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Coherence resonance in an excitable system with time delay
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Abstract

We study the noise activated dynamics of a model excitable system that consists of a subcritical Hopf oscillator with a time delayed nonlinear
feedback. The coherence of the noise driven pulses of the system exhibits a novel double peaked structure as a function of the noise amplitude.
The two peaks correspond to separate optimal noise levels for excitation of single spikes and multiple spikes (bursts) respectively. The relative
magnitudes of these peaks are found to be a sensitive function of time delay. The physical significance of our results and its practical implications
in various real life systems are discussed.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The constructive role of noise in the dynamics of com-
plex systems is a subject of much current interest and ac-
tivity. Important manifestations of such a behaviour are seen
in basic phenomena like stochastic resonance (SR) [1–3], co-
herence resonance (CR) [4] or noise-induced synchronization
of dynamical systems [5,6]. Coherence resonance (CR) which
refers to the resonant response of a dynamical system to pure
noise, is closely related to the phenomenon of stochastic res-
onance and is sometimes also known as autonomous stochas-
tic resonance (ASR) [7]. The effect, first noticed by Sigeti
and Horsthemke [8] in a general system at a saddle-node bi-
furcation, implies that a characteristic correlation time of the
noise-excited oscillations has a maximum for a certain noise
amplitude. This has been clearly demonstrated for the classic
FitzHugh–Nagumo neuron model [4] and shown to have a deep
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connection to the excitable nature of the system. CR can have
important consequences for neurophysiology or other complex
systems where a significant degree of order can arise through
interaction with a noisy environment. Past studies of CR have
been mainly confined to simple systems whose noise-induced
nonlinear outputs consist of impulsive excitations of a single
kind e.g. spikes which have two characteristic time scales—a
fast rise time and a longer decay time. This phenomenon has
been found not only in various lab experiments, such as elec-
tronic circuits [9], laser systems [10,11], electrochemistry [12],
or BZ reactions [13] but also in natural systems such as ice
ages in climatology [14] or dynamos [15]. The behaviour of
time-delayed bistable systems under the influence of noise has
been studied in the past [16,17]. The impact of noise near differ-
ent bifurcation states in the context of amplifying the stochastic
resonance effects has been a subject matter of a number of pre-
vious studies [18–20].

As is well known, excitable systems especially in neuro-
science, can also have a more complex response in terms of
various time scales, such as short time spikes and bursts (multi-
spiking) with different temporal signatures [21,22]. The nature
of CR in the presence of different kinds of excitations (e.g.
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spikes and bursts) is not known and is one of the important ob-
jectives of the present study. In order to explore this question,
we study the noise activated dynamics of a model excitable sys-
tem that was recently presented in [23]. We find that the CR
curve is able to discriminate between the two different kinds of
excitations that the system possesses by displaying a bi-modal
structure. Further, the relative predominance of the two peaks
is a sensitive function of the time delay parameter.

2. The model

The model consists of a subcritical Hopf oscillator with a
time delayed nonlinear feedback. By construction it contains
the essential ingredients to reproduce most of the basic features
of excitability that are displayed by standard neuronal models
such as the Hodgkin–Huxley system [24] and in addition it pro-
vides a convenient means of studying the effect of time delay
on the dynamical behavior. The basic mathematical form of the
model is,

ż(t) = [
i
(
ω + b

∣∣z(t)
∣∣2) + ∣∣z(t)

∣∣2 − ∣∣z(t)
∣∣4]

z(t)

(1)− kz2(t − τ),

where z = x + iy is a complex amplitude and the frequency of
the oscillations is determined by ω and b|z|2. The parameter
b which is called the shear parameter, determines how the fre-
quency depends on the amplitude of the oscillations. k is the
magnitude of the feedback strength and τ is the time delay pa-
rameter. In the absence of the feedback term the oscillator is
poised at the subcritical bifurcation point. The nonlinear feed-
back term, which provides the basic excitable behavior, is time
delayed to account for finite propagation times of signals. The
overall dynamical behaviour of the system is best captured in
a two parameter bifurcation diagram (in k and τ space) which
was obtained in [23] and is reproduced here as Fig. 1. The dia-
gram delineates the different bifurcation branches as well as the
regions of stable limit cycle, stable fixed point and bistability.
When subjected to an external periodic signal and noise the sys-

Fig. 1. (Color online.) Stability diagram in the parameter space of k and τ . Note
the various bifurcation boundaries demarcating the different stability regions.
(SNLC: Saddle-node on limit cycle bifurcation, SN: Saddle-node bifurcation,
SSL: Saddle-separatrix loop bifurcation.)
tem displays both spike trains as well as multi-spiking (bursty)
behaviour [23]. For our present CR studies, we examine the
temporal response of the system in the presence of only an ex-
ternal additive noisy stimulus, namely f (t) = √

2Dξ(t), where
ξ(t) is zero mean Gaussian white noise with intensity D. We
confine ourselves to values of k that are above the critical value
of kc = 0.42506 and to τ values below the bi-stable region and
choose different noise strengths D. The value of the shear para-
meter b has been chosen as −0.5. Its magnitude determines the
location of the critical feedback strength kc . However the nature
of the bifurcation diagram (and the concomitant excitability) re-
mains the same as long as −1 < b � −0.5.

3. Simulation results

For each noise intensity D we execute rather long simula-
tions (100 datasets consisting of 200 000 time steps each with
δt = 0.05) and collect a large number of interspike intervals
(ISI) T . Using this data we determine the standard parameter
for coherence resonance R, which is given by the ratio of the
mean of the interspike intervals (〈T 〉) and its standard deviation
(σT ) [4,22,25,26],

(2)R = 〈T 〉/σT .

If the data consists of a completely random (Poissonian) set of
spikes then R would have a value of unity, whereas a strictly
periodic spiking train (maximum order) would make R = ∞.
In general R > 1 indicates the presence of coherence. Our re-
sults for the model system are shown in Fig. 2 where the upper
block shows the CR and the lower block depicts the average in-
terspike interval (ISI) as functions of the noise intensity D. The
solid curves are for τ = 0 and the dashed curves correspond to
finite time delay (in this case τ = 0.3). We observe that unlike
the standard CR results of a unimodal response curve [4] our
present system produces a more complex response consisting
of one well-expressed peak and, additionally, a broader peak in
another region of noise intensities. The two-peaked structure is
preserved in the presence of time delay with however one very

Fig. 2. The CR measure R and mean interspike interval 〈T 〉 versus the noise
intensity D. The solid curve is for τ = 0 and the dashed curve is for τ = 0.30.
The feedback strength is k = 0.426. The point is close to SNLC bifurcation
branch.
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substantial change—the relative amplitudes of the peaks are re-
versed. Without time delay there is a broadband peak for small
noise intensities D around 0.003 and a minor peak at about
D = 0.3, whereas in the presence of time delay (τ = 0.3), we
get a broad peak for small noise and a rather narrowband peak
at D around 0.3. Note that in both cases the average ISI is de-
creasing with increasing D. The magnitude of the average ISI
can serve as a useful guide for distinguishing between spiking
and bursting behaviour. When there is a burst there are a large
number of spikes occurring within a short time interval (i.e.
within the time period of the burst). Therefore the interspike in-
tervals between these spikes within a burst are small—in other
words there is a predominance of low ISI values. In the absence
of bursts the ISI measure only registers the intervals between
isolated single spikes which are larger than the intervals be-
tween the components of a multi-spike event like a burst. Thus
from Fig. 2 we see that the activity in the low noise region can
be related to spiking whereas that in the strong noise region
can be associated with bursting activity. It should be mentioned
here that the average ISI should not be confused with the av-
erage inter-burst interval whose time scale can be much larger
than the ISI. Our coherence resonance measure curves are based
on the statistics of ISIs and not on any other constructed time
intervals. The bi-modal structure of the CR is a novel result
which, to the best of our knowledge, has not been observed
before and suggests that it can effectively distinguish between
spikes and bursts and also provide a measure of their relative
predominances. The presence of both spikes and bursts can be
understood physically from the bifurcation diagram shown in
Fig. 1. For τ = 0 and k = 0.426 the system is located on the
bottom horizontal line in the region of a stable fixed point. The
introduction of noise pushes the system randomly into the sta-
ble limit cycle region from which it returns into the quiescent
region along an extended trajectory on the unstable manifold.
For low values of noise intensity the system barely makes it
into the limit cycle regime and the resultant outcome is a sin-
gle spike. At larger values of noise the system is driven deeper
into the oscillatory region and spends more time executing sev-
eral limit cycle circuits before returning to the quiescent state in
a spiked manner. As a result the temporal trace now consists of
an onset spike followed by several oscillations and a terminat-
ing spike—all of which taken together constitutes a burst. Such
a phenomenon is well known in the literature as the circle/circle
or parabolic bursting [21]. Spikes and bursts are optimally ex-
cited at two different values of the noise intensity as demon-
strated by the CR curve. In the absence of time delay spikes ap-
pear to predominate as seen by the larger peak in the low noise
regime and bursts have a relatively lower count of occurrences.

3.1. The role of time delay on spiking/bursting

With the introduction of time delay the relative predomi-
nance of bursting appears to grow as a function of time delay.
This can be seen from the dashed curves in the CR curve of
Fig. 2 where there is a relative rise in the second peak at higher
noise values. To get a better measure of this increase in burst-
ing activity, we have also looked at the normalized probability
Fig. 3. (Color online.) Probability distribution function of ISIs for k = 0.426,
D = 0.03 and different values of τ (= 0.00, 0.10, 0.15 and 0.30).

Fig. 4. Typical time series for k = 0.426 and D = 0.03 for (a) τ = 0 and (b)
τ = 0.3. Spikes dominate in (a) whereas predominantly bursting events are seen
in (b).

distributions of the ISI for various values of τ at a fixed value
of D = 0.03 (Fig. 3). The value of D = 0.03 is chosen be-
cause it marks a region in parameter space where for τ = 0
spikes and bursts are nearly equally abundant. This is clearly
seen in the solid curve of Fig. 3, which has a two-hump distri-
bution with the first peak (low ISI) corresponding to bursting
and the second one of nearly equal height corresponding to
spiking (large ISI). Note that the second peak also has a long
tail which is characteristic of spiking. With increasing values
of τ , the second peak gradually diminishes (the various dashed
curves) and the long tail gets suppressed. On the other hand,
the first peak becomes substantially stronger and for τ = 0.3,
bursting behaviour clearly dominates. These results are also
visually discernible in snapshots of segments of time series
data corresponding to the τ values of 0 and 0.3 respectively
in Fig. 4(a), (b).

3.2. Effect of time delay on the limit cycle frequency

To understand the dynamical reason for this transition from
spiking to bursting as a function of τ , we have examined the ef-
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Fig. 5. The frequencies of the limit cycles for τ = 0 (solid circles) and for
τ = 0.3 (solid line). Note the increase in frequencies for a finite value of time
delay.

fect of time delay on the characteristic properties of the limit
cycle itself. We find that the primary influence is on the ba-
sic frequency of the limit cycle. A typical example is shown
in Fig. 5 where the limit cycle frequencies for different values
of the feedback strength k are shown for τ = 0 (solid circles)
and τ = 0.3 (solid line). We see that the frequencies are al-
ways higher at finite values of τ . The physical consequence
of this change in frequency is that the system now executes a
larger number of cyclic orbits before returning to the quiescent
state—which is characteristic of bursty behaviour. The conse-
quent preponderance of small ISIs as compared to the no delay
case is directly reflected in the probability distribution func-
tion curves shown in Fig. 3. The sensitivity of the excitability
property of the system to time delay is quite remarkable and is
the other major interesting result of our present investigation.
It suggests that time delay can provide an effective mechanism
for steering the system towards either a predominance of spik-
ing or of bursting behaviour. Since the nature of excitability is at
the heart of many important neuronal functions such as commu-
nication, computational properties and information processing
our finding can have important practical consequences for the
collective dynamics of such interacting neurons. As an exam-
ple the process of noise coupled synchronization between trains
of neuronal signals can be significantly influenced by changes
in the intrinsic time delay parameter of each neuron and cre-
ate interesting consequences for inter-neuron communication.
Likewise the computational properties of a neuron can change
due to its transition from a spiking to a bursting state brought
about by the presence of time delay.

4. Conclusions

To conclude, in this Letter we report two interesting results
from the dynamical study of a noise driven model system that
consists of a subcritical Hopf oscillator with a time delayed
nonlinear feedback. We find that the coherence resonance para-
meter of such a system possesses a bi-modal structure with the
two peaks corresponding to optimal noise levels for two differ-
ent kinds of excitations—namely single spikes and multi-spike
(bursty) structures. Such a discriminatory ability enhances and
to some extent generalizes the utility of the CR measure as a sta-
tistical tool for the analysis of excitatory data. Our other finding
is that the presence of time delay in the nonlinear feedback can
significantly influence the excitability properties of the system
and bring about a controlled change in state from a predom-
inantly spiking behaviour to largely bursting behaviour. This
can have important practical consequences for various neu-
ronal mechanisms (e.g. communication, information process-
ing, computation, etc.) where action potentials come into play.
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