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We propose recurrence plots �RPs� to characterize the stickiness of a typical area-preserving map
with coexisting chaotic and regular orbits. The difference of the recurrence properties between
quasiperiodic and chaotic orbits is revisited, which helps to understand the complex patterns of the
corresponding RPs. Moreover, several measures from the recurrence quantification analysis are
used to quantify these patterns. Among these measures, the recurrence rate, quantifying the per-
centage of black points in the plot, is applied to characterize the stickiness of a typical chaotic orbit.
The advantage of the recurrence based method in comparison to other standard techniques is that it
is possible to distinguish between quasiperiodic and chaotic orbits that are temporarily trapped in a
sticky domain, from very short trajectories. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2785159�

It is important to recognize that nonintegrable Hamil-
tonian systems exhibit chaos with some particular fea-
tures; e.g., the full space is a complicated mixture of pe-
riodic, quasiperiodic, and chaotic orbits. A typical chaotic
trajectory spends a long time near the border of stable
islands, showing almost regular motion, which is a behav-
ior called stickiness. The presence of stickiness causes
some substantial difficulties in the use of conventional
tools to characterize the dynamics when only short tra-
jectories are available. In this paper, we present a careful
numerical investigation of the recurrence properties of
orbits from nonintegrable Hamiltonian systems by using
a two-dimensional visualization technique: the recur-
rence plot (RP). We find that the patterns in the RPs of
quasiperiodic and chaotic orbits are qualitatively differ-
ent. These differences in the RPs allow distinguishing be-
tween regular and chaotic orbits that are temporarily
trapped in a sticky domain in short trajectories. Further-
more, applying recurrence quantification analysis it is
possible to understand these recurrence patterns
quantitatively.

I. INTRODUCTION

It is well known that the phase space of a nonintegrable
Hamiltonian system is neither entirely regular nor entirely
chaotic. The whole phase space is a complicated mixture of
domains of chaotic trajectories coexisting with domains of
regular or periodic ones. In other words, the full space is
decomposed into subregions associated with qualitatively
distinct dynamical properties.1 The regular dynamics consists
of quasiperiodic orbits lying on tori and periodic orbits,
while chaotic orbits are expected to fill the corresponding
subspace densely.2 In the case of two-dimensional area-
preserving maps, invariant circles separate the phase space,

preventing trajectories in the chaotic sea from entering any
island, and regular trajectories inside an island from reaching
the chaotic sea. Hence, the characterization of orbits as regu-
lar or chaotic is crucial and it has attracted much attention.

In the literature, a frequently used method for this prob-
lem is the estimation of Lyapunov exponents. This measure
is well justified and standard for the characterization of the
nature of orbits. Chaotic motion is characterized by a posi-
tive Lyapunov exponent �in the case of the area-preserving
maps, the sum of all exponents is zero�. Regular orbits, on
the other hand, have zero Lyapunov exponents. However,
when resorting to numerical calculations, only a finite time is
used, producing the so-called local �or finite-time� Lyapunov
exponent. This is, of course, more important when dealing
with experimental data, because of the rather small number
of measurements. Calculations of finite-time Lyapunov expo-
nents in Hamiltonian systems were performed in Ref. 3. It
seems to be impossible to include all other methods and their
associated developments reported in the literature as it is a
fast growing field. For a review of such methods, see Ref. 4.
Therefore, we only mention one popular approach in this
spirit: the spectra of stretching numbers �or local Lyapunov
exponents for only one iteration time�, which have been
shown to be efficient in distinguishing chaotic from regular
trajectories.4–6

When the previous measures are applied, considerable
attention is paid to the corresponding convergence rate, as it
ensures a reliable characterization. This is particularly impor-
tant for Hamiltonian systems with mixed phase space which
are divided into different ergodic components. The dynamics
inside each of these components might be regular �periodic
or quasiperiodic� or chaotic. However, due to the existence
of stable islands, a typical chaotic trajectory will need a long
time to fill its corresponding component in phase space. In
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particular, once the chaotic orbit is close to an island, it will
stay close to it and will be almost regular in its motion for a
rather long time. After this transient period, it escapes to the
large chaotic sea. Such a long-term confinement of the tra-
jectory in this domain is called stickiness.7,8 Stickiness de-
lays the convergence and might also cause some substantial
difficulties in the use of Lyapunov exponents and the spec-
trum of stretching numbers. Therefore, characterizing a cha-
otic orbit reliably requires much computational effort. In
some sense, it is reasonable to define a temporarily “sticky”
chaotic orbit on time scales when it is stuck, respectively, a
“filling” chaotic orbit on time scales when it travels unim-
peded throughout the chaotic region.9 This classification is
rather useful for one carefully chosen chaotic orbit, which
has a strong sticking time.5 Note these two different and
relative concepts coincide in the limit of long time when
referring to one chaotic orbit.

The origin of the stickiness does not have a universal
scenario. One mechanism that generates stickiness is by
means of cantori, consisting of sets of destroyed tori, which
serve as partial barriers. The orbits can cross a cantorus,
albeit after a long time.8 Islands-around-islands scenarios
were reported in Refs. 10 and 11. Other simple mechanisms
of stickiness cannot be excluded, such as the existence of one
single marginal unstable fixed point,12 or one-parameter
families of marginal unstable periodic orbits in the phase
space.13 The first known example of stickiness was presented
in Ref. 14. Nowadays, it has been accepted as a fundamental
property of Hamiltonian systems. Stickiness may produce
anomalous transport, which perhaps is the most prominent
consequence.11

In this paper, we propose using recurrence plots �RPs� to
characterize stickiness. We use the standard map, a two-
dimensional area-preserving map, as an example. We follow
the idea of Ref. 9 and categorize the trajectories into quasi-
periodic, sticky, and filling chaotic orbits. Note that the
stickiness is a general property of Hamiltonian chaos. Hence,
the concept of sticky orbit only refers to the particular time
scale when it is stuck. However, the use of this concept
makes it convenient for us to compare the differences be-
tween these orbits and refer to the results of Refs. 5 and 6. As
the name suggests, RPs concentrate on the recurrence prop-
erties of the orbits. As a result, a two-dimensional black-
white plot �introduced in Sec. III� can be used to visualize
the difference between quasiperiodic and sticky orbits. One
popular method to characterize stickiness uses the distribu-
tion P�T� of the recurrence times �T1 ,T2 , . . . ,TM , . . . � of a
typical chaotic orbit to a predefined recurrence region. The
stickiness is quantified in terms of an asymptotic power-law
decay P�T��T−� for large T, where � is a scaling
exponent.11,15 This power-law can be related to the decay of
the correlation function, survival probability and transport
properties.11 The recurrence quantification analysis �RQA�,
which is based on RPs, can also characterize the stickiness in
a similar way.

The outline of the paper is as follows. In Sec. II the
recurrence properties of quasiperiodic orbits to a predefined
interval are reviewed. In Sec. III, we apply RPs to visualize
the differences between ordered and chaotic orbits. The RQA

measures are used to quantify the patterns in the RPs in Sec.
IV. Furthermore, in Sec. V we follow a typical chaotic orbit
and use RQA to quantify its stickiness.

II. RECURRENCES OF QUASIPERIODIC
AND CHAOTIC ORBITS

We consider the standard map, which is a paradigmatic
example of an autonomous near-integrable system with two
degrees of freedom:

v��t�:�yn+1 = yn +
�

2�
sin�2�xn� ,

xn+1 = xn + yn+1,
	 mod 1 �1�

with � denoting a nonlinearity parameter. This model is
probably the best-studied chaotic Hamiltonian map.1 It can
be interpreted as the a Poincaré section of a periodically
kicked rotor. It also approximates other physical situations,
such as the Fermi accelerator model.

For small nonlinearity parameters �, those tori with a
Diophantine rotation number, i.e., �� �� : 
n�−m

�c /n� , ∀ m ,n�Z ,n�0� for some ��1 and c�0,
survive.10 The onset of chaos is connected to the destruction
of tori, i.e., the change of tori into cantori, as the perturbation
increases. As a consequence, chaotic and regular trajectories
are intimately intermingled. The Kolmogorov-Arnold-Moser
�KAM� surfaces isolate the layers of stochasticity from each
other and the stochastic excursions are constrained by nearby
KAM curves.

The simple but little-known result of Slater’s theorem16

allows detecting quasiperiodicity rather easily. This theorem
states that for any irrational linear rotation with rotation
number � and for any connected interval of size �, there are
at most three different return times to this interval, one of
them being the sum of the other two. Furthermore, two of
them are always consecutive denominators in the continued
fraction expression of the irrational number �. This fact has
also been proven for integrable Hamiltonian systems with
two degrees of freedom.17

Based on Slater’s theorem, the detection of quasiperiod-
icity can be performed simply by counting the number of
different return times that the orbit needs to recur to the
neighborhood of a reference point v� ref. The torus is identified
with at most three different return times, which does not hold
for chaotic orbits. The authors of Ref. 18 have firstly pro-
posed to use this recurrence property to detect the existence
of quasiperiodicity, which was demonstrated to be a useful
and fast tool. Note that Slater’s theorem does not impose any
constrictions on the size of �, provided it does not cover the
whole trajectory in phase space. Therefore, for the imple-
mentation of this result, we do not have to worry about hav-
ing very long recurrence times. Choosing a larger value of �
we can decrease the recurrence times to the starting interval.

We use this idea and apply it to the map �Eq. �1��. Sev-
eral typical trajectories on the phase plane are shown in Fig.
1. In this plot, each orbit has a length of N=2�107 points.24

The color is encoded as follows. First, for each trajectory, we
randomly choose a reference point v� ref and specify a recur-
rence interval of � size around this point. We then count the
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number of different return times for this trajectory. Finally,
we assign a color to the trajectory with respect to the number
of different return times, and plot each trajectory with the
associated color. In Fig. 1�a� we represent the color-coded
orbits for �=0.8. For �	�cr=0.9716. . ., many rotational in-
variant tori are preserved while some are destructed. When
���cr �Fig. 1�b�, �=1.4� no rotational tori are left. In both
cases, we have fixed the size of the recurrence interval to �
=0.015. Trivially, periodic orbits have only one return time
�darkest color�. For quasiperiodic orbits �including rotational
and librational circles�, the number of return times is at most
3. In contrast, chaotic trajectories have a much larger number
of return times �medium gray�. Therefore, we see that count-
ing the number of different return times allows classifying
the type of dynamics reliably.

Another interesting property discovered by this analysis
is the distinction between different stochastic layers. Taking
Fig. 1�a� as an example, the chaotic region �A1� around the
period-1 elliptic orbit, i.e., �x ,y�= �0.5,0�= �0.5,1�, has a
much higher value of the number of returns, compared to the
chaotic region �A2� around the period two elliptic orbits, i.e.,
�0,0.5�� �0.5,0.5�. The same holds for the chaotic regions
�A3� around the period-3 and -4 elliptic orbits �A4�, as shown
by gradually different colors.

From these two diagrams, one clearly observes the dif-
ferences between the regular and chaotic orbits by their as-
sociated number of different return times. The predefined
size of the recurrence interval � only influences the number
of return times of chaotic trajectories, which increases with
�. In contrast, the number of return times for regular orbits
�periodic and quasiperiodic� is constant with �. Analogously,
the length of the time series does not influence the number of
return times for regular orbits. For chaotic orbits, the number
of return times increases with the length of the trajectory.
Summarizing, the number of return times for a quasiperiodic
orbit is always at most 3, independently of the value of � and
of the length of the trajectory. The only restriction for the
value of � is that it does not cover the whole trajectory in
phase space.

III. RECURRENCE PLOTS OF ORDERED
AND CHAOTIC ORBITS

As mentioned in Sec. I, the phase space of nonintegrable
Hamiltonian systems is divided into subregions with regular
and chaotic orbits, producing a complicated mixture of both.
A typical chaotic trajectory spends a long time in the neigh-
borhood of stable islands, showing almost regular behavior
before going to the large chaotic sea. During this particular
time, the orbit is stuck and is referred to as sticky orbit.5,9

In this section, we use the method of recurrence plots
�RPs� to distinguish between quasiperiodic and sticky orbits
in short trajectories. To illustrate our idea, we choose a sticky
orbit as suggested in Ref. 5. The first 3000 iterations of the
trajectory are shown in Fig. 2�b�. This orbit escapes to the
large chaotic area after approximate 1.65�105 iterations. We
call this escape time Tesc, which is about two orders of mag-
nitude larger than our “observation.” In Fig. 2�a�, we also
plot one librational quasiperiodic orbit together with a filling
chaotic one for better comparison. Based on the representa-
tions in the phase space, it is not possible to discern whether
the curve of Fig. 2�b� is quasiperiodic or chaotic, since the
number of iterations is much less than Tesc. Therefore, it is

FIG. 1. �Color� The phase portrait of the standard map �Eq. �1�� with different perturbation values: �a� �=0.8 and �b� �=1.4. The color is determined by the
number of different return times. The value of 1 corresponds to periodic orbits.

FIG. 2. �Color online� The phase portrait of the standard map for �=5.0. �a�
The first 3000 iterations of three orbits are plotted with different colors:
quasiperiodic �gray�, sticky �dark gray�, and filling chaotic �black�. �b� The
first 3000 iterations of the sticky orbit. �c� The first 1.7�105 iterations of the
sticky orbit.
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necessary to look at other properties of the orbit. To this end,
we concentrate on the recurrence properties of the orbit.

RPs were originally introduced to visualize the recur-
rences of trajectories of dynamical systems in phase space.19

Suppose that we have a dynamical system represented by the
trajectory �v� i� for i=1, . . . ,N in a d-dimensional phase space.
We then compute the following recurrence �binary� matrix,

Ri,j = 
�� − �v� i − v� j��, i, j = 1 . . . N , �2�

where � is a predefined threshold, 
�·� is the Heaviside func-
tion, and �·� denotes a norm. The graphical representation of
Ri,j, called a “recurrence plot,” is obtained by encoding the
value “1” by a black point �i.e., the distance between the
respective points is smaller than the predefined threshold ��,
and “0” by a white point �i.e., the distance between the re-
spective points is larger than ��.

When calculating the recurrence matrix �Eq. �2��, a con-
ventional way to choose � corresponding to 10% of the size
of the corresponding component and the Euclidean norm are
applied.20 Figure 3�a� shows the RP of the quasiperiodic or-
bit. It consists mainly of uninterrupted diagonal lines. The
number of different distances between these lines is at most
3, in accordance with Slater’s theorem. The RP of the sticky
orbit exhibits a quite different feature: it consists of many
dashed diagonal lines �Fig. 3�b��. Comparing this RP to the
RP of the filling orbit �Fig. 3�c��, we note that the diagonal
lines of the sticky orbits are much longer, reflecting the fact
that the sticky orbit is more regular than the chaotic one. The
RP of the filling chaotic orbit is composed of a large number
of short diagonals, which are distributed more homoge-
neously. The large black structure along the main diagonal of
Fig. 3�c�, leaving two almost blank bands in the vertical and
horizontal directions, is due to the presence of the stable
islands. When the chaotic trajectory visits the neighborhood
of one stable island, the dynamics is again stuck for some
time �Fig. 3�d��. We notice a relatively “weak” sticky behav-
ior compared to the “strong” stickiness of Fig. 3�b� within

our observation time. Note that stickiness is a general prop-
erty of a chaotic orbit in Hamiltonian systems.

From the above RP representations, it is rather straight-
forward to see the differences between them, showing that
RPs are a powerful tool for the characterization of the dy-
namics. Note that it is possible to distinguish between qua-
siperiodic and sticky orbits even in much shorter trajectories
than 3000 iterations. Using Slater’s theorem, it is possible to
detect the existence of quasiperiodicity in only ten orbital
periods with about 700 points.21

An alternative method to distinguish quasiperiodic from
chaotic orbit is based on stretching numbers. The calculation
of the spectrum of stretching numbers proposed by Conto-
poulos et al.4,5 consists of two steps. First, one specifies an
infinitesimal deviation from the initial condition to compute
the stretching numbers, which only works in the case that the
equations are known. The second step is to construct the
spectrum taking care of the bin size and the number of bins.
In order to obtain a reliable spectrum, at least 103–104 points
are required.6 This is computationally more complicated than
the RPs we propose here, which are simple and numerically
convenient. We only consider the distance between any two
points of the trajectory and encode the recurrence matrix into
a two-dimensional plot.

IV. RECURRENCE QUANTIFICATION ANALYSIS
OF THE STICKINESS

In order to quantify the patterns in the RPs, several mea-
sures are commonly used, which are part of the recurrence
quantification analysis �RQA�.20 Here, we apply three
measures:

• Recurrence rate �RR�, defined as the percentage of black
points in the RP, i.e.,

RR =
1

N2 �
i,j=1

N


�� − �v� i − v� j�� . �3�

FIG. 3. RPs of different trajectories consisting of 3000
iterations. �a� quasiperiodic orbit, �b� sticky orbit, �c�
filling chaotic orbit, and �d� zooming of the black struc-
ture in �c�.
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• Determinism �DET�, defined as the percentage of black
points belonging to a diagonal line of at least length lmin,

DET =
�l=lmin

N lP�l�

�l=1
N lP�l�

, �4�

where P�l� denoted the probability to find a diagonal line
of length l in the RP. However, this measure does not have
the real meaning of the determinism of the process. This
measure aims to quantify how predictable a system is.

• Average diagonal line length �Lmean�, defined as

Lmean =
�l=lmin

N lP�l�

�l=lmin

N P�l�
�5�

is the average time that two segments of the trajectory are
close to each other, and can be interpreted as the mean
prediction time.

Up to now, more than ten different measures are com-
monly used to quantify the structures in an RP. For an ex-
haustive overview of other measures and associated applica-
tions in data analysis, see Ref. 20. For this study, we
calculated all other RQA measures and found results similar
to those presented in this paper.

The values of the three measures computed from the first
3000 iterations of each trajectory �quasiperiodic, sticky, and
chaotic� are summarized in Table I. We observe that RR and
Lmean distinguish very clearly between the different orbits.
The only measure that does not perform sufficiently well is
DET, which is probably due to the ambiguity by choosing
lmin.

20

In order to compare the recurrence based method with
other standard techniques, we calculate the Lyapunov expo-
nents ��max�, which are dependent on the iteration time for
the three orbits �Fig. 4�. From this figure, we see that on
short time scales �i.e., time series with a length less than
105�, �max is not able to distinguish between sticky and qua-
siperiodic orbits. In the present case, �max works only if the

length of the time series is much larger than 105 �i.e., no less
than 108�. In contrast, the method of RPs is able to charac-
terize the dynamics from very short time series �3000 data
points�, both visually �Fig. 3� and quantitatively �Table I�.

Furthermore, following the sticky orbit for a long time
�e.g., N=3�105�, the RQA measures are able to capture the
dynamical transition of the trajectory. Due to the large num-
ber of points of the orbit, we analyze it by applying the RQA
measures in moving windows of length w �Fig. 5�. The size
of each window is w=5000 points and there are 4500 points
overlapped between two consecutive windows. Hence, the
measures defined above correspond to a respective running
window: RRi, DETi and Lmeani, i=1, . . . ,600. In Fig. 5, the
selected RQA measures are monitored with a dependence on
time. These measures capture the transition time Tesc reason-
ably; e.g., DET decreases suddenly at the transition point
because the trajectory becomes more irregular. Note that the
additional parameter w can be chosen rather arbitrary as long
as sufficient recurrences are obtained within a window.

Another way to visualize long sticky orbits is to apply
the windowed and meta-recurrence plots.22 The meta-RPs
are obtained by covering an RP with w�w-sized squares and
by averaging the recurrence points contained in each win-
dow. Consequently, a windowed recurrence plot is an
Nw�Nw matrix, where Nw is the floor-rounded N /w and con-
sists of values not limited to 0 and 1, which suggests a color-
encoded representation. These values correspond to the cross
correlation sum

TABLE I. Three selected RP-based measures of complexity computed from
trajectories shown in Figs. 3�a�–3�c� �lmin=2�.

�=0.025 RR DET Lmean

Quasiperiodic 0.131 0.67 25.80
Sticky 0.074 0.68 12.99
Filling chaotic 0.006 0.64 5.12

FIG. 4. �Color online� Lyapunov exponents for three orbits with a depen-
dence on the iteration time. Since the initial conditions for the sticky and
filling orbits are in the same chaotic component, �max converge to the same
value of 1.406, albeit after a long time.

FIG. 5. RQA measures with a dependence on time for the sticky orbit. The size of each window is w=5000 points and there are 4500 points overlapped
between two consecutive windows. The vertical dashed line corresponds to the transition time around 1.65�105. The length of the orbit is N=3�105 points.
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C��,I,J� =
1

w2 �
i=1+�I−1�w

Iw

�
j=1+�J−1�w

Jw


�� − �v� i − v� j�� ,

�6�

I,J = 1 ¯

N

w
.

The meta-RP has been defined as a distance matrix derived
from the cross-correlation sum �Eq. �6��:

D��,I,J� =
1

�2 �C��,I,I� + C��,J,J� − 2C��,I,J�� . �7�

By applying a further threshold to D�� , I ,J�, a black-white
dotted representation is also possible. These modified RPs
were successfully used to characterize nonstationarity in time
series.22 Furthermore, meta-recurrence plots correspond to a
zooming-out version of the normal RPs. These modified RPs
help to shorten the computation time significantly, at least of
the order of N even for a naive configuration.22 The most
important advantage of meta-RPs is that they make the visu-
alization of long data sets possible. In Fig. 6, the thresholded
meta-RP of a sticky orbit is represented. There is a dramatic
change in the density of recurrence points at the time when
the trajectory leaves the sticky region for the chaotic sea. The
transition point is clearly visible �solid lines� in the plot.

As we see from Table I and Fig. 5�a�, RR is much higher
for sticky orbit comparing to filling orbit. This is due to the
fact that the trajectory is confined to a rather small subset of
the phase space. This is related to the mean recurrence time

T� = �
0

�

TP�T�dT =
1

�I�
, �8�

where P�T� is the distribution of the recurrence times
�T1 ,T2 , . . . ,TM , . . . � of the orbit to a predefined recurrence
region and �I� is to the measure of this recurrence region.
This is the so-called Kac’s lemma.23 For the numerics, the
integral should be replaced by a sum. As we mentioned in
Sec. I, a typical recurrence time distribution P�T� of a cha-
otic orbit in a Hamiltonian system shows an exponential de-
cay for short times related to the events that do not stick,
followed by a power-law decay for large times attributed to
the stickiness. The exponent is proportional to the mean re-
currence time T� of Eq. �8�. When the trajectory is not stuck,
one expects a large value of T� as it has an exponential
decay. On the contrary, smaller T� is observed on the time
scales when it is stuck. The trajectory shows a slower diver-
gence �power-law decay� in the “sticking” window. In terms
of RR, for this particular window, wi, more black points are
obtained, leading to a higher value of RR. Furthermore, the
slow divergence is reflected by relatively longer diagonal
lines in the RPs. As a consequence, the value of DET is also
higher during the sticking events.

V. QUANTIFICATION OF STICKINESS BY RP

During its evolution in time, a typical chaotic orbit visits
the neighborhood of the stable islands from time to time.
Next, we study the stickiness in a more general framework
by means of one measure of RQA; namely, RR. The calcu-
lations based on other RQA measures can be performed in a
similar way.

We use again the standard map �Eq. �1�� with �=1.5.
The variation of RRi , i=1, . . . ,N /w, in running windows of
length w is monitored. Figure 7 illustrates a typical chaotic
orbit and its associated variation of RR, dependent on time.
When the trajectory is trapped in a sticky region, the RR

FIG. 6. �Color online� Thresholded meta-recurrence plot of the sticky orbit.
There exists a significant change in the density at the transition point de-
noted by the solid lines. The window size w=5000.

FIG. 7. �Color online� �a� The phase portrait of the parameter �=1.5 with initial values indicated by the black upward triangle point for 2�105 iterations.
Sticky regions I and II are colored with medium gray and dark gray, respectively. �b� Dependence of the RR with a running window of size w=5000 with 4500
points overlapped between two consecutive windows. The small peak at �45 is due to weaker stickiness in comparison with I and II. The series of the sticking
events is denoted by �t1 , t2 , t3 , . . . �. �c, d� Two major sticky regions in the phase plane.
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shows a significant change due to the regular evolution in
this particular time interval. As Fig. 7�b� indicates, two major
sticky time epochs are obtained corresponding to two sticky
regions, denoted as “I” and “II.” In the bottom panels �Figs.
7�c� and 7�d��, the corresponding trajectories are shown for
comparison. Furthermore, one finds that a small proportion
of sticking time occurs at the window number �45, indicat-
ing that the trajectory is stuck for a smaller time compared to
the regions I and II. In what follows, we only consider the
sticking events without the specifications of the location of
the sticky regions. It is not necessary to do so, since there are
many different stable islands in phase space.

From the variation of RR with time, the sticking events
are identified by those regimes where RR is larger than RRcr

�Fig. 7�b��. Here, RRcr is chosen to be 5% higher than the
overall average level when the trajectory is not stuck. How-
ever, the choice of RRcr is not crucial, as the value of RR for
the sticking events is much higher than the value for the
events they do not stick. Hence, based on Fig. 7�b�, we ob-
tain a series �t1 , t2 , t3 , . . . , ti , . . . ,�� with ti denoting the dura-
tion of the ith sticking event. The duration of the ith sticking
event is then the time interval ti=w�i between the ith and
�i+�i�th windows satisfying �m=1

�i 
�RRi+m−RRcr�=1. We
can now consider the probability to find a sticking event
which has a time span t��; namely, by the calculation of the
following cumulative distribution:

��t � �� = �
t=�

�

P�t� . �9�

This cumulative distribution is shown in Fig. 8, indicating a
power-law decay ��t�����−� with ��1.924. This result is
in good agreement with the results from the recurrence time
statistics analysis presented in Refs. 11 and 15.

VI. CONCLUSIONS

We have used the method of recurrence plots �RPs� to
characterize the stickiness in nonintegrable Hamiltonian sys-
tems. This approach enables distinguishing clearly between
regular �periodic and quasiperiodic� and chaotic orbits from
very short trajectories. Slater’s theorem guarantees at most
three different return times for a quasiperiodic orbit to come
back to a predefined recurrence interval. The persistence of

this number in integrable Hamiltonian systems with two de-
grees of freedom allows us to divide the phase space into
regular and chaotic subregions rather easily. The RPs of cha-
otic orbits during the sticking time are substantially different
from the RPs of quasiperiodic trajectories.

Furthermore, measures from the recurrence quantifica-
tion analysis �RQA� characterize the complex patterns in the
RPs, allowing the distinction between chaotic orbits that are
temporarily trapped in a sticky domain and quasiperiodic
orbits from very short trajectories. Based on these RQA mea-
sures, the dynamical transitions from sticky regions to the
large chaotic sea are also captured. Following a single cha-
otic trajectory, we have found an asymptotic power-law de-
cay of the cumulative distribution of the duration of sticking
events, in accordance with results reported in the
literature.11,15

In the present work, we have used the standard map as a
representative example of a system showing stickiness. The
extension to higher dimensional systems by RPs analysis
needs further study. Nevertheless, in higher dimensional
cases RPs would also work to distinguish ordered from cha-
otic orbits because there is no dimensionality limitation in
the recurrence matrix �Eq. �2��. This method could have ap-
plications in many fields, such as astrophysics, where the
characterization of regular and chaotic orbits is of great
relevance.4
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