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1 Introduction

In the analysis of coupled systems, various techniques have been developed
to model and detect dependencies from observed bivariate time series. Most
well-founded methods, like Granger causality and partial coherence, are based
on the theory of linear systems: on correlation functions, spectra and vector
autoregressive processes. In this paper we discuss a non-linear approach using
recurrence.

Recurrence, which intuitively means the repeated occurrence of a very sim-
ilar situation, is a basic notion in dynamical systems. The classical theorem of
Poincaré says that for every dynamical system with an invariant probability
measure P, almost every point in a set B will eventually return to B. More-
over, for ergodic systems the mean recurrence time is 1/P (B) [1]. Details of
recurrence patterns were studied when chaotic systems came into the focus
of research, and it turned out that they are linked to Lyapunov exponents,
generalized entropies, the correlation sum, and generalized dimensions [2, 3].

Our goal here is to develop methods for time series which typically con-
tain a few hundreds or thousands of values and which need not come from
a stationary source. While Poincaré’s theorem holds for stationary stochastic
processes, and linear methods require stationarity at least for sufficiently large
windows, recurrence methods need less stationarity. We outline different con-
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cepts of recurrence by specifying different classes of sets B. Then we visualize
recurrence and define recurrence parameters similar to autocorrelation.

We are going to apply recurrence to the analysis of bivariate data. The
basic idea is that coupled systems show similar recurrence patterns. We can
study joint recurrences as well as cross recurrence. We shall see that both
approaches have their benefits and drawbacks.

Model systems of coupled oscillators form a test bed for analysis of bivari-
ate time series since the corresponding differential equations involve a param-
eter which precisely defines the degree of coupling. Changing the parameter
we can switch to phase synchronization and generalized synchronization. The
approaches of cross and joint recurrence are compared for several models. In
view of possible experimental requirements, recurrence is studied on ordinal
scale as well as on metric scale. Several quantities for the description of syn-
chronization are derived and illustrated. Finally, two different applications to
EEG data will be presented.

2 Recurrence on different scales

Nominal scale

We start with an ordinary time series of numbers x1, x2, . . . , xN . Recurrence
basically means that certain numbers will repeat: xi = xj . This is the proper
concept when the values xi form a nominal scale – they are just symbols from
a finite or countable alphabet. A typical example is the nucleotide sequence
of a DNA segment, with values A,C,G and T (which we can code 1,2,3,4).
Since letters will repeat very often, we usually prescribe a length d for the
word which should repeat:

xi+n = xj+n , n = 0, ..., d− 1.

Here d is a parameter which indicates the strength of recurrence. Finding
occurrences of words in large data is a basic algorithmic task in bioinformatics.
The statistical structure of such sequences is modelled by Hidden Markov
Models, also called probabilistic automata [4].

Metric scale

If the xi are real numbers, instead of xi = xj we require that xj is in the
vicinity or neighborhood of xi :

|xi − xj | ≤ ε,

where ε is a predefined threshold. According to the ergodic theorem mentioned
above, the mean recurrence time is of order 1/ε which gives a clue on how to
choose ε.
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Due to different density of the values, different xi will have different num-
bers of neighbors. This can be mended by taking rank numbers

ri = #{k|1 ≤ k ≤ N,xk < xi}

instead of the xi, and integer ε. Then each xi (except for the ε largest and
smallest values) has 2ε recurrences. Eckmann et al [5] used constant number
of neighbors when they introduced recurrence plots.

However, it makes little sense to require that only single values repeat.
For the function sin t, t ≥ 0 the value 0 repeats at t = π, but this is a false
neighbor, proper recurrence (in fact periodicity) appears at 2π. Thus we shall
again choose a strength parameter d and require

|xi+n − xj+n| ≤ ε , n = 0, ..., d− 1.

Vector recurrence

The last condition can also be interpreted in a different way. We take the
d-dimensional vectors xi = (xi, xi+1, ..., xi+d−1) ∈ Rd and consider their ap-
proximate equality

‖xi − xj‖ ≤ ε, (1)

with respect to the maximum norm in Rd. However, it is also possible to
consider any other norm on Rd, like the Euclidean norm, or similarity indices
like cosine similarity and the Mahalanobis distance. The choice of the distance
function and the threshold (e.g. fixed, time-dependent, fixed amount of nearest
neighbors) depends on the particular problem under consideration. For an
overview we refer to [3].

Vector recurrence is certainly the appropriate concept when our time series
does not consist of numbers but of vectors. This is the case for multivariate
time series treated below, in particular for d-dimensional time series obtained
numerically from a model system of d differential equations. For such systems,
studied in Sections 5 and 6, we need a slightly different notation.

Differential equations and delay embedding

In the formalism of differentiable dynamical systems, the state of a system at
time t is described by a vector

x(t) = [x1(t), x2(t), . . . , xd(t)] ∈ Rd , (2)

where xn(t) denotes the n-th component at time t. The evolution of the state
of the system in time, i.e., its trajectory, is determined by a flow F (·), such that
ẋ(t) = F (x(t)). The components xn(t) of the state vector x(t) are observable
physical variables, such as the position and velocity of a particle. However, in
an experimental setting typically not all relevant components are known or
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can be measured. If certain conditions are fulfilled, it is possible to reconstruct
the trajectory of the system from a scalar measurement u(t) = f [x(t)], e.g.,
by means of its delay embedding [6, 7]

u(t) = [u(t), u(t + ϑ), . . . , u(t + (m− 1)ϑ)] ∈ Rm , (3)

where ϑ denotes the time delay and m the embedding dimension. In the ideal
case there is a functional relationship (strictly speaking, a diffeomorphism)
between the original unknown components and those of the delay embedding.

Although the underlying system evolves continuously in time, we measure
the system at discrete time points i∆t, where i = 1, . . . , N and ∆t is the
sampling rate. When confusion is possible, we denote by xi = x(i∆t) and ui =
u(i∆t) the points of the original and reconstructed trajectory, respectively.
Otherwise we use xi for both, as in (1).

Remarks on dynamical systems

Periodicity is an extreme case of recurrence. And in deterministic systems, an
exact recurrence to a state xi at a later time point j is only possible in the
case of periodic dynamics. Otherwise, the required uniqueness of the solution
of a dynamical system is not fulfilled.

In our definition (1) of vector recurrence, the recurrence set B is a ball
of radius ε around xi with respect to the given norm on Rd. In case of the
maximum norm it is a cube of side length 2ε. These sets are not disjoint for
different i. It may happen that j realizes a recurrence to both i1 and i2 but
i2 does not represent a recurrence to i1. Thus sometimes one might wish the
recurrence sets to form a disjoint partition of phase space, Rd = B1 ∪ ...∪Bk.

When we decompose the phase space into regions and assign the same
symbol to all states within one region, our metric vector data become nominal
data (symbolization), and we neglect all further information about distances.
This coarse-graining leads to a lower level of resolution, but on the other
hand also to a weaker stationarity condition on the measurement. Note that
for recurrence on a metric scale, stationarity is only required up to a threshold
ε. By varying this threshold, and in case of ui also the embedding dimension,
we are able to balance between resolution and stationarity requirements.

In the sequel, we give a partial answer to the question for an appropriate
decomposition of phase space.

Ordinal scale

The ordinal scale of numbers is between the metric and the nominal one:
the order structure of the states is known, but no meaningful distance of the
values is defined. The analysis on an ordinal scale, in contrast to the one on
a metric scale, is invariant with respect to a strictly monotonic transforma-
tion. The classification of levels of measurement resolution into metric, ordinal



Recurrence and bivariate coupling 5

and nominal, was originally proposed in statistics [8]. Here, we suggest this
approach for the analysis of dynamical systems.

We consider two states ui and uj in the reconstructed phase space. Order
patterns are related to the time-delayed embedding (3). They will not be
applied to the systems (2). We define recurrence on the ordinal scale if both
states exhibit the same order structure

π(ui) = π(uj) , (4)

where π is a mapping function that encodes the order structure.
To illustrate this idea, suppose that the reconstructed trajectory has em-

bedding dimension m = 2 and time delay ϑ. In this case, two relationships
between ui and ui+ϑ are possible, apart from equality.4 We encode the order
structure as a new symbol

π(ui) =

{
0 : ui < ui+ϑ

1 : ui > ui+ϑ ,
(5)

where π is called order pattern of ui. Thus the phase space is divided by the
identity into two areas (Fig. 1). This way of generating a new symbol sequence

ui

u i+
ϑ

 ui < ui+ϑ

ui > ui+ϑ Fig. 1. Periodic trajectory in phase space and
decomposition of the phase space (ui, ui+ϑ) by
order patterns.

is common in statistics (e.g. [9, 10, 11]). Our approach was originally motivated
by Kendall’s tau-correlation [12], which was modified to an auto-correlation
function for time series [13, 14]. In classical time series analysis there are
practically no methods which use order patterns of higher dimensions. Here
we can use order patterns of length d, so that we have again a parameter for
the strength of recurrence, as well as more complicated order patterns [15].
4 In general we neglect the equality of values. This is reasonable if we consider

systems with continuous distribution of the values, where equality has measure
zero.
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Order patterns of length 3

Let us consider embedding dimension m = 3, which is related to the phase
of an oscillator [16], discussed in Section 5. Here the phase space is nicely
decomposed into m! = 6 regions. These regions are separated by planes of
pairwise equalities (ui = ui+ϑ, ui+ϑ = ui+2ϑ, ui = ui+2ϑ) and are arranged
around the main diagonal ui = ui+ϑ = ui+2ϑ (Fig. 2). All states ui within
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Fig. 2. (a) Decomposition of the phase space (ui, ui+ϑ, uit+2 ϑ) by order patterns π
and possible trajectory of a sine function. (b) Same plot with viewing angle in
direction of the main diagonal

a single region of the phase space have the same structure of order relations.
Hence, they are associated to the same symbol π(ui) (Fig. 3).

π = 0

 ui 

π = 1 π = 2 π = 3 π = 4 π = 5

Fig. 3. The vector ui = (ui, ui+ϑ, uit+2 ϑ) in reconstructed phase space can form
six different order patterns. The labelling is not important for the analysis and is
added just for illustration.

This scheme of mapping states ui to symbols π(ui) works for arbitrary
dimension m. The phase space decomposition into m! regions is related to
the concept of permutation entropy [17] which for various dynamical systems
agrees with the metric entropy [18, 19].



Recurrence and bivariate coupling 7

−20

20

−20

20
0

40

A

Time

Ti
m
e

B

50 60 70 80 90
50

60

70

80

90

Fig. 4. (A) Segment of the phase space trajectory of the Rössler system, Eqs. (14),
with a = 0.15, b = 0.20, c = 10, using the components (x, y, z). (B) The corre-
sponding recurrence plot based on metric scale. A phase space vector at j which
falls into the neighborhood (grey circle in (A)) of a given phase space vector at i
is considered to be a recurrence point (black point on the trajectory in (A)). This
is marked by a black point in the RP at the position (i, j). A phase space vector
outside the neighborhood (empty circle in (A)) leads to a white point in the RP.
The radius of the neighborhood for the RP is ε = 5; L2-norm is used.

3 Recurrence plots

Univariate recurrence

Given a trajectory {xi}N
i=1 of a dynamical system in phase space, we can

compute its recurrence matrix, i.e., the time indices j at which the trajectory
recurs to the state xi, for i, j = 1, . . . , N . Hence, the recurrence matrix is a
binary N × N matrix with entry Ri,j = 1 if the trajectory at time j recurs
to the state xi and entry Ri,j = 0, otherwise.

As mentioned above, recurrence can be defined on a metric, nominal or
ordinal scale. Accordingly, the recurrence matrix on a metric scale is

Ri,j = Θ (ε− ‖xi − xj‖) , (6)

on a nominal scale
Ri,j = δ (xi − xj) , (7)

and on an ordinal scale

Ri,j = δ (π(ui)− π(uj)) , (8)

where Θ(x) = 1 for x ≥ 0 and Θ(x) = 0 else, δ(x) = 1 if x = 0 and δ(x) = 0
otherwise, and i, j = 1, . . . , N.
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Fig. 5. (A) Segment of the phase space trajectory of the Rössler system, Eqs. (14),
with a = 0.15, b = 0.20, c = 10, by using its time-delayed first component
(xi, xi+ϑ, xi+2ϑ) with ϑ = 2 and (B) its corresponding recurrence plot based on
ordinal scale. Phase space vectors in the same region are considered as recurrent
points (black points on the trajectory in (A)), where a phase space vector in a
different region (empty circle in (A)) is not a recurrence point.

A recurrence plot (RP) is the graphical representation of a recurrence
matrix [20, 3]. The RP is obtained by plotting the recurrence matrix and
using different colors for its binary entries, e.g., plotting a black dot at the
coordinates (i, j), where Ri,j = 1, and a white dot, where Ri,j = 0. Both
axes of the RP are time axes. Since Ri,i ≡ 1 for i = 1 . . . N by definition, the
RP has always a black main diagonal line. Furthermore, the RP is symmetric
with respect to the main diagonal, i.e. Ri,j = Rj,i.

RPs yield important insights into the time evolution of phase space tra-
jectories, because typical patterns in RPs are linked to a specific behavior of
the system. One important structural element are diagonal lines Ri+k,j+k = 1
for k = 0 . . . l − 1, where l is the length of the diagonal line. On metric scale
a diagonal occurs when a segment of the trajectory runs almost in parallel
to another segment (i.e. through an ε-tube around the other segment) for
l time units (cf. Fig. 4). The length of this diagonal line is determined by
the duration of such similar local evolution of the trajectory segments. The
direction of these diagonal structures is parallel to the main diagonal. Since
the definition of the Rényi entropy of second order K2 is based on how long
trajectories evolve within an ε-tube, it is possible to estimate K2 by means
of the distribution of diagonal lines in the RP [21, 3]. On an ordinal scale we
also obtain diagonal structures when two different segments of the trajectory
have the same sequence of order patterns (cf. Fig. 5). In particular, we will
show how these diagonal lines are linked to the phase of an oscillator and will
derive a measure to quantify phase synchronization.
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Bivariate recurrence plots

There are two approaches to extend RPs to the analysis of bivariate data
(xi, yi). In the first approach, the common auto-reccurences are registered.
This is essentially the same procedure as going from metric recurrence to
vector recurrence in Section 2, and it can be done for two qualitatively different
systems: the vectors xi and yi can have different dimension, and represent
different physical quantities.

In the other approach, we compute the recurrence of the states of one
system to the other, i. e. the distances between the different systems in phase
space. This requires a certain degree of similarity of the systems for x and
y although the ordinal approach also allows to compare physical different
systems. However, lagged dependencies can be better visualized, and the two
time series can have different length. As we will show here, depending on the
situation, one approach might be more appropriate than the other.

Joint recurrence plots

The first possibility to compare x, y is to consider the recurrences of their
trajectories in their respective phase spaces separately and regard the times
at which both of them recur simultaneously, i.e. when a joint recurrence occurs
[22, 3]. A joint recurrence plot (JRP) is defined as pointwise product of the
two RPs of the two considered systems

JRx,y
i,j = Rx

i,j · Ry
i,j , i, j = 1, . . . , N. (9)

In this approach, a recurrence takes place if the first system at time j de-
scribed by the vector xj returns to the neighborhood of a former point xi,
and simultaneously the second system yj returns at the same time j to the
neighborhood of a formerly visited point yi.

Actually, joint recurrence is just the vector recurrence of the bivariate
series (xi, yi)i=1,...,N . The dimensions of the vectors x and y can differ, and we
can consider different norms and different thresholds ε for each system, so that
the recurrence conditions can be adapted to each system separately, respecting
the corresponding natural measure. Mathematically, this just means taking
the norm ‖(x,y)‖ = max{‖x‖1/ε1, ‖y‖2/ε2} on the product space of the two
phase spaces.

We mention that a product representation similar to (9) holds for the
transition from ordinary recurrence to the recurrence of m successive states:
Rx

i,j =
∏m−1

k=0 Rx
i+k,j+k , which simplifies plots for recurrence of strength m.

A delayed version of the joint recurrence matrix can be introduced by

JRx,y
i,j = Rx

i,j · Ry
i+τ,j+τ , i, j = 1, . . . , N − τ , (10)

which is useful for the analysis of interacting delayed systems (e. g. for lag
synchronization) [23, 24], and for systems with feedback.
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Cross recurrence plots

A cross recurrence plot (CRP) visualizes dependencies between two different
systems by looking at recurrences from one system to the other [25, 3]. Using
a metric scale, it is defined as

CRx,y
i,j = Θ

(
ε− ‖xi − yj‖

)
, (11)

for the nominal scale it is

CRx,y
i,j = δ (xi − yj) , (12)

and for the ordinal scale

CRu,v
i,j = δ (π(ui)− π(vj)) , (13)

with i = 1, . . . , N, j = 1, . . . , M . The length of the trajectories of x and y, or
u and v, respectively, need not be identical, so that CR need not be a square
matrix. However, in the metric case both systems must be represented in the
same phase space, otherwise we cannot measure distances between states of
both systems. Therefore, the data under consideration should be from very
similar processes and, actually, should represent the same observable.

On ordinal or nominal scale, this is not necessary. Nevertheless, we have
to take the same embedding dimension for the delay vectors to define order
patterns of the same length, or meaningful related decompositions with equal
number of sets when symbolization is used to obtain a nominal series.

Since the values of the main diagonal CRi,i for i = 1 . . . N are not nec-
essarily one, there is usually no black main diagonal. The lines which are
diagonally oriented are here of major interest, too. They represent segments
on both trajectories, which run parallel for some time. The distribution and
length of these lines are obviously related to the interaction between the dy-
namics of both systems. A measure based on the lengths of such lines can be
used to find nonlinear interrelations between both systems (Section 4).

Comparison between CRPs and JRPs

In order to illustrate the difference between CRPs and JRPs, we consider the
trajectory of the Rössler system [26]

ẋ = −y − z,

ẏ = x + a y, (14)
ż = b + z (x− c),

in three different situations: the original trajectory (Fig. 6A), the trajectory
rotated around the z-axis (Fig. 6B) and the trajectory under the time scale
transformation t̃ = t2, which gives the same picture as the first one.
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Let us consider the RPs of these three trajectories. The RP of the original
trajectory is identical to the RP of the rotated one, (Fig. 7A) but the RP of
the stretched/compressed trajectory is different from the RP of the original
trajectory (Fig. 7B): it contains bowed lines, as the recurrent structures are
shifted and stretched in time with respect to the original RP.
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Fig. 6. Phase space trajectories of the Rössler system (Eqs. 14, with a = 0.15,
b = 0.2 and c = 10): (A) original system, (B) rotated around the z-axis by 3

5π.

Now we calculate the CRP between the original trajectory and the rotated
one (Fig. 7C) and observe that it is rather different from the RP of the original
trajectory (Fig. 7A). This is because in CRPs the difference between each pair
of vectors is computed, and this difference is not invariant under rotation of
one of the systems. Hence, CRPs do not detect that both trajectories are
identical up to a rotation. In contrast, the JRP of the original trajectory and
the rotated one is identical to the RP of the original trajectory (Fig. 7A).
This is because JRPs consider joint recurrences, and the recurrences of the
original and the rotated system are identical.

The CRP between the original trajectory and the stretched/compressed
one contains bowed lines, which reveals the functional shape of the parabolic
transformation of the time scale (Fig. 7D) [3]. Note that CRPs represent the
times at which both trajectories visit the same region of the phase space. On
the other hand, the JRP of these trajectories – the intersection of the black
sets in Fig. 7A and Fig. 7B – is almost empty, except for the main diagonal,
because the recurrence structure of both systems is so different. There are
almost no joint recurrences. Therefore, JRPs are not built to detect a time
transformation applied to the trajectory, even though the shape of the phase
space trajectories is identical.

To conclude, we can state that CRPs are more appropriate to investigate
relationships between the parts of the same system which have been subjected



12 Bandt, Groth, Marwan, Romano, Thiel, Rosenblum and Kurths

A

Time

Ti
m
e

0 50 100
0

50

100

B

Time

Ti
m
e

0 50 100
0

50

100

C

Time

Ti
m
e

0 50 100
0

50

100

D

Time
Ti
m
e

0 50 100
0

50

100

Fig. 7. RPs of (A) the original trajectory of the Rössler system and (B) the
stretched/compressed trajectory. (C) CRP of the original and rotated trajectories
and (D) CRP of the original and stretched/compressed trajectories. The threshold
for recurrence is ε = 2.

to different physical or mechanical processes, e.g., two borehole cores in a lake
subjected to different compression rates. On the other hand, JRPs are more
appropriate for the investigation of two interacting systems which influence
each other, and hence, adapt to each other, e.g., in the framework of phase
and generalized synchronization.

4 Quantification of recurrence

Auto-recurrence

The diagonals parallel to the main diagonal represent different epochs of phase
space trajectories which evolve in a similar manner. Therefore, as a first ap-
proach we introduce some measures quantifying the density of recurrence
points and the length of diagonal lines in dependence on their distance to
the main diagonal [3].

The density of points on a certain diagonal with distance τ from the main
diagonal is the auto-recurrence rate

RRτ =
1

N − τ

N−τ∑

i=1

Ri,i+τ , (15)
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where τ > 0 corresponds to diagonals above and τ < 0 to diagonals below the
main diagonal, which represent positive and negative time delays, respectively.
The auto-recurrence rate can be considered as a non-linear version of the auto-
correlation function, since it also describes higher order correlations between
the points of the trajectory in dependence on τ [27]. It can be interpreted as
an estimate of the probability p(τ) that a state recurs to its ε-neighborhood
after τ time steps.

Similar to auto-correlation, auto-recurrence fulfils RR0 = 1 and is sym-
metric: RRτ = RR−τ . However, RRτ is always between 0 and 1. The reference
line, which corresponds to the zero line for correlation functions, is given by
the average recurrence rate

RR =
1

N2

N∑

i,j=1

Ri,j . (16)

It is clear that RR and hence RRτ heavily depend on the threshold ε which
therefore must be adapted carefully to the problem at hand.

The ordinal average recurrence rate can be exactly determined:

RR =
∑

π

p2
π (17)

where pπ = nπ/N is the relative and nπ the absolute frequency of the order
patterns π in the time series. To explain this formula, we note that Ri,j = 1 if
πi = πj . For every order pattern π, the number of pairs (i, j) with πi = πj = π
equals n2

π. Thus the number of entries Ri,j = 1 in the matrix is
∑

n2
π where

the sum runs over all possible order patterns π. This fact together with (16)
implies equation (17).

Let us take order patterns of length 3 as an example, and assume they all
appear with equal probability. Then one sixth of the entries of the matrix R
are 1. In Section 6, we use (17) to express coupling in the multivariate case
where we cannot work with τ.

For l ≥ 1, let P (l) denote the number of (maximal) diagonal line segments
of length = l in R. Since they represent l successive recurrences, we can
introduce two measures of repeated recurrence, or strength of recurrence:

DET =
∑N−1

l=lmin
l P (l)

∑
i"=j Ri,j

, L =
∑N−1

l=lmin
l P (l)

∑N−1
l=lmin

P (l)
(18)

DET is the fraction of recurrence points on lines of length ≥ lmin, where
lmin is a parameter ≥ 2, and is called determinism since it increases with the
predictability of the system. L is the average length of a diagonal line of length
≥ lmin. Rules for choosing lmin can be found in [3].

If the time series is long enough, these two parameters can also be studied
as functions of τ. So let Pτ (l) denote the number of diagonal lines of exact
length l on the diagonal RRi,i+τ , and
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DETτ =
∑N−τ

l=lmin
l Pτ (l)

∑N−τ
l=1 l Pτ (l)

, Lτ =
∑N−τ

l=lmin
l Pτ (l)

∑N−τ
l=lmin

Pτ (l)
. (19)

Cross-recurrence

The diagonal-wise determination of the recurrence measures is useful for the
study of interrelations and synchronization. For the study of interrelations
we can use CRPs. Long diagonal structures in CRPs reveal a similar time
evolution of the trajectories of the two processes under study. An increasing
similarity between the processes causes an increase of the recurrence point
density along the main diagonal CRi,i (i = 1 . . . N). When the processes
become identical, the main diagonal appears and the CRP becomes an RP.
Thus, the occurrence of diagonal lines in CRPs can be used in order to bench-
mark the similarity between the considered processes. Using this approach it
is possible to assess the similarity in the dynamics of two different systems in
dependence on a certain time delay [25].

The cross-recurrence rate of a CRP

RRτ = RRx,y
τ =

1
N − τ

N−τ∑

i=1

CRi,i+τ , (20)

reveals the probability of the occurrence of similar states in both systems with
a certain delay τ . The average recurrence rate RR = RRx,y is determined as
in (16). It depends not only on ε, but also indicates whether trajectories of
the two systems often visit the same phase space regions.

Stochastic and strongly fluctuating processes generate only short diag-
onals, whereas deterministic processes often admit longer diagonals. If two
deterministic processes have the same or similar time evolution, i. e. parts of
the phase space trajectories visit the same phase space regions for certain
times, the amount of longer diagonals increases and the amount of shorter di-
agonals decreases. The measures DETτ and Lτ of a CRP describe the similar
time evolution of the systems’ states.

As cross-correlation, cross-recurrence is not symmetric in τ. It is possible
to define indices of symmetry and asymmetry (for a small range 0 ≤ τ ) N),
as

Q(τ) =
RRτ + RR−τ

2
, and q(τ) =

RRτ −RR−τ

2
. (21)

By means of these indices it is possible to quantify interrelations between two
systems and determine which system leads the other one (this is similar to
the approach for the detection of event synchronization proposed in [28]).

Summarizing, we can state that high values of RRτ indicate a high prob-
ability of occurrence of the same state in both systems, and high values of
DETτ and Lτ indicate a long time span, in which both systems visit the
same region of phase space. The consideration of an additional CRP
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CR−
i,j = Θ (ε− ‖xi + yj‖) (22)

with a negative signed second trajectory −yj allows distinguishing correla-
tions and anti-correlations between the considered trajectories [25].

5 Synchronization

Phase synchronization on metric scale

The concept of recurrence can be used to detect indirectly phase synchroniza-
tion (PS) in a wide class of chaotic systems and also systems corrupted by
noise, where other methods are not so appropriate [27]. The distances between
diagonal lines in an RP reflect the characteristic time scales of the system. In
contrast to periodic dynamics, for a chaotic oscillator the diagonal lines are
interrupted due to the divergence of nearby trajectories. Furthermore, the dis-
tances between the diagonal lines are not constant, i. e. we find a distribution
of distances, reflecting the different time scales present in the chaotic system.

If two oscillators are in PS, the distances between diagonal lines in their
respective RPs coincide, because their phases, and hence their time scales
adapt to each other. However, the amplitudes of oscillators, which are only
PS but not in general or complete synchronization, are in general uncorrelated.
Therefore, their RPs are not identical. However, if the probability that the
first oscillator recurs after τ time steps is high, then the probability that the
second oscillator recurs after the same time interval will be also high, and
vice versa. Therefore, looking at the probability p(τ) that the system recurs
to the ε-neighborhood of a former point xi of the trajectory after τ time steps
and comparing p(τ) for both systems allows detecting and quantifying PS
properly. As mentioned above, p(τ) can be estimated as recurrence rate, (15),
p̂(τ) = RRτ . Studying the coincidence of the positions of the maxima of RRτ

for two coupled systems x and y, PS can be identified. More precisely, the
correlation coefficient between RRx

τ and RRy
τ

CPR = 〈R̃R
x

τ · R̃R
y

τ 〉, (23)

can be used to quantify PS. Here R̃R
x

τ denotes RRx
τ normalized to zero mean

and standard deviation one. If both systems are in PS, the probability of
recurrence will be maximal at the same time and CPR ≈ 1. On the other
hand, if the systems are not in PS, the maxima of the probability of recurrence
will not occur simultaneously. Then we observe a drift and hence expect low
values of CPR.

General synchronization on metric scale

It is also possible to detect generalized synchronization (GS) by means of
RPs [27]. Let us consider the average probability of recurrence over time
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for systems x and y, i. e. the recurrence rate, RRx and RRy, determined
by (16). The average probability of joint recurrence over time is then given
by RRx,y, which is the recurrence rate of the JRP of the systems x and y
[22]. If both systems are independent, the average probability of the joint
recurrence will be RRx,y = RRxRRy. On the other hand, if both systems are
in GS, we expect approximately the same recurrences, and hence RRx,y ≈
RRx = RRy. For the computation of the recurrence matrices in the case of
essentially different systems that undergo GS, it is more appropriate to use
a fixed amount of nearest neighbors Nn for each column in the matrix than
using a fixed threshold, which corresponds to the original definition of RPs by
Eckmann et al. [20]. RRx and RRy are then equal and fixed by Nn, because
of RRx = RRy = Nn/N . Now we call RR = Nn/N and define the coefficient

S =
RRx,y

RR

as an index for GS that varies from RR (independent) to 1 (GS). Furthermore,
in order to be able to detect also lag synchronization (LS) [23], a time lag is
included by using the time delayed JRP, Eq. (10),

S(τ) =
1

N2

∑N
i,j JRx,y

i,j (τ)
RR

. (24)

Then, we introduce an index for GS based on the average joint probability of
recurrence JPR by choosing the maximum value of S(τ) and normalizing it,

JPR = max
τ

S(τ)−RR

1−RR
. (25)

The index JPR ranges from 0 to 1. The parameter RR has to be fixed to
compute JPR, but it can be shown that the JPR index does not depend
crucially on the choice of RR [27].

Phase synchronization on ordinal scale

As mentioned before, there exists a connection between the order patterns and
the phase of a signal. This connection is illustrated in Fig. 5, which suggests
a representation of the oscillatory behavior of the Rössler system by order
patterns. In this section we show how the order patterns of dimension m = 3
and the common phase definitions are mathematically related.

Following [16] we introduce a new cylindrical coordinate system (r,φ, z)
in terms of the time-delayed coordinates (ui, ui+ϑ, ui+2ϑ). The z-coordinate
corresponds to the main diagonal, and r and φ span a plane perpendicular to
the main diagonal. The radius r describes the distance to the main diagonal
and φ the angle. Hence, the order pattern is completely determined by φ. On
the other hand, the order patterns can be considered as a discretization of
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φ. It has been shown in [16] that φ can be written in terms of time-delayed
coordinates

tanφi =
√

3
ui+2 ϑ − ui

ui+2 ϑ − 2 ui+ϑ + ui
≈ 2

√
3

u̇i+1

üi+1
. (26)

Several concepts have been introduced to define a phase for chaotic oscilla-
tors [29, 30]. Nevertheless these approaches are in general restricted to narrow-
band signals. For this reason, alternative methods based on the curvature
of a phase-space-trajectory have been proposed [31, 32], where the phase is
defined as φ = arctan ẋ/ẏ. In a similar sense, a phase can be defined as
φ′ = arctan ẋ/ẍ, which coincides with relation (26), up to a constant factor.

To derive a measure for phase synchronization we analyze the coincidence
of phases of two oscillators by means of the recurrence rate RRτ of order
patterns. This yields a distribution of phase differences as a function of the
time-lag τ . Following the idea of [33], we introduce a coupling index by means
of the Shannon entropy

ρπ = 1−
−

∑τmax
τ=τmin

rrτ log rrτ

log(τmax − τmin)
, (27)

where rrτ is the normalized distribution rrτ = RRτ/
∑

τ RRτ . This index
ranges from 0 to 1, where 0 indicates that both systems are independent from
each other. The actual maximum depends on [τmin, τmax], if there are several
maxima with distance of a mean recurrence time. Due to a close relationship
between the order patterns and the phase, we expect that ρπ is sensitive to
phase synchronization.

This connection to phase indicates a main difference between recurrence
plots on metric and ordinal scale. In case of a phase-coherent but chaotic os-
cillator such as the Rössler system the trajectory returns irregularly to itself.
A metric recurrence plot as Fig. 4 has only short diagonals. But due to a
high coherence of the phase the recurrence time is narrow-banded, and the
recurrence rate shows sharp equidistant peaks (cf. Fig. 9). Considering recur-
rence on ordinal scale, only the phase is taken into account. Hence we observe
long lines in the recurrence plot (Fig. 5), while the distances of peaks in the
recurrence rate coincide with that of the metric case.

6 Prototypical examples

Finding nonlinear interrelations using cross recurrence

This example shows the ability of CRPs to find nonlinear interrelations be-
tween two processes, which cannot be detected by means of linear tests [25].
We consider linear correlated noise (auto-regressive process of order 1, see
for example [34]) which is nonlinearly coupled with the x-component of the
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Fig. 8. (A) Cross correlation C(τ), (B) mutual information I(τ), (C) τ -recurrence
rate RRτ ofr the model given in (28). (D) τ -average line length Lτ for the forced
auto-regressive process and the forcing function; the curves represent the measures
for one realization as functions of the delay τ for a coupling κ = 0.2. In (C) and (D)
the solid lines show positive relation; the dashed lines show negative relation. The
grey bands mark the 2σ margin of the distributions of the measures gained from
500 realizations. The lag τ and the average line length Lτ have units of time [25].

Lorenz system (for standard parameters σ = 10, r = 28, b = 8/3 and a time
resolution of ∆t = 0.01 [35, 36]):

yi = 0.86 yi−1 + 0.500 ξi + κx2
i , (28)

where ξ is Gaussian white noise and xi (x(t) → xi, t = i∆t) is normalized
with respect to the standard deviation. The data length is 8,000 points and
the coupling κ is realized without any lag.

As expected, due to the nonlinear relationship, the cross correlation anal-
ysis between x and y does not reveal any significant linear correlation be-
tween these data series (Fig. 8A). However, the mutual information as a
well-established measure to detect nonlinear dependencies [37] shows a strong
dependence between x and y at a delay of 0.05 (Fig. 8B). The CRP based
τ -recurrence rate RRτ and τ -average diagonal length Lτ exhibit maxima at
a lag of about 0.05 for RR+/L+ and RR−

τ /L−
τ and additionally at 0.45 and

−0.32 for RR−
τ /L−

τ (Figs. 8C, D). The maxima around 0.05 for the + and
− measures are a strong indication of a nonlinear relationship between the
data. The delay of approximately 0.05 stems from the auto-correlation of y
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and approximately corresponds to its correlation time ∆t/ ln 0.86 = 0.066.
The maxima at 0.45 and −0.32 correspond to half of the mean period of the
Lorenz system. Since the result is rather independent of the sign of the second
data, the found interrelation is of the kind of an even function. 500 realiza-
tions of the AR model have been used in order to estimate the distributions
of the measures. The 2σ margins of these distributions can be used to assess
the significance of the results.

Due to the rapid fluctuations of y, the number of long diagonal lines in the
CRP decreases. Therefore, measures based on these diagonal structures, espe-
cially DETτ , do not perform well on such heavily fluctuating data. However,
we can infer that the measures RRτ , as well as Lτ (though less significant for
rapidly fluctuating data), are suitable for finding a nonlinear relationship be-
tween the considered data series x and y, where the linear analysis is not able
to detect such a relation. In contrast to mutual information, this technique is
applicable to rather short and non-stationary data.
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Fig. 9. Recurrence probability RRτ for two mutually coupled Rössler systems,
Eqs. (29) and (30), for a = 0.16, b = 0.1, c = 8.5, in (A) phase synchronized and (B)
non-phase synchronized regime. Solid line: oscillator x, dashed line: oscillator y.

Synchronization in Rössler oscillators: metric scale

In order to exemplify this method, we consider two mutually coupled Rössler
systems

ẋ1 = −(1 + ν)x2 − x3,

ẋ2 = (1 + ν)x1 + a x2 + µ(y2 − x2), (29)
ẋ3 = b + x3 (x1 − c),
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ẏ1 = −(1− ν)y2 − y3,

ẏ2 = (1− ν)y1 + a y2 + µ(x2 − y2), (30)
ẏ3 = b + y3 (y1 − c).

in the phase coherent regime (a = 0.16, b = 0.1, c = 8.5), similar to the
example of Fig. 4. According to [31], for ν = 0.02 and µ = 0.05 both systems
are in PS. We observe that the local maxima of RRx

τ and RRy
τ occur at

τ = nT , where T is the mean period of both Rössler systems and n is an
integer (Fig. 9A).
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Fig. 10. (A) Trajectory and (B) Recurrence plot for a Rössler system in the funnel
regime, Eqs. (14) for a = 0.2925, b = 0.1, c = 8.5. Compare with Fig. 4.

Note that the heights of the local maxima are in general different for both
systems if they are only in PS (and not in stronger kinds of synchronization,
such as generalized or complete synchronization [30]). But the positions of the
local maxima of RRτ coincide, and the correlation coefficient is CPR = 0.998.
For µ = 0.02 the systems are not in PS and the positions of the maxima of
RRτ do not coincide anymore (Fig. 9B), clearly indicating that the frequencies
are not locked. In this case, the correlation coefficient is CPR = 0.115.

It is important to emphasize that this method is highly efficient even for
non-phase coherent oscillators, such as two mutually coupled Rössler systems
in the rather complicated funnel regime, Eqs. (29) and (30), for a = 0.2925,
b = 0.1, c = 8.5, ν = 0.02 (Fig. 10). We analyze again two different coupling
strengths: µ = 0.2 and µ = 0.05. The peaks in RRτ (Fig. 11) are not as well-
pronounced and regular as in the coherent regime, reflecting the different time
scales that play a relevant role and the broad band power spectrum of these
systems. However, for µ = 0.2 the positions of the local maxima coincide for
both oscillators (Fig. 11A), indicating PS, whereas for µ = 0.05 the positions



Recurrence and bivariate coupling 21

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

A

Lag τ

RR
τ

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

B

Lag τ

RR
τ

Fig. 11. Recurrence probability RRτ for two mutually coupled Rössler systems in
funnel regime, Eqs. (29) and (30), for a = 0.2925, b = 0.1, c = 8.5. (A) µ = 0.2 (PS)
and (B) µ = 0.05 (non-PS). Solid line: oscillator x, dashed line: oscillator y.

of the local maxima do not coincide anymore (Fig. 11B), indicating non-PS.
These results are in accordance with [31].

In the PS case of this latter example, the correlation coefficient is CPR =
0.988, and in the non-PS case, CPR = 0.145. Note that the positions of the
first peaks in RRτ coincide (Fig. 11B), although the oscillators are not in PS.
This is due to the small frequency mismatch (2ν = 0.04). However, by means
of the index CPR we can distinguish rather well between both regimes.

Furthermore, the index CPR is able to detect PS even in time series
which are strongly corrupted by noise [27]. Additionally, CPR indicates clearly
the onset of PS. In [27], the results obtained for CPR in dependence on
the coupling strength were compared with the Lyapunov exponents, as they
theoretically indicate the onset of PS (in the phase-coherent case). The results
obtained with CPR coincide with the ones obtained by means of the Lyapunov
exponents.

The results obtained with CPR are very robust with respect to the choice
of the threshold ε. Simulations show that the outcomes are almost independent
of the choice of ε corresponding to a percentage of black points in the RP
between 1% and 90%, even for non-coherent oscillators. The patterns obtained
in the RP, of course, depend on the choice of ε. But choosing ε for both
interacting oscillators in such a way that the percentage of black points in
both RPs is the same, the relationship between their respective recurrence
structures does not change for a broad range of values of ε.
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Fig. 12. Cross recurrence plot on ordinal scale and corresponding recurrence rate
RRτ for two mutually coupled Rössler systems in (A) non-phase synchronized and
(B) phase synchronized regime. Embedding parameters are m = 3 and ϑ = 2.

Synchronization in Rössler oscillators: ordinal scale

The locking of phases in case of synchronized oscillators is also reflected by
order patterns, which then become synchronized, too. The order patterns
represent the phase, which allows an instantaneous study of phase interaction
during the onset of phase synchronization of oscillators. A direct comparison
of states has the main advantage to study synchronization behavior instanta-
neously. In order to study a longer range in time and to focus on a small range
of the time-lag we choose a slightly different representation of the recurrence
plot. In the following we consider the recurrence plot as a function of time i
and time-lag τ = i− j, where diagonal lines become horizontal lines.

Fig. 12 shows cross recurrence plots on ordinal scale of two mutually cou-
pled Rössler systems. The parameters are the same as before. In the non-phase
synchronized regime (Fig. 12A, µ = 0.02) both oscillators diverge due to de-
tuning and consequently we observe drifting lines. The corresponding recur-
rence rate RRτ shows no significant values. In case of phase synchronization
both oscillators pass the regions of order patterns simultaneously, which is re-
flected in long horizontal lines (Fig. 12B, µ = 0.05). The recurrence rate shows
distinct peaks with a distance of the mean recurrence time. With metric CRPs
we do also observe the transition to PS, but the lines are interrupted because
amplitudes are not equal, as they would be in complete synchronization.

In the non-phase-coherent funnel regime (Fig. 10) the distribution of re-
currence times is broad, what is already reflected in the recurrence rate on
metric scale (Fig. 11). In case of no phase synchronization (µ = 0.05) we ob-
serve only very short horizontal lines in the cross recurrence plot on ordinal
scale (Fig. 13A), and the recurrence rate shows no significant values. In case
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Fig. 13. Cross recurrence plot on ordinal scale and corresponding recurrence rate
RRτ for two mutually coupled Rössler systems in funnel regime in (A) non-phase
synchronized and (B) phase synchronized regime. Embedding parameters are m = 3
and ϑ = 2.

of phase synchronization (Fig. 13B, µ = 0.2) the plot clearly shows a long line
at τ ≈ 0. But in contrast to the phase-coherent regime, there are no other
distinct lines and the recurrence rate exhibits only a single dominant peak.

7 Application to EEG data

Synchronization analysis during an epileptic seizure

The following application to EEG data illustrates the advantages of an anal-
ysis on ordinal scale in contrast to the metric scale. Scalp EEG data are
susceptible to many artifacts which cause offset and amplitude fluctuations.
We study the phenomenon of synchronization of neuronal groups during an
epileptic seizure, where the specific type of phase synchronization has already
been discussed to detect seizure activity [38].

We consider EEG signals from a 14-year old child with epileptic disorder,
which were provided by H. Lauffer from the Department of Pediatric Medicine
of the University of Greifswald. The 19-channel EEG data (international 10-
20 system) were sampled with 256 Hz and band-pass filtered (0.3-70 Hz). On
two representative channels the seizure onset is shown in Fig. 14A, indicated
by a gray bar.

The data during the seizure are clearly dominated by oscillations in the
alpha range (≈8-13 Hz) which are locked, indicating synchronization. This
yields to a high coupling index ρπ of the order patterns (Fig 14B). Before
the seizure there are no dominant oscillations, and the coupling index ρπ
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Fig. 14. (A) Coupling of two EEG channels during onset of epileptic seizure (gray
bar). (B) Coupling index ρπ derived from ordinal recurrence plot with embedding
parameters m = 3 and ϑ = 27 ms. (C) Maximum value of cross-correlation function.
Both coupling indices are determined in a sliding window of length 2 s. Considered
time-lag between both channels −0.2s . . . 0.2s.

is clearly smaller. Although the EEG data are corrupted by artifacts, the
coupling index gives reliable results to reveal the seizure period. The cross-
correlation function, however, is strongly disturbed (Fig. 14C), and special
pre-processing of the data would be inevitable for its use.

Multivariate coupling in event-related potentials

Our second example will show that quantization of coupling makes sense also
for data which do not oscillate. Event-related potentials are multivariate time
series which show the reaction of the human brain on a certain stimulus [39].
They are non-stationary, but since the experiment is repeated many times,
we have a whole sample of such time series. The traditional way is to take
the average time series and look for its maxima and minima which are then
compared with peaks of typical reaction curves, called N100 or P300 since
they appear 100 or 300 ms after the stimulus and are negative or positive.

It is not clear whether these most obvious peaks represent the most in-
teresting brain activity, but there is little fine structure in an average curve
of hundreds of time series. Today’s challenge is the analysis of single trials,
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and the huge problem is that beside the reaction under study, there is a lot
of other brain activity, measurement errors etc.
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Fig. 15. Reaction of four persons (columns) in a visual oddball experiment. (A)
Mean amplitude of 9 parietal channels and all ordinary (thin) resp. oddball (thick)
trials clearly shows P300. (B) Corresponding means of rank numbers (40 values
backwards) show the effect less clearly. (C) The recurrence rate of rank numbers for
all nine channels measures the multivariate coupling of the channels. P300 comes
out very clearly, but a bit different from (A). Note also N100 for the first person
and P200 for the fourth.

The question we address here is whether certain reactions can be charac-
terized not only by the size of amplitudes, but also by the coupling of differ-
ent channels, with no regard to the size of values. This is recent research of
C. Bandt and D. Samaga with A. Hamm and M. Weymar from the Depart-
ment of Psychology in Greifswald who performed a simple oddball experiment
just for single-trial analysis. Eight male students were presented, in intervals
of about two seconds, 150 equal shapes on a screen. 23 were red, and 127 yel-
low, and the red (oddball) patterns had to be counted. Raw EEG data with
sample frequency 500 Hz were taken from 128 channels (Electrical Geodesics,
Inc.). Preprocessing involved subtraction of the average of all channels, se-
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lection of 54 important channels in the parietal and occipital region, and a
decent projection method to remove the 50 Hz mains hum.

Theory predicts that the rare oddball patterns, on which the attention
is directed, are characterized by a clear P300 peak in parietal channels – in
the average curve. This was true, and is shown for the first four subjects
and the average of 9 parietal channels in Fig. 15A. Note that there are big
differences between individuals, which casts doubt on the common practice to
take “grand averages” over many persons. For instance, the first person has a
distinctive N100, and the last one has a clear P200.
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Fig. 16. Analysis of P300 for the first 10 oddball trials of the first person. The
two upper rows show recurrence rates of order patterns, over 9 channels and time
windows of 40 ms, measuring the coupling of the channels. The two lower rows show
average amplitude, also taken over 9 channels and 40 ms windows. Time from 40 to
500 ms, vertical lines at 300 ms. As in Fig. 15, P300 usually has a single peak in
amplitude and a double peak in coupling.

The question was whether order patterns in the time series will also detect
the oddball effect. We took rank numbers with respect to the previous 40
values (80 ms), ri = #{k|1 ≤ k ≤ 40, xi−k < xi} [14]. The resulting average
curves were worse than amplitudes in characterizing oddball trials (Fig. 15B).
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This is because those rank numbers represent the local structure of the curve:
even a huge P300 value in one trial, which influences the average in Fig. 15A,
can only have rank number 40, which means it is just larger than the last 40
values. Other features, however, as N100 for the first person, seem to come
out more properly with rank numbers than with amplitudes.
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Fig. 17. Single-trial analysis of N100 for the first 10 ordinary trials of the first
person. The two upper rows show recurrence rates of order patterns over 9 channels
and time windows of 40 ms, measuring the coupling of the channels. The two lower
rows show average amplitude for the corresponding trials. Time from 40 to 500 ms,
vertical lines at 130 ms. To detect N100, coupling performed better than amplitude.

Now we took order patterns of length m = 4, with lag ϑ = 22 ms, for
these 9 channels in the parietal region, and all red (resp. yellow) trials, and
took the recurrence rate of the resulting distribution of order patterns, as
defined in (17). To have a better statistics for the 23 red trials, we also took
disjoint windows of 5 successive time points (10 ms). (When we estimated
4! = 24 probabilities pπ from 9 · 23 order patterns for each time point, the
curve became rather noisy, so we took always 5 time points together.) RR is
high when many patterns coincide, so it measures the coupling of the channels.
The result in Fig. 15C shows that this coupling really distinguishes the oddball
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trials, at least in the overall statistics. The same was found for permutation
entropy [17], and also for the rank numbers instead of order patterns.

Now let us go to single trials, taking only the first person. Fig. 16 shows
the first 10 oddball trials. The recurrence rates were taken over the 9 parietal
channels and over sliding windows of 20 points. For one time point in a single
trial, we have only 9 order patterns, one for each channel. With the sliding
window, we had 9 · 20 = 180 order patterns to estimate 4! = 24 probabilities
pπ which resulted in surprisingly smooth curves. For a fair comparison, the
amplitudes in the lower part of Fig. 16 were also averaged over the 9 channels
and sliding windows of width 20. The P300 can be seen in most cases, with
a single peak in amplitude and a twin peak in the coupling. This connection
deserves further attention.

As was indicated in Fig. 15, the trials also show N100 – small amplitude
and coupling around 100 ms. This will be our main concern when we now
study the first 10 ordinary trials. There is a peak in coupling around 100 ms
in 9 of 10 trials of Fig. 17. In the corresponding pictures of amplitude, it is less
obvious that there is a minimum. At this point recurrence rates work better.
Comparing Figs. 16 and 17, we see that the reaction at 100 ms comes later in
oddball trials.

Ordinal trials also show weak P300 peaks, which is possible from a physio-
logical point of view. In fact we had to accumulate the information from many
channels to obtain rules for every individual which correctly classify oddball
and ordinary trials in 90 % of all cases. Other peaks in Fig. 17 which irreg-
ularly appear may have to do with further brain activity. On the whole, this
example indicates that coupling concepts can be very useful for single-trial
analysis.
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