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The number of patients suffering from cardiovascular diseases increases unproportionally high with
the increase of the human population and aging, leading to very high expenses in the public health
system. Therefore, the challenge of cardiovascular physics is to develop high-sophisticated methods
which are able to, on the one hand, supplement and replace expensive medical devices and, on the
other hand, improve the medical diagnostics with decreasing the patient’s risk. Cardiovascular
physics–which interconnects medicine, physics, biology, engineering, and mathematics–is based on
interdisciplinary collaboration of specialists from the above scientific fields and attempts to gain
deeper insights into pathophysiology and treatment options. This paper summarizes advances in
cardiovascular physics with emphasis on a workshop held in Bad Honnef, Germany, in May 2005.
The meeting attracted an interdisciplinary audience and led to a number of papers covering the
main research fields of cardiovascular physics, including data analysis, modeling, and medical
application. The variety of problems addressed by this issue underlines the complexity of the
cardiovascular system. It could be demonstrated in this Focus Issue, that data analyses and model-
ing methods from cardiovascular physics have the ability to lead to significant improvements in
different medical fields. Consequently, this Focus Issue of Chaos is a status report that may invite
all interested readers to join the community and find competent discussion and cooperation
partners. © 2007 American Institute of Physics. �DOI: 10.1063/1.2718395�

Allegorically, the human heart may be compared with
the engine of a car, enabling movement and functionality,
both due to an inherent oscillator. However, in contrast to the
completely regular action of a perfectly working car engine,
the healthy heart’s performance is irregular. The intervals
between heartbeats widely fluctuate and the diagnostic value
of cardiovascular dynamics and its complex variability via
data analysis and modeling techniques are an important chal-
lenge for physicians, as well as for mathematicians, biolo-
gists, and physicists. Therefore, we consider that the time has
come to define and establish a new field of interdisciplinary
cardiovascular research: cardiovascular physics. It is based
on the works of specialists mentioned above and attempts to
gain deeper insight into pathophysiology and treatment op-
tions through a collaborative approach.

Spontaneous fluctuations of cardiovascular signals such
as heart rate and blood pressure had already been described
more than 100 years ago.1,2 However, the physiological in-
terpretation of these variabilities is still an interesting and
exciting research area. The fluctuations of heart rate and
blood pressure represent not only oscillations around a fixed
value; they are the expression of several influences such as
respiration and different self-regulating rhythms. The analy-
sis of heart rate variability �HRV� has become a powerful
tool for the assessment of autonomic control. HRV measure-

ments have proven to be independent predictors of sudden
cardiac death after acute myocardial infarction, chronic heart
failure, or dilated cardiomyopathy.3–5 Moreover, it has been
shown that short-term HRV analysis already yields a prog-
nostic value in risk stratification independent of that of clini-
cal and functional variables.6 However, the underlying regu-
latory mechanisms are still poorly understood.

Standard methods of HRV analysis include time and fre-
quency domain parameters,4 often being referred to as linear
methods. Time domain parameters are based on classic sta-
tistical methods derived from the beat-to-beat intervals as
well as the differences between them. Mean heart rate is the
simplest parameter, but the standard deviation over the whole
time series �sdNN� is the most prominent HRV measure for
estimating overall HRV. Frequency domain HRV parameters
enable a distinct division into spectrum components of the
heart rate dynamics.7 There are mainly two different tech-
niques for spectral analysis: methods based on fast Fourier
transform �FFT� and parametric autoregressive model esti-
mations of wavelet approaches. The results using different
spectral methods, however, should be comparable �apart
from differences in time and frequency resolution�.

Heart rate and blood pressure variability reflect the com-
plex interactions of many different control loops of the car-
diovascular system. In relation to the complexity of the sinus
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node activity modulation system, a predominantly nonlinear
behavior has to be assumed. Thus, the detailed description
and classification of dynamical changes using time and fre-
quency measures is often not sufficient, especially in dy-
namical diseases as characterized by Mackey and Glass.8,9

Thus, the matching of the mathematical fields of nonlinear
dynamics and medicine has to be achieved.10

Nonlinear dynamical systems often show complicated
temporal, spatial, and spatiotemporal behavior. Theory of
nonlinear dynamics provides fundamental mathematical con-
cepts, such as phase space, attractors, stability, and bifurca-
tion analysis to characterize these complex systems. Specifi-
cally, these methods enable us to categorize and understand
complex behavior of the cardiovascular system. In this Focus
Issue on “Cardiovascular Physics” the current state-of-the-
art recent developments and trends in this field are intro-
duced. The contributions are separated into data analysis,
cardiac modeling, and applications, whereas this distinction
in the majority of papers is overlapping. Most data analysis
techniques should not stand alone without clinical applica-
tions, whereas the modeling approaches should be used for
physiological understanding. Moreover, these methods of
cardiovascular physics will be recognized by physicians only
after verification in large patient groups by providing a sig-
nificant improvement in diagnosis and/or therapy. And even
in case that one method provides evidence for significant
diagnostic improvement, its introduction into clinical prac-
tice remains questionable if no physiological interpretation
of the phenomenon can be given or if it was not compared to
established tools of risk stratification. In fact, the increased
computational power available for data analysis and cardiac
modeling allows more sophisticated analyzing techniques
and higher-resolution models. However, this additional infor-
mation will only be clinically helpful if there is adequate
progress in the understanding of physiological processes.

Obviously, the demand for methodological tools of car-
diovascular physics that are clinically approved and robust
seems to be unfulfilled. One reason could be that there is still
missing a connection between cardiovascular variability and
myocardial modeling. With this Focus Issue we want to, on
the one hand, initiate new links of data analysis with model-
ing techniques to reach the aim of clinical applications. On
the other hand, these methods could lead to the substitution
of sometimes painful, invasive techniques by noninvasive
methods that provide equivalent information. An already
known application is computer-assisted, minimally invasive
surgery, where computer models supplement additional in-
formation for the physicians. In the quest of performing less
invasive surgical procedures, the lack of visual information
has to be compensated by computer- and sensor-based mod-
els providing all the information necessary to ensure the
same level of safety as compared to open procedures. Like-
wise, noninvasive diagnostic tools augmented by sophisti-
cated methods of data analysis are able to substitute hazard-
ous and cumbersome invasive procedures. The success of
cardiovascular physics research finally is assessed by clinical
applicability, respectively, by strong clinical implications.
Thus, this Focus Issue is intended to assemble physicists,
engineers, and physicians. Without a strong interdisciplinary

cooperation, no successful research in this field can be per-
formed.

A workshop held in Bad Honnef, Germany, in May
2005, provided an overview of recent advances of cardiovas-
cular physics to study dynamical diseases. The meeting at-
tracted an interdisciplinary audience of physicians, mathema-
ticians, biologists, engineers, and physicists. This joint effort
will be reflected by the following papers covering the main
research fields of cardiovascular physics, including data
analysis, modeling, and medical application. Although we
emphasize material covered at the workshop, we also include
other work in order to provide a more balanced overview of
the field.

DATA ANALYSIS

During the past decades it was shown that tools from
linear system theory can provide valuable information. More
recently, tools from nonlinear dynamics improved the diag-
nostic value beyond that achieved by using solely linear
parameters.11–15

An interesting interdisciplinary data analysis approach is
introduced in this Focus Issue by Kantelhardt et al.16 with
the phase rectified signal averaging technique. They provide
a methodology for reliable characterization of beat-to-beat
intervals without the need for preprocessing and applied it to
a huge medical database. The introduced acceleration and
deceleration capacity could also be useful for other medical
studies. The physiological mechanisms underlying and the
clinical applicability yet has to be defined. Cantini et al.17

present a contribution on the cardiac resynchronization
therapy in patients receiving a pacemaker for biventricular
stimulation. They performed a study on a small group of
pacemaker patients: electrocardiographic signal was re-
corded during the activity of the pacemaker programmed at
different atria-ventricular delays and under spontaneous car-
diac activity. The obtained signals suggested the hypothesis
that besides the synchronization of ventricular contraction
the pacemaker stimulus could also induce an unperceived
�undetected� effect on the sinuatrial node, ascribable to a
mechanism of phase resetting. Porta et al.18 provide an inte-
grated approach for information-domain analysis based on
entropy rate, local nonlinear prediction, and pattern classifi-
cation based on symbolic analysis under the unifying frame-
work provided by uniform quantization. Their approach pro-
vides a list of normalized and non-normalized indexes useful
to quantify and typify complexity over very short data series.
Applying this approach to 24 h Holter recordings, the au-
thors could demonstrate that this approach is useful and re-
liable even under nonstandardized conditions. Voss et al.19

analyzed the suitability of the nonlinear method’s short-term
symbolic dynamics, detrended fluctuation, and Poincaré plot
analysis in comparison to heart rate and blood pressure vari-
ability analysis for a noninvasive risk stratification in dilated
cardiomyopathy patients. They could show that the applica-
tion of these nonlinear methods improves considerably the
risk stratification in their patient group. Hoyer et al.20 as-
sessed the interplay between mechanisms acting on different
time scales by autonomic information flow functions. The
methods and results presented in this paper may improve the
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physiological understanding of the complex cardiovascular
system. Cerutti et al.21 considered six of the most widespread
methods for the evaluation of the scaling parameter in long-
memory processes and tested their performances on simu-
lated time series as well as on physiological data. Almost all
considered methods were successful in distinguishing among
the real patient groups with almost equivalent performances.
Peng et al.22 propose a generic approach to address the chal-
lenge of categorizing dynamical signals based on some fun-
damental assumptions of statistical physics and information
theory. The key idea of the analysis is the connection be-
tween dynamical patterns of the output signal and the under-
lying dynamical microstates without a priori knowledge. Us-
ing their measure of dissimilarity, they can categorize
different types of symbolic sequences by using standard clus-
tering algorithms.

MODELING

Quantification of the spatiotemporal dynamics of propa-
gating waves of a cardiac excitation is of fundamental im-
portance to understanding electrophysiological phenomena.
Such quantification is accomplished via a range of continu-
ally evolving techniques of cardiac-excitation modeling.23–29

Trayanova et al.30 offer an alternative approach to the
study of arrhythmia generation and termination in the heart:
realistic three-dimensional multiscale modeling of electrical
activity in the heart. They could demonstrate that such mod-
eling is a powerful tool in uncovering new electrophysiologi-
cal insights with strong clinical implications that could be
used to further the development of new antiarrhythmic thera-
pies. Alonso et al.31 show that negative filament tension oc-
curs in one of the most widely used ionic models of cardiac
tissue, the Luo-Rudy phase 1 model, and determine the re-
gion of parameters for this instability. In clinical practice this
approach could be useful for cardiac arrhythmias in condi-
tions of low excitability. Zebrowski et al.32 investigate a non-
linear oscillator model which is able to reproduce certain
phenomena that occur in clinically measured human heart
rate: irregular heart rate, asystole, sinus arrest, vagal paradox,
certain kinds of heart block, and others. The extension
of the model into more than one dimension will be an
interesting research area with strong clinical implications.
Benson et al.33 analyze models of ectopic ventricular beats,
which are triggered by abnormal excitation initiated within
the ventricular muscle and sometimes can lead to life threat-
ening arrhythmias. The authors use reaction-diffusion excit-
able medium models, where the reaction terms describe car-
diac cell electrophysiology, and the diffusion terms the
electronic spread of potential in the myocardial tissue.
Kanakov et al.34 are modeling the dynamics of spatiotempo-
ral patterns of excitation in inhomogeneous cultures depend-
ing on coupling strength. The authors interpret their results
of modeling in terms of synchronization theory. This is an
outstanding approach since several available experimental
results, such as formation of target and spiral waves in cul-
tures, are reproduced by this modeling. De la Casa et al.35

show that it is possible to attenuate spiral waves by planar
wave fronts with periods longer than the rotational period of
the spiral, and address the problem of how to control spiral

attenuation in excitable media, which has strong clinical im-
plications. Marsh et al.36 have constructed a model of 22
interacting nephrons, including surface as well as deep neph-
rons. The model shows that, for physiologically reasonable
parameter values, the deep nephrons do not synchronize with
the superficial nephrons even though they are coupled via the
same blood supply. This lack of synchronization introduces
an asymmetry into the system that may be responsible for the
development of chaotic dynamics in animal models of hyper-
tension. Bauer et al.37 report on simulations leading to alter-
nans and secondary effects such as 1:2 conduction block in
three-dimensional simulations for an anatomically realistic
model of the rabbit ventricles. The authors prove the predic-
tive power of bifurcation and stability analysis in the corre-
sponding one-dimensional model equations as well as their
ability to test simplified mathematical theories such as the
restitution hypothesis. Cao et al.38 review turbulence control
in excitable systems, by using a local periodic pacing
method, and give implications to realistic cardiac defibrilla-
tion.

The methods as described above already lead to a variety
of applications in clinical medicine as demonstrated in the
following papers. Van Leeuwen et al.39 demonstrate that the
implementation of symbolic dynamics and appropriate clas-
sification schemes on symbolic heartbeat sequences may lead
to a better and more differentiated understanding of normal
fetal physiological development, having strong implications
in fetal arrhythmias. Malberg et al.40 demonstrate that vari-
ability analysis in connection with Doppler examination of
the uterine arteries is able to achieve a positive predictive
value for preeclampsia of 70% already in the 18th–26th
week of pregnancy. Their cardiovascular variability
approach may offer a possibility of anticipating and treating
hypertensive pregnancy disorders via early recognition.
Schirdewan et al.41 investigated the capability of cardiac
magnetic field mapping to detect patients suffering from hy-
pertrophic cardiomyopathy. They introduced a combined di-
agnostic approach based on map topology quantification us-
ing Kullback-Leibler entropy and regional magnetic field
strength parameters. The authors could show that this diag-
nostic algorithm allows not only detecting affected individu-
als, but also discriminates different forms of the disease.
Penzel et al.42 provide a methodological review for the
analysis of human autonomous nervous system during sleep
based on heart rate and respiration. Cardiovascular conse-
quences of disturbed sleep and sleep apnea are of particular
high medical interest for sleep physicians because they
present a risk factor for cardiovascular disorders such as hy-
pertension, cardiac ischemia, sudden cardiac death, and
stroke. The models, suggested by the authors, are useful to
predict effects of aging in healthy subjects and effects of
treatment in subjects with disordered breathing during sleep
as well as in other sleep disorders.

The variety of problems addressed by this issue under-
lines the complexity of the cardiovascular system. It could be
demonstrated in this Focus Issue, that data analyses and
modeling methods from cardiovascular physics have the
ability to lead to significant improvements in different medi-
cal fields. Consequently, this Focus Issue of Chaos is a status
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report that may invite all interested readers to join the com-
munity and find competent discussion and cooperation part-
ners. Patients as well as the whole society would benefit
from a rapid use of cardiovascular physics potentials in clini-
cal practice. The number of cardiovascular diseases increases
unproportionally high with the increase of the human popu-
lation and aging, leading to very high expenses in the public
health system. Therefore, the challenge of cardiovascular
physics is to develop high-sophisticated methods which are,
on the one hand, able to supplement and replace expensive
medical devices and, on the other hand, improve the medical
diagnostics with a decreasing patient’s risk.
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