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Distinguishing quasiperiodic dynamics from chaos in short-time series
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We propose a procedure to distinguish quasiperiodic from chaotic orbits in short-time series, which is based
on the recurrence properties in phase space. The histogram of the return times in a recurrence plot is introduced
to disclose the recurrence property consisting of only three peaks imposed by Slater’s theorem. Noise effects
on the statistics are studied. Our approach is demonstrated to be efficient in recognizing regular and chaotic
trajectories of a Hamiltonian system with mixed phase space.
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I. INTRODUCTION

Recurrence plots (RPs) and the associated recurrence
quantification analysis (RQA) have been intensively studied
in nonlinear data analysis [1-3]. This technique has been
applied to various experimental data sets, ranging from
chemistry and physiology to earth sciences and complex syn-
chronization analysis [4-9].

RPs were originally introduced to visualize recurrences of
trajectories of dynamical systems in phase space [10]. Sup-
pose we have a dynamical system represented by the trajec-
tory {v;} for i=1,...,N in a d-dimensional phase space. We
then compute the binary matrix

Ri,j = @(6— ||l;l - l;]

), i,j=1,...,N, (1)

where € is a predefined threshold, O(-) is the Heaviside func-
tion, and ||| is a norm defining the distance between two
points. The graphical representation of R, j, called the “recur-
rence plot,” is obtained by encoding the value “one” by a
black point, (i.e., the distance between the respective points
is smaller than the predefined threshold €) and “zero” by a
white point (i.e., the distance between the respective points is
larger than ).

The recurrence time—i.e., the time that the trajectory
needs to recur to the neighborhood of a previously visited
state—corresponds to a white vertical line in an RP [Fig.
1(a)]. Trivially, for a periodic motion of period 7, the states
recur at fixed time intervals and, hence, the corresponding
RP consists of uninterrupted diagonal lines separated by the
distance T [Fig. 1(a)]. The RP of a chaotic system repre-
sented in Fig. 1(c) shows far more intricate structures with
many interrupted lines. The distance between diagonal lines
is then not constant due to the multiple time scales present in
the system and the interruption of the lines is due to the
exponential divergence of nearby trajectories. The presence
of nonperiodic recurrence points is referred to as nontrivial
recurrence [11]. Note that in the case of nontrivial recur-
rences, the trajectory only recurs to the vicinity of the refer-
ence point but an exact recurrence cannot be obtained.

Quasiperiodicity is the simplest form of dynamics exhib-
iting nontrivial recurrence with low complexity. The RP of a
uniform quasiperiodic system is shown in Fig. 1(b). In con-
trast to the periodic case, the distance between the diagonal
lines is not constant (indicating different return times). The
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RP of white noise is rather homogenous, consisting mainly
of isolated points, indicating the randomness of the system
[Fig. 1(d)]. Comparing Figs. 1(a)-1(d), the RP of quasiperi-
odic motion has an intermediate complexity.

RPs of quasiperiodic motion exhibit intricate line struc-
tures with nonequal distances [Fig. 1(b)], but a complete
systematic description of them is still lacking. In this paper,
we analyze quasiperiodic dynamics in the context of RPs and
discuss the relationship to the rather old, but little-known
Slater’s theorem [12]. This theorem has recently demon-
strated to be a useful and fast tool to determine the existence
of shearless tori in (quasi-)Hamiltonian systems [13]. Based
on Slater’s theorem, we propose a procedure that allows dis-
tinguishing quasiperiodic from chaotic dynamics in rather
short-time series by means of the RP analysis. In the litera-
ture, the power spectrum has been widely used to distinguish
quasiperiodicity from chaos. However, for an appropriate es-
timation of the power spectrum rather long-time series from
a stationary regime are necessary, and in many applications
only short-time series are available. In this paper, we propose
a method which overcomes this difficulty. Furthermore, it
can also be applied to multivariate data.

Let us recall that two-frequency quasiperiodic motion
densely fills the surface of a torus, which is parametrized by
two phase variables with incommensurate (average)
frequencies—say, w; < w,. The rotation number 7y defined as
y= % is an irrational number. In an RP with €>0, the white
vertical lines between diagonals represent rational approxi-
mations of y because they measure (within a precision €) the
common multiples of T1=27/w; and T,=27/w,. In other
words, for a tolerance of order e, the rationals m/n with the
smallest n that approximate y within that tolerance give rise
to black points in the RP. Rational approximations of irratio-
nal numbers have a fundamental meaning in number theory,
as any irrational number can be approximated arbitrarily
closely by rational numbers whose denominators are arbi-
trarily large [14]. This approximation is captured by the
white vertical lines in the RP. Hence, in the following analy-
sis, we mainly focus on these white vertical lines.

This paper is organized as follows. In Sec. II, the histo-
gram of white vertical lines is introduced to link the line
structures in an RP to Slater’s theorem. In Sec. III, the result
is illustrated in the case that the rotation number is the
golden mean. In Sec. IV we use the analysis of the recur-
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FIG. 1. RPs of four different cases: (a) periodic, (b) quasiperi-
odic, (c) chaotic, and (d) Gaussian white noise. The line with
double arrows in (a) is used to denote a white vertical line.

rence times to distinguish between chaotic and quasiperiodic
dynamics in short-time series. The effects of norm type and
noise on the return times are studied in Secs. V and VI,
respectively. Finally, some conclusions are drawn and dis-
cussed in the last section.

II. SLATER’S THEOREM AND LINE STRUCTURES
IN THE RPS

We have seen in Fig. 1(b) that the RP of a quasiperiodic
trajectory consists of diagonal lines with different distances
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between them, reflecting the existence of different return
times. In this section, we show their relationship to Slater’s
theorem.

In a three-dimensional phase space, a simple example of
quasiperiodic motion, parametrized by time ¢, is

X (R + r sin w,1)cos wyt
v =|x |= 7 cos wt , (2)
X3 (R + rsin wt)sin w,t

with two angular frequencies w;, w, and R>r. The fre-
quency w; corresponds to the rate of rotation about the cross
section with radius r and period 7)=27/w;, while the fre-
quency w, corresponds to the large circumference with ra-
dius R and period T,=2m/w,. To illustrate the properties of
the RP, the parameters in Eq. (2) are chosen to be R=4, r
=0.5, and y=(y5—-1)/2. The sampling time is A¢=T),, which
leads to the points on a Poincaré section perpendicular to the
longitudinal direction. The advantage of sampling every T,
will be illustrated in Sec. V. The length of the time series is
5000 points.

As mentioned before, the rough common period T for the
two time scales is given by the time after which the trajec-
tory returns to the e neighborhood of a reference point.
Hence, the smaller the value of € is, the better the approxi-
mation must be to observe a recurrence. The threshold e
determines the length of the white vertical lines in the RP.

The RP of v(1), Egs. (2), and its corresponding histogram
of white vertical lines for a fixed value of €=0.2 are plotted
in Figs. 2(a) and 2(b), respectively. We observe that in the
histogram of white vertical lines there are only three peaks at
/=5, 8, and 13. Moreover, one verifies that these peaks are
shifted to smaller values as € is increased, which is clearly
seen in Figs. 2(c) and 2(d).

In order to understand the histogram of white vertical
lines of the RP for quasiperiodic trajectories [Figs. 2(b) and
2(d)], we briefly recall Slater’s theorem [12]. The quasiperi-
odic dynamics on a 2-torus can be reduced, via a Poincaré
section, to an invertible circle map, which is conjugated to
the (irrational) linear rotation on a unit circle:

F:0,.,=6,+y mod 1. (3)

Hence, F is the circle homeomorphism with O and 1 being
identified. The properties of this linear rotation depend on the
arithmetic properties of the rotation number y. Equation (3)
can be analytically derived from Eq. (2) by introducing a
Poincaré section perpendicular to the longitudinal direction
of the toroidal surface, which can be easily obtained by the
sampling rate Ar=T, [15]. Slater’s theorem states that for
any irrational linear rotation and any connected interval of
size €, there are at most three different return times, one of
them being the sum of the other two. Two of these three
return times are always the consecutive denominators in
the continued fraction expansion of the irrational rotation
number y.

Hence, the three return times in the RP of the quasiperi-
odic trajectory (2) are a consequence of Slater’s theorem. As
the points of the successive irrational linear iteration are uni-
formly distributed on the circle, the return times depend only
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FIG. 2. RPs and the corresponding histograms of the white ver-
tical lines. (a),(b) €=0.2 and (c),(d) e=0.3. The maximal distance is
denoted as d; in (a).

on the size of the interval. Therefore, the positions of the
peaks of the histogram are shifted to larger values as this size
is decreased.

However, it is important to note that nonlinearities typi-
cally induce nonuniformities in the distribution of the points
on the Poincaré section, which automatically implies that
intervals of equal length are not equivalent (they would be-
come intervals with different lengths under the homeomor-
phism that allows conjugacy to a rigid rotation by Denjoy’s
theorem). As a consequence, the return times to intervals of
the same size around different reference points are in general
not equal; see, e.g., [16-18]. Note that, in particular, the
average return time for a given interval A of a map only
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FIG. 3. (a) The maximum white vertical line versus e for the
golden mean. The numbers on the plateaus of the curve satisfy the
Fibonacci sequence. (b) The e values against the maximal white
vertical lines in a logarithmic scale plot. The straight line is with
slope —1 as expected by Eq. (7).

depends on the integral [,f(x)dx, where f(x) is the (smooth)
invariant density [17]. This and other subtle aspects of the
recurrences are discussed in Sec. V where we study a generic
case.

III. EXAMPLE: DYNAMICS WITH THE GOLDEN MEAN
AS THE ROTATION NUMBER

We have observed that for uniform quasiperiodic dynam-
ics the white vertical lines in RPs fully reflect the three return
times property predicted by Slater’s theorem, independently
of the position of the reference point. Furthermore, the val-
ues of the white vertical lines are determined by the size of
the recurrence interval €. In this section, we extend our
analysis to explore in more detail the dependence of recur-
rences (i.e., white vertical lines) on €. We choose the rotation
number equal to the golden mean, y=(y5—-1)/2, as this ir-
rational number has the simplest continued-fraction expan-
sion.

A. Fibonacci sequence

In order to analyze the effect of the size of € on the white
vertical lines of the RP, we compute the dependence on € of
the largest white vertical line; see Fig. 3(a). We find that the
maximal white vertical lines satisfy the Fibonacci sequence
0,1,1,2,3,5,8,13,21,..., which is defined recursively by

Fn+1=Fn+Fn_1, n=1,2,3,..., and FO=O, F1=1.
(4)

It is well known that
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FIG. 4. (a) Three white vertical lines in dependence of € values
for the golden mean. (b) The € values against the white vertical
lines in a logarithmic plot.

lim 2l = (5)
n—e Lip
Instead of plotting only the maximal white vertical line,
we now plot in Fig. 4(a) the lengths of all the white vertical
lines found in the RP. We observe that for each value of €, at
most three different lengths of white vertical lines are ob-
tained, in agreement with Slater’s theorem. Note that the
lengths also satisfy the sum rule, and for this particular rota-
tion number they are proportional to the Fibonacci sequence,
with a constant equal to 1 as the time unit is precisely the
discrete time of the map (3).

B. Tolerance analysis of the rational approximations

We have seen in the previous sections that, when dealing
with quasiperiodic dynamics, the RP reflects the rational ap-
proximations to the corresponding frequency ratio of the mo-
tion. For practical applications, it is worth discussing and
quantifying the degree of approximation and the associated
reliability.

According to number theory, an irrational number vy is
particularly hard to approximate if it satisfies a Diophantine
condition—namely, the inequality

C

m
= |8(m,n)| > nﬁ+1 s (6)

y——
n

for some positive numbers C, 8= 1. It is a basic fact that this
set of numbers that are poorly approximated by rationals has
Lebesgue measure 1 [19]. In the case of the numbers of
constant type, as the quadratic irrationals, S=1.

The minimal distance d given by the best rational ap-
proximation scales in the following way:
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d~nP. (7)

From the RP point of view, this tolerance level d corresponds
to the threshold value € for the computation and n corre-
sponds to the length of the white vertical lines in the plot.
For the golden mean, a quadratic number we observe the
scaling behavior d~n~' as expected (see Appendix A).
Hence, the relation between the threshold e and the lengths
of the white vertical lines in the RP reproduces this scaling
behavior, which is seen in log-log scale in Figs. 3(b) and
4(b).

IV. DISTINCTION BETWEEN QUASIPERIODIC AND
CHAOTIC DYNAMICS IN SHORT-TIME SERIES

As we have seen in the previous sections, the quasiperi-
odic dynamics has three return times for a recurrence inter-
val, providing a rather simple technique to detect quasiperi-
odicity. However, due to the fact that the probabilities of the
three respective return times are different from each other as
indicated by the value on the y axis in Figs. 2(b) and 2(d),
time series with length of more than three orbital periods are
required to discard quasiperiodicity. In this section, we apply
this property to distinguish quasiperiodic from chaotic orbits
in the case that only short-time series are available.

As a case study, we take the Hénon-Heiles Hamiltonian H
[20]

Lo, 5 1 ( 2.2 2 2 %)
H=—(p,+p))+ |\ x"+y +2xy—- -y’ |, 8
2(px py) S\X Y +20y -2y (8)
where p,=x and p,=y. The corresponding canonical equa-
tions read

p‘x:_x_zxy? p‘y:_y_x2+y2, xsz’ yzpy'
©)

The Hénon-Heiles system was first studied in the context of
analyzing the existence of two or three constants of motion
in galactic dynamics [20]. Depending on different energy
values of the system, it admits a significant number of both
regular and chaotic orbits. As the energy increases, the
Kolmogorov-Arnold-Moser (KAM) tori begin to dissolve via
archipelago formation and the chaotic sea begins to expand.
After the last KAM torus has disappeared, a single chaotic
component covers almost the entire allowed region of phase
space [21]. Throughout this section, we choose an interme-
diate value of the energy H=0.125, since for this value the
regular region has approximately the same size as that of the
chaotic one.

A. Visualization: Poincaré map versus RP

Since the system is Hamiltonian, energy conservation im-
poses trajectories to reside in a three-dimensional volume
into the four-dimensional space (x,p,,y,p,). It is well known
that a proper construction of a Poincaré section allows for an
easy visualization of the motion. We define the Poincaré sec-
tion as x=0, x<0. The successive crossings of the trajecto-
ries with this section are shown in Fig. 5(a) for ten randomly
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FIG. 5. (a) The crossings of trajectories with the Poincaré sec-
tion defined by x=0, X <0 for ten random initial conditions for the
case with energy H=0.125. (b) About ten oscillations of a quasip-
eriodic orbit with the initial values (0.004 793,0.479 291,
0.149 994,-0.001 275). (c) A chaotic orbit with the initial condi-
tions (0.004 876,0.487 553,-0.001 108,-0.110 757).

chosen initial conditions. For each trajectory, we terminate
the integration of Egs. (9) when 2000 points on the surface
of the section are obtained. The integration is carried out
using a fourth-order Runge-Kutta integrator with a fixed step
size 0.01 time units The time interval between two consecu-
tive crossings on the section corresponds to the pseudoperiod
of one oscillation. The chaotic and quasiperiodic trajectories
are identified from Fig. 5(a) as sequences of points in the
resulting Poincaré surface of section which, respectively, fill
an area and lie on closed smooth curves. This leads to the
pictorial notion of a mixed phase space where “islands” of
quasiperiodicity surrounding elliptic points are surrounded
by the chaotic sea.

The RPs of these 2000 crossings on the Poincaré section
are shown in Fig. 6. From this figure, the RP of the quasip-
eriodic orbit consists of continuous diagonal lines besides
regular dashed lines [Fig. 6(a)]. However, the RP of the cha-
otic orbit has a significantly different line structure [Fig.
6(b)] with many random lines of short length.

In practical applications it may be problematic to define a
Poincaré section due to two reasons: first, systems with more
than two degrees of freedom might be very difficult to visu-
alize and, second, the dynamical equations may be unknown.
Furthermore, if the time series is not very long, the resulting
number of points on the Poincaré section might be not
enough to conclude whether the successive crossings fall on
a closed curve or belong to the chaotic sea. In this case, the
RP analysis can distinguish between quasiperiodic and cha-
otic orbits in a more efficient way.

B. Histogram of white vertical lines in RPs

In order to test the efficiency of RPs with short-time se-
ries, we take a quasiperiodic orbit and a chaotic one, of

PHYSICAL REVIEW E 76, 016210 (2007)

(a)2000 ,f/ P
o o /
S S .
T S o
e e e /
S ’ S e e
€ 1500 o s s
7] S e o
@ A s S
S o e y
8 T P ey
S 1000}~ s o p
e} e vt S
p= e e //
< s e s
o S .
£ 500t 7 i s
= P o s P
o ey L P
% A s ~
g S o
P e e
0 S v S
0 500 1000 1500 2000

Time(No. of crossing)

(b) 2000 T
1500

1000z~

Time(No. of crossing)

500

0 500 1000 1500 2000
Time(No. of crossing)

FIG. 6. RPs of the Poincaré section points of two typical trajec-
tories: (a) quasiperiodic and (b) chaotic.

which about ten oscillations are shown in Figs. 5(b) and 5(c).
In the following analysis, we try to distinguish between both
of them from these ten orbital periods. The results do not
depend on the specific initial conditions of the trajectories,
and we do not use a Poincaré surface of section either, so we
face the problem of analyzing these raw time series without
prior knowledge about the Hamiltonian.

First, we present the results in the original space; i.e., we
use the trajectories in the four-dimensional (4D) phase space
denoted as (x,x,y,y) by integrating Egs. (9) directly. Figures
7(a) and 7(d) show the projections onto the (x,x) plane of a
quasiperiodic and a chaotic orbit, respectively. The associ-
ated RPs are generated sampling the trajectory every 0.1 t.u.;
see Figs. 7(b) and 7(e). The corresponding histograms of the
white vertical lines in RPs are represented in Figs. 7(c) and
7(f), respectively. These histograms allow us to distinguish
both cases: only three principal peaks exist for quasiperiodic
motion. Furthermore, the length of the largest white vertical
line is the sum of the other two. In our particular case, the
(sharp) peaks are centered at T,=18.45, T,=24.6, and T,
=T,+T,=43.05. However, for the chaotic case, there are
more than three peaks in the histogram, which noteworthily
do not satisfy the very restrictive sum rule of Slater’s theo-
rem: for the three principal return times in Fig. 7(f) we have
T1=6.7, T,=35.8, and T5=49.6. Note that there are two
small peaks at the positions 13.8 and 28.8. Hence, by means
of the return times it is possible to distinguish between qua-
siperiodic and chaotic dynamics from very-short-time series.

We note that in Slater’s theorem time is a discrete quantity
(like in circle and Poincaré maps); hence, in principle it
would be possible to find a system with very low temporal
coherence where continuous time and discrete time (from a
Poincaré section) are considerably unrelated. We have not
encountered this problem, and in turn our histograms always
present sharp peaks.

016210-5



ZOU et al. PHYSICAL REVIEW E 76, 016210 (2007)

(b) (c) 100
60 - 3
£
) o S

g0 r ; 5 950
= - e o
20 ) E
=

0 0 10 20 30 40 50 60
0 20 40 60 £ aod
Tine Vertical white lines

(e) (f) 100
60 . 8
# £ 2
® e ’ ks

% = 50
= £
20 E

7 8 )
% 20 40 60 0 10 20 30 40 50 60

Time

Vertical white lines
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C. Results with embedded scalar time series

Next, we present the results in the case that only one short
scalar time series [Figs. 5(b) and 5(c)] is available for the
computation of each histogram. The conventional delay em-
bedding is applied before computing the RP. We use an em-
bedding dimension m=4 and time delay 7=1.7 tu., esti-
mated by the autocorrelation function [22]. The projections
of the quasiperiodic and chaotic orbits on the (x,x,.,) plane
are shown in Figs. 8(a) and 8(d), which give fairly faithful
visual reproductions of the original phase space as Figs. 7(a)
and 7(d). After the phase space reconstruction, the RP for
each case is shown in Figs. 8(b) and 8(e). The associated
histograms of the white vertical lines are plotted in Figs. 8(c)

and 8(f), respectively. Based on the histogram of Fig. 8(c)
and the relationship between these three peaks 7,=18.5, T,
=244, and T;=43=~T,+T,, one can conclude that the mo-
tion is quasiperiodic. However, we get a completely different
picture for the chaotic orbit [Fig. 8(f), T1=7, T,=14, T}
=22, T,=28.8, T5=36.1].

D. Comparison with power spectrum

In the literature, the historically favored method to distin-
guish quasiperiodic from chaotic orbits is based on the power
spectrum. Theoretically, one knows that quasiperiodic trajec-
tories yield discrete Fourier spectra whereas chaotic orbits
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FIG. 8. (a),(d) The projections of the embedded trajectory in the (x,x,.,) plane. (b),(e) Recurrence plots. (c),(f) The corresponding
histogram of white vertical lines in RPs. The first row (a)—(c) is for the quasiperiodic case and the second row (d)—(e) is for the chaotic case.
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yield continuous (broad) ones. Based on the program “spec-
trum” of the TISEAN program package [23] the power spectra
for our two short-time series (Fig. 9) show that we can hardly
come to a significant difference between them. This is due to
the rather short-time series used.

Furthermore, the histograms of the white vertical lines in
the RPs are constructed from the trajectory in phase space
[with four variables (x,x,y,y) for example, or
(X, X472 X407 X43,) if it is embedded from the x component],
which is an advantage to the conventional power spectrum
analysis based on scalar time series. This also prompts the
applicability in dealing with multidimensional data analysis.
Therefore, the histogram of white vertical lines of the RP
contains more information about the dynamics than the
power spectrum.

Comparing the histograms and the power spectra, one can
infer the existence of quasiperiodicity efficiently from short-
time series with the aid of the recurrence properties.

V. NORM EFFECTS ON THE RETURN TIMES

Slater’s theorem states that, for any irrational linear rota-
tion on the unit circle, at most three different return times to
a connected interval are observed. The application of this
theorem to recurrence plots, where one considers recurrences
to every point of the trajectory, deserves some caution. Nev-
ertheless, we will see below that considering the recurrences
to a fixed point of the trajectory—i.e., using one single col-
umn of the RP—this problem can be solved.

First of all, one must differentiate between discrete- and
continuous-time systems. If we are able to define a Poincaré
section for the system under study, we can apply Slater’s
theorem directly for the recurrence to a given point, but as
we show below, we must take some care for the RP where
the recurrences to all points are shown altogether. The case
of a continuous-time series is more complicated and encom-
passes more subtle aspects that we analyze at the end of this
section.

A. Circle map model

Once we have a proper Poincaré section of the system
under study, we have to choose a norm. In general, due to the
lack of uniformity of the motion, intervals with the same
length (of the closed curve formed intersecting the torus) are
not equivalent. This is something one must always take into
account. As nonuniformity is not known in advance, we can-
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FIG. 10. The effective recurrence interval is denoted by thick
arcs. (a) The Euclidean norm yields the same arc length indepen-
dent of the position due to the symmetry property. (b) The maxi-
mum norm yields recurrence intervals of different length due to the
invariance of the orientation AX in the horizontal (AY in the verti-
cal, respectively) direction to the reference point.

not avoid effects associated with it. In any case, in the ideal
case of a linear rotation on the unit circle (3), the Euclidean
norm is the optimal one. Therefore, as a rule, the Euclidean
norm should be the preferred choice for this particular case.
Figure 10 exemplifies the goodness of the Euclidean norm
versus the maximum norm (that yields recurrence intervals
of different length).

In order to show the effect of the maximum norm more
clearly, we plot the lengths of the white vertical lines in the
RP [using the third component x;=const of the vector v of
Eq. (2) as the Poincaré surface] with respect to the position
on the circle. The value of the threshold € is the same as used
in Fig. 2(b) for better comparison. For illustration, we define
a phase variable—say, ®=arctan x,/(x;—R)—to denote the
specific position on the circle.

If the Euclidean norm is used, the return times depend
only on the size of the recurrence interval and the number of
different recurrence times is 3 [Fig. 11(a)]. In contrast, for
the maximum norm, Fig. 11(b) shows that for every refer-

(a)20

Vert. wht. lines

L W 0

=2

/2 T 3n/2 2n
[}

—
O

~
[\]
(=)

Vert. wht. lines

W W 0

=

/2 T 3m/2 2n
[}

FIG. 11. White vertical lines versus the position on the Poincaré
section. (a) The Euclidean norm and (b) the maximum norm.
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FIG. 12. (a) Schematic description of the relationship between
the flow and the recurrence regime on the Poincaré section. The
lines with arrows indicate the direction of the flow showing differ-
ent ways to pass the area. The central circle is the reference point.
(ay) shows the effect of the sampling denoted by black points. (b)
RP of quasiperiodic trajectory obtained from Eq. (2). The maximum
norm and a sampling time Az=0.01 are used.

ence point, only three different return times are observed.
However, the values of these return times vary with the po-
sition on the circle. For example, for (I)zf, the return times
are 3, 5, and 8, but for ®=2, the return times are 5, 8, and
13. Hence, if we count all return times in the RP computed
with the maximum norm, we obtain four instead of three
recurrence times.

B. Three-dimensional phase space model

Let us see now in more detail how Slater’s theorem re-
lates to RPs in a generic situation of recognizing a quasip-
eriodic flow on a torus. For each point the intersection of the
recurrence “ball” (of “radius” €) and the torus gives a two-
dimensional recurrence region on the torus. Unless the flow
is meandering at the scale of the recurrence region, every
recurrence region is crossed by the flow in a regular way
(locally every trajectory enters and exists the region once).
Hence, for every point of the trajectory the recurrence region
encloses a connected recurrence interval as required by Slat-
er’s theorem.

The first obvious problem that will typically arise study-
ing a continuous flow is the nonequivalence of different
points of the trajectory (due to the different size, orientation,
etc., of recurrence regions and due to the nonuniformity of
the flow). This will lead to different return times for each
point, even if all of them satisfy separately Slater’s theorem
(like in Fig. 11). In Fig. 12(a), we illustrate some possible
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FIG. 13. Histograms of the white vertical lines of the RPs of
Egs. (2) with R=4 but for two different values of the radius: (a) r
=2.5 and (b) r=3.5 (e=0.25 in both cases).

idealized ways for the flow to pass the recurrence regions.
Intuitively one expects more than three different white verti-
cal lines in the RP as shown in Fig. 12(b), where the maxi-
mum is used and the sampling time Af=0.01 t.u. in system
(2).

Another possible problem that could arise has to do with
the measure of the continuous time. As Slater’s theorem ap-
plies to a discrete-time model, the validity of its extension to
a continuous case could be hampered by an extremely poor
time coherency. Anyway, we do not expect this will be a
serious problem in most applications, as above with the
Hénon-Heiles system.

The third unavoidable problem is due to the finite sam-
pling time (see [24] for a recent study of this problem). As
shown in Fig. 12(a,), some recurrences may be skipped if the
sampled trajectory jumps over the recurrence region, which
would result in an apparent violation of Slater’s theorem.
This last reason is related to the shape of the torus, which for
instance is linked to the values of two radii R and r in Eq.
(2). The degree of curvature of the torus determines in how
the trajectory enters in the recurrence region. The histograms
of the white vertical lines for two different radii r=2.5 and
3.5 with the same R=4 are shown in Fig. 13 for long trajec-
tories, presenting more than three principal peaks in both
cases.

From the above analysis, we see that the norm can affect
the statistics of the genuine recurrence property of quasiperi-
odic dynamics, although these coordinate representations are
dynamically equivalent. This could be also one reason why
the estimation of the correlation entropy K, from time series
from a quasiperiodic fluid flow data is larger than zero [25].
For a practical investigation, we should not restrict ourselves
to a particular norm, since the norm effects cannot be elimi-
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FIG. 14. (Color online) (a) Poincaré section of Eq. (2), x3
=const, corrupted by 10% of independent Gaussian noise. The
original circle is marked by red color. The phase variable ® is
defined as arctan x,/(x;—R). (b) RP with €=0.2. Compared to Fig.
2(a), the continuous lines are broken, leading to subdistances.

nated completely. Instead, we can test the statistics for dif-
ferent norms to minimize the effects of the coordinates to
obtain a reliable result.

As we have mentioned above, we can avoid the norm
effects by considering recurrences to a fixed point of the
trajectory—i.e., considering one single column of the RP. In
this case, we will obtain the three return times predicted by
Slater’s theorem. If, on the other hand, we do want to aver-
age the return times over all points of the trajectory, we
could make use of the dashed structures found in the RPs of
quasiperiodic dynamics [Fig. 12(b)]. This structure seems to
be characteristic of quasiperiodic dynamics and needs further
investigation.

VI. NOISE EFFECTS ON THE RETURN TIMES

In experimental time series, one is always confronted with
measurement errors. Hence, it is necessary to analyze the
influence of noise on the return times for quasiperiodic mo-
tion.

Here, we study the influence of additive (i.e., observa-
tional) noise. We generate a time series with a fixed sampling
At=T, of the system (2) with rotation number equal to the
golden mean. We add independent Gaussian noise with stan-
dard deviation g,,,;,,= @0 to each coordinate x; of the cross-
ings on the Poincaré section, where o; is the standard devia-
tion of the jth component and @=0.1 is the noise level. In
Fig. 14(a), the “corrupted” points on the Poincaré surface
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FIG. 15. (a) Histogram of white vertical lines in the RP based on
the Poincaré section points of Eq. (2) corrupted by 10% of noise.
(b) The return times as a function of the position on the Poincaré
section.

(x;—x,) are represented, and the corresponding RP is illus-
trated in Fig. 14(b).

We already know that in the histogram of white vertical
lines only three peaks should be observed [Fig. 2(b)]. In the
case that the trajectory is corrupted by 10% of noise, the
continuous lines are broken into small pieces. The probabil-
ity to find only three return times decreases and some other
return times appear [e.g., 34 in Fig. 15(a)]. Figure 15(b)
shows the return times as a function of the position of the
circle.

From Fig. 14, we see that the line structures are signifi-
cantly changed. As a consequence, the number of return
times is susceptible to observational noise. However, a
threshold e that is at least 5 times the standard deviation of
the observational Gaussian noise o can yield reliable statis-
tics [26]. This criterion is based on the analytical computa-
tion of the probability of a recurrence point in the RP to be
correctly recognized in the presence of observational noise.
In [26] it has been found that the choice €~ 50 is optimal for
a wide class of processes. Based on the suggestion of that
finding in [26], choosing € approximately 5 times the stan-
dard deviation of the noise, the effects of noise hampering
the detection of quasiperiodicity are reduced, as shown in
Fig. 16(a). In this diagram, we count the number of return
times in the RPs versus €/ o for six different noise levels o.
From Fig. 16(a), we see that the optimized ¢,,,~ 50 can be
used to recover the three return times to a large extent if
there is noise. This recovery is rather good since one often
finds three or four values if €,,, is applied. Furthermore, the
sum relationship between them still holds. A theoretical ar-
gument for the choice of the optimized €, is given in [26].
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FIG. 16. (Color online) Quasiperiodic trajectory with observa-
tional noise for six different levels. (a) The number of white vertical
lines versus €/ 0. The noise/signal level is given in the legend value.
A close look at smaller values is shown in the inset. (b) The same
plot of (a) with the y axis in logarithmic scale.

To illustrate the robustness of our procedure to the obser-
vational noise we compare the quasiperiodic case with the
chaotic one. Hence, we apply the same analysis to two pro-
totypical chaotic systems in the presence of additive noise:
namely, the Bernoulli map f(x)=2x (mod 1) on the unit in-
terval and the Rossler system x=—-y—-z, y=x+0.2y, 7=0.2
+(x—5.7)z. In the former case the noise is applied only in the
x direction, whereas in the latter case the noise enters along
the two directions of the Poincaré surface of section. We
study the influence of the noise with standard deviation,
Opoise= a0, to each coordinate for these two systems, as we
have done for the quasiperiodic case (Fig. 17). Comparing
this figure to Fig. 16(b), we can distinguish between chaos
and quasiperiodic motion in the presence of noise if we
choose an appropriate €. For e/o=35, in the case of the qua-
siperiodic motion, we obtain three or four return times as we
discussed above, whereas for the chaotic cases, for similar
values of €/ o the number of return times is much larger. We
stress that the sum relationship between different return
times does not hold anymore if the dynamics is chaotic.

Note that the numerical results presented in this section
are based on the crossings on the Poincaré section. As stated
before, for many practical applications, a proper Poincaré
section is seldom available. We will study noise effects on
more realistic situations systematically in a forthcoming

paper.
VII. SUMMARY AND DISCUSSION

We have studied the recurrence properties of quasiperi-
odic dynamics by means of recurrence plots. Despite the
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FIG. 17. (Color online) The number of white vertical lines ver-
sus €/ o for two chaotic systems with observational noise for six
different levels. The y axes are in logarithmic scale and the noise/
signal ratio is given in the legend. (a) The Bernoulli map and (b) the
Rossler system.

simplicity of the dynamics, the line structures of RPs turn out
to be quite intricate and display a rich behavior. The analysis
has been performed for uniform and nonuniform quasiperi-
odic motion. We have exemplified our results for the case
that the rotation number is the golden mean and the silver
mean as well (see Appendix B). The histogram of white ver-
tical lines in an RP successfully captures the recurrence prop-
erties, having at most three different return times in the most
favorable case.

In general situations, where one analyzes a continuous-
time series from a system with very nonuniform dynamics,
more than three vertical line lengths may be observed but
they have to fit the very restrictive sum rule imposed by
Slater’s theorem. This allows one to discard the existence of
quasiperiodicity in very-short-time series once the sum rela-
tion is not fulfilled. To guarantee the existence of quasiperi-
odicity one would need longer-time series, because (Hamil-
tonian) chaos may exhibit seemingly quasiperiodic motion
for some time if one observes confined chaos or the system is
under the stickiness effect. Our approach has several advan-
tages with respect to the conventional techniques: e.g., the
power spectrum. Furthermore, it is robust against observa-
tional noise if the proper choice of a recurrence interval e
being 5 times the standard deviation of noise is taken.

Besides the application in the Hénon-Heiles system, the
procedure proposed in this paper might also be of relevance
for the study of engineering problems, such as the long-term
behavior of underwater sound propagation in the framework
of ray chaos theory, where quasiperiodic dynamics consti-
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FIG. 18. (a) A short piece of a trajectory on the torus (¢, ¢,).
(b) Schematic illustration for the relationship between two errors.

tutes the regular region in the phase space [27]. Another
particular interesting problem, which could be analyzed by
our approach, is the investigation of the transition to chaos
via the Takens-Ruelle-Newhouse route, which is closely re-
lated to the occurrence of weak turbulence in fluid dynamics
[28,29]. Applications to these more complex systems will be
addressed in future work.
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APPENDIX A: SCALING BEHAVIOR OF THE
TOLERANCE ANALYSIS

The tolerance analysis in this section is based on the ra-
tional approximation (by continued fractions) to a given ir-
rational rotation number. For convenience, we consider a lin-
ear rotation [¢;,(r)=w; 1], as shown in Fig. 18(a). Both
phases have recurrences at times T(m)=27m/w,; and
T,(n)=2mn/w,, which are almost simultaneous (7,=T,)
when m/n=~w,/w,=v. At T,(m) the recurrence error is
given only by the second phase d¢,=27m/7y and, analo-
gously at T,(n), 8¢ =2mn7y. As illustrated in Fig. 18(b) the
minimal distance d is reached at a time T between T and T,
with
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Now, let us denote the distance between an irrational
number and a rational one by &, )= y—". Then we have

(A1)

m
8 =2mn= (— + s(m,n)>27m =27y,  (A2)
n

E(m.n) Em.n)

5¢2=27Tm/7=<1 - )27Tn=—27'rn (A3)

Substituting Egs. (A2) and (A3) into Eq. (A1), the minimal
distance d satisfies

1€ ()|
d=2mn ﬂ

V1+ 9

If the rational number m/n is a convergent of the contin-

(A4)

ued fraction expansion, then ,,TC+1 < |8(m,n)| < % In particular,
for irrational numbers of constant type, including quadratic

irrationals, 8=1, which implies d~n~".

APPENDIX B: DYNAMICS WITH THE SILVER MEAN AS
THE ROTATION NUMBER

We present here the numerical results for the silver mean
(WSM=\2-1) and remark on the similarities and differences
with respect to the golden mean case.
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First of all we write the sequence of rational approxima-
tions to the silver mean: %,%,15—2,;—;,%, ... . The nth term is
given by WﬁM =G,_,/G,, where the G, are analogous to the
Fibonacci numbers and are defined recursively by the Pell

sequence
Gn+1 = 2Gn + Gn—la

n=1,273,..., (B1)

and

PHYSICAL REVIEW E 76, 016210 (2007)

G0=0, G] = 1 (BZ)

The maximal white vertical lines of the recurrence plots
for different values of € are shown in Fig. 19. The results are
analogous to Fig. 3; denominators of the continued-fraction
expansion appear as required by Slater’s theorem, but now
they only appear every two plateaus.
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