digraphs
could reveal interesting differences.

Efficiency

Efficiency is a quantity recently introduced (Latora and
Marchiori, 2001) to measure how efficiently the nodes of
the network communicate when they exchange informa-
tion in parallel.

It is computed from the distance matrix D, which con-
tains distances between each pair of nodes, defined as the
length of the shortest path between them (Harary, 1969); if
there is no path linking a pair of vertices, the distance is
infinite. Computationally, D can be determined using sev-
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Figure 4. (legend on page 1340)
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eral algorithms with different time complexity. Here, the
Floyd-Warshall algorithm (1962), which computes for each
pair of vertices the minimum weight among all paths
between the two vertices, was applied.

The efficiency e;; in the communication between vertices i
and j can then be defined to be inversely proportional to
their shortest distance: e;; = 1/d;. When there is no path in
the graph between i and j, d;; = oo and consistently, e; = 0.

Global efficiency of A can be defined as

1 1

Eglob = N(N — 1) ;TW (1)

where N is the number of vertices composing the
graph. Note that 1/L (inverse of the characteristic path
length) can be seen as first approximation of Egjg,.

Since efficiency is also defined for disconnected graphs,
the local properties of A can be characterized by evaluat-
ing for each vertex i the efficiency of A, the sub-graph of
the neighbors of i. Local efficiency is the average of all the
sub-graphs’ global efficiencies:

1
Eloc = N zl: Eglob (Al) (2)

This quantity plays a role similar to that of the clustering
coefficient C, previously used in literature. Since node i
does not belong to the sub-graph A;, local efficiency Ejoc
reveals how much the system is fault-tolerant; thus it
shows how efficient the communication is between the
first neighbors of i when i is removed.

The definition of small-world can now be rephrased and
generalized in terms of the information flow: small-world
networks have high Ego, and Ejq, that is, they are very ef-
ficient in global and local communication. This definition
is valid both for unweighted and weighted graphs, and
can also be applied to disconnected or non-sparse graphs
or both.

Contrast Between Groups

Analysis of variance (ANOVA) was used in order to
find significant differences between the indices of effi-
ciency computed in the two populations for all the fre-
quency bands. ANOVA was chosen since it is known to be
robust with respect to the departure of normality and
homoscedasticity of data being treated (Zar, 1984). Sepa-
rate ANOVAs were conduced for each of the two variables
Egiob and Ej,, computed in each frequency band relevant

for this study. Statistical significance was put at 0.05 and
main factors of the ANOVAs were the “between” factor
GROUP (with two levels: SCI and Healthy) and the
“within” factor BAND (with four levels: theta, alpha, beta,
and gamma). Greenhouse and Geisser correction was used
for the protection against the violation of the sphericity
assumption in the repeated measure ANOVA. Besides,
post-hoc analysis with the Duncan’s test and significance
level at 0.05 was performed. All the statistical analysis was
performed with the software Statistica®, StatSoft, Inc.

Contrast With Random Graphs

The contrast between functional networks obtained from
the two experimental groups and random digraphs having
the same number of nodes and connections of the cortical
networks was investigated. These graphs were generated
distributing a fixed number of connections between ran-
domly chosen couple of nodes (Latora and Marchiori,
2003). A set of 1,000 random digraphs was collected and
the respective distributions of global and local efficiency
values were calculated. A hypothesis testing procedure
was employed in order to detect significant differences
between average values of the random digraphs and aver-
age values of the experimental digraphs. The large amount
of random values assures the normality of their distribu-
tions, then it was separately performed a z-test for each
average value of global and local efficiency gathered from
the two populations in each frequency band.

Significance level was posed at 0.05 (Bonferroni cor-
rected for multiple comparisons) and it was determined
whether an average value obtained from an experimental
group in a particular band, could belong to a normal dis-
tribution of 1,000 values with a known standard deviation.

RESULTS

All results displayed are relative to networks with a
threshold applied equals to 0.3. This means that all
digraphs analyzed have the same number of connections
representing the 30% of the most powerful links within the
network. This particular value represents the median of an
interval of thresholds (from 0.1 to 0.5, see Graph Analysis)
for which results remain significantly stable. In all the net-
works investigated, values of degrees for each node
increase or decrease proportionally to the threshold
selected. Thus all differences among graphs’ degrees are
maintained.

Figure 4.
Average degrees of SCI group in the frequency bands analyzed. Light blue line represents
degree-in, while dark blue refers to degree-out. On the abscissas ROlIs label are displayed; on
the ordinates there are degree values. [Color figure can be viewed in the online issue, which is

available at www.interscience.wiley.com]
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Moreover, according to the previous description in Con-
trast Between Groups, global and local efficiency of the
two populations for each of the following thresholds were
statistically compared. It has been seen that the only signif-
icant (P < 0.05) differences were due to local efficiency in
a sub-interval ranging from 0.2 to 0.4. The stability of
results is then clear in a range of =10% around the chosen
value. Trends of average local efficiencies at different val-
ues of threshold in the two experimental populations for a
representative frequency band, are shown in Figure 3.

Degrees

Figure 4 shows results relative to the average incoming
connections (in-degree) and the average outgoing connec-
tions (out-degree) for the ROIs of the SCI population in
four different frequency bands analyzed. Level of involve-
ment has to be considered separately for incoming connec-
tions and outgoing connections. Contrast between degrees
“in” and “out” of the normal population, during the prepa-
ration to the movement execution, is presented in Figure 5.

Direct comparisons of the data presented in Figures 4
and 5 show that for all the frequency bands there is a
strong involvement of SMAp areas in SCI population dur-
ing the attempt to move the paralyzed limb, which is not
so evident in the healthy subjects. The absolute level of
incoming connections in each single ROI seems rather sim-
ilar in the two populations. Anyway some differences
appear in BA7 areas, where in-degree is higher in the SCI
group irrespectively of the frequency band.

The number of outgoing connections for cingulate motor
areas (CMA) is very high for both of the two experimental
groups, while no connections seem to come from the pri-
mary motor areas of the lips (MIL). In particular, in the
beta frequency band, healthy subjects present a remarkable
flow coming from their primary motor areas (MIF), while
a large number of links in the SCI patients come out from
the SMAp areas.

Degree Distributions

As outlined in the Methods section, mean degrees are
just indicative of the global behavior of a digraph’s con-
nectivity. For a more detailed analysis, it is necessary to

compute two degree distributions P;, and P,y for each of
the networks obtained. At the top of Figure 6 average
trends of the degree distributions are shown for SCI and
Healthy groups, in a representative frequency band. Histo-
gram values were normalized to the size of the digraph,
which is the number of the elements within the network
(12 ROIs). An interesting result is that in-degree and out-
degree distributions show different trends within each
group. Right-skew tails of out-degree distribution indicates
the presence of few nodes with a very high level of out-
going connections, while for the in-degree distribution
there are no ROIs in the network with more than six
(seven in some other bands) incoming connections.

This unsettling, found in each of the two experimental
groups and frequency band, is an attribute of the real net-
works that cannot be observed in random graphs. At the
bottom of Figure 6, average degree distributions obtained
from a set of five random digraphs are shown; it is evident
the absence of “hubs” either for efferent and afferent
flows.

Contrast Between Groups

In order to catch inter-individual variance of the results,
values of indexes employed (Egiob, Eioc) Were computed for
cortical networks estimated on each experimental subject
(spinal cord injured and healthy), in the four frequency
bands.

Average values of the SCI and healthy population are
then reported in the Figures 7 and 8 respectively, in the
four frequency bands.

Successively, a contrast between values of the two popu-
lations was addressed by using the Analysis of Variance
(ANOVA), as summarized below.

Global efficiency

ANOVA performed on the Eg,p, variable showed no sig-
nificant differences for the main factors GROUP and
BAND. In particular “between” factor GROUP was found
having an F value of 0.83, P = 0.392 while the “within”
factor BAND was found having an F value of 0.002 and P
= 0.99.

Figure 5.
Average degrees of the healthy group in all the frequency bands analyzed. Same conventions than in
Figure 4. [Color figure can be viewed in the online issue, which is available at www.interscience.

wiley.com]

Figure 6.

Average trends of degree distributions are shown for SCI
(upper-left) and healthy (upper-right) group in the beta frequency
band. In-degree distribution P, is represented by light blue bars,
while dark blue bars refer to out-degree distribution P,. In
order to have comparable results the histogram values were

normalized to the number of the elements within the network
(12 ROls). Average degree distributions of five random digraphs,
are shown in the bottom part of the Figure with the same previ-
ous conventions. [Color figure can be viewed in the online issue,
which is available at www.interscience.wiley.com]
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Figure 7.
Average values of global efficiency (Egop) for the levels of
“within” factor BAND, grouped by SCI and healthy subjects. No
statistically significant differences were found between normal
subjects and SCI patients. Vertical bars denote 0.95 confidence
intervals. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]

Local efficiency

ANOVA performed on the Ej, variable revealed a
strong influence of the between factor group (F = 32.67, P
= 0.00045); while the BAND factor and the interaction
between GROUP X BAND were found not significant (F =

-0- GROUP: SCI
=0=- GROUP: Healthy

11—

Eloc

I

Alpha Beta Gamma

BAMD

Figure 8.
Average values of local efficiency (Eo) for the levels of “within”
factor BAND, grouped by SCI and Healthy subjects. A statisti-
cally significant difference (P < 0.05) was noted between normal
subjects and SCI patients. Vertical bars denote 0.95 confidence
intervals. [Color figure can be viewed in the online issue, which
is available at www.interscience.wiley.com]

0.21 and F = 0.91 respectively, P values equal to 0.891 and
0.457).

Post-hoc tests revealed a significant difference between
the two examined experimental groups (SCI, Healthy) in
theta, alpha, and beta band (P = 0.006, 0.01, 0.03 respec-
tively). It can be observed (Fig. 8) that the average values
of the local efficiency in the SCI subjects are significantly
higher than those obtained in the Healthy group, for the
three frequency bands.

Contrast With Random Graphs

Figure 9 shows the contrast between the values obtained
for global and local efficiency in the two populations stud-
ied with those obtained in a set of 1,000 random digraphs,
having the same number of nodes and arcs.

To state the statistical significance of the differences
observed in the mean values of those indexes, separate z-
tests, at the significance level of 0.05 (Bonferroni-corrected
for multiple comparisons), were performed and are sum-
marized in the Table L

Results show that for both of the experimental groups
(SCI and healthy) and in all the frequency bands
employed, global efficiency is significantly lower than the
random mean value. Instead, local efficiency for the SCI
group in every band is significantly higher than the ran-
dom one. The same behavior appears for the healthy pop-
ulation in each frequency band except for theta and alpha

Efficiency Scatter

0.8
SCI
Healthy
» Random

Pob

B
0.4 8o

1
%35 04 0.45 0.55 06

0.5

Eglob
Figure 9.
Scatter plot of global and local efficiency. All the average values
are grouped by SCI patients (red symbols) and healthy subjects
(blue symbols) while black dots represent the distribution of
1000 random digraphs. Greek symbols characterize the fre-
quency bands involved in the study. [Color figure can be viewed
in the online issue, which is available at www.interscience.wiley.
com]
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TABLE I. z-Values of the 16 contrasts performed with a z-test with significance level at 0.05
(Bonferroni-corrected for multiple comparisons)?

z-values SClI-theta SCl-alpha SCl-beta SCI-gamma Healthy-theta Healthy-alpha Healthy-beta Healthy-gamma
Egiob 237.45 250.13 262.88 267.07 249.81 238.21 225.95 223.4
Eioc —57.714 —53.314 —57.025 —38.936 15.99 11.051 —-7.163 —21.674

# All contrasts were significant (P < 0.001); so respective percentiles are not reported. Positive/negative z-values indicate that the mean
value of the random distribution is higher/lower than the average value of an experimental group in a particular frequency band.

that contrarily show lower values of local efficiency when
compared with the random distribution.

DISCUSSION

The possibility to adopt a mathematical approach nota-
bly improves the capability of detecting relevant features
in real complex networks. In this sense, graph theory can
help the analysis of connectivity patterns estimated from
high resolution EEG by means of MVAR methods.

Analysis performed on the cortical networks estimated
from the group of normal and SCI patients revealed that
both groups present few nodes with a high out-degree val-
ues. This property is valid in the networks estimated for
all the frequency bands investigated. In particular, cingu-
late motor areas (CMAs) ROIs act as “hubs” for the out-
flow of information in both groups, SCI and healthy. This
means that removal of CMAs from the estimated patterns
will cause a collapsing of the whole cortical network, thus
corrupting the characteristic behavior of the preparation to
the effecting of this experimental task. In addition, while
SCI patients show a remarkable flow outgoing from their
SMAp areas in the beta frequency band, healthy subjects
show a relevant outflow from the MIF areas in the same
frequency band.

Although the presence of “hubs” in the out-degree dis-
tributions of all the cortical digraphs could suggest a
power-law trend, we cannot formally assert their scale-free
properties, according to actual procedures (Boccaletti et al.,
2006), because the small size of the networks involved pre-
vents us from achieving a reliable degree distributions.

Results suggest that spinal cord injuries affect the func-
tional architecture of the cortical network sub-serving the
volition of motor acts mainly in its local feature property.
In fact, SCI patients have shown significant differences
from healthy subjects in this index; this could be due to a
functional reorganization phenomenon, generally known
as brain plasticity (Raineteau and Schwab, 2001). The
higher value of local efficiency Ej,. suggests a larger level
of the internal organization and fault tolerance (Sivan
et al., 1999). In particular, this difference can be observed
in three frequency bands, theta, alpha and beta, which are
already known for their involvement in electrophysiologic
phenomena related to the execution of foot movements
(Pfurtscheller and Lopes da Silva, 1999). A high local effi-

ciency implies that the network tends to form clusters of
ROIs which hold an efficient communication. These effi-
cient clusters, noticed in the SCI group, could represent a
compensative mechanism as a consequence of the partial
alteration in the primary motor areas (MIF) due to
the effects of the spinal cord injury. Instead, it seems that
the global level of integration between the ROIs within the
network do not differ significantly from the healthy behav-
ior. This could mean that spinal cord injuries do not affect
the global efficiency of the brain which attempts to pre-
serve the same external properties observed during the
foot-lip task in the cortical networks of healthy subjects.

By perusing data presented in both Table I and Figure 9,
it is clear that cortical networks estimated in this study are
not structured like random networks. Instead, well ordered
properties arise from most of the digraphs obtained from
each experimental group and frequency band. In fact, they
show similar values of global and local efficiency and
more precisely fault tolerance is privileged with respect to
global communication. These results indicate that cortical
networks behave globally in the same way as they behave
locally. Moreover, these real digraphs show a lower global
efficiency and a higher local efficiency than respective val-
ues obtained from random digraphs. This fact suggests
during the experimental task brain networks tend to fol-
low an ordered spatial topology rather than a small-world
or a random architecture. Here, random digraphs are gen-
erated with the same number of nodes and edges of the
connectivity patterns obtained. Anyway, in order to have
more robust comparisons algorithms that also preserve the
degree distributions are available and recently applied to
cortical networks (Sporns and Zwi, 2004).

Theoretical graph approach can be a very useful tool,
able to catch some global and local features in the func-
tional connectivity patterns estimated from the high reso-
lution EEG. Degrees together with their distributions,
global and local efficiency, point out some aspects in the
structure of cortical network that cannot be easily noticed
and that allow comparison of different networks between
different task or subjects. In addition, appropriate algo-
rithms that also take into account the actual values of con-
nectivity strengths estimated by the DTF procedures could
be adopted, in order to further increase the efficacy of the
analysis proposed (Latora and Marchiori, 2003).

On the basis of these experimental results obtained from
the application of graph theory tools to the functional con-
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nectivity networks estimated by using advanced high reso-
lution EEG and DTF algorithms, we have possible answers
to the experimental questions posed in the introduction
section.

In particular:

1. It seems that there are significant differences in the
cortical functional connectivity networks between SCI
patients and healthy subjects. Such differences are
related to the internal organization of the network
and its fault tolerance, which in SCI patients appears
to be higher than in normal subjects, as suggested by
the significant increase of the local efficiency.

2. Differences in this functional connectivity networks
are higher in the theta, alpha and beta frequency
bands, which are already known to be involved in
the phenomena related to the execution of motor acts.

3. All functional connectivity networks extracted from
the two experimental groups showed ordered proper-
ties and significant differences from “random” net-
works having the same characteristic sizes.

In conclusion, graph analysis tools described here seem
to be instruments that are adequate to study distinctive
features of functional connectivity networks, estimated
with the use of advanced high resolution EEG methodolo-
gies.
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