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Phase and average period of chaotic oscillators
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Abstract

Recently, there has been a great effort to extract the phase of chaotic attractors and complex oscillators. As a consequence many phases have
been introduced, as example the standard phase θ based on the rotation of the vector position, and the phase φ based on the rotation of the tangent
vector. Despite of the large interest in the phase dynamics of coupled oscillators there is still a lack of approaches that analyze whether these
phase are equivalent and on what conditions these phases work. In this work, we show that the phase φ generalizes the standard phase θ , and it is
equal to the length of the Gauss map, the generator of the curvature in differential geometry. Furthermore, we demonstrate, for a broad class of
attractors, that the phase synchronization phenomenon between two coherent chaotic oscillators is invariant under the phase definition. Moreover,
we discuss to which classes of oscillators the defined phases can be used to calculate quantities as the average frequency and the average period
of oscillators. Finally, we generalize the phase φ which allows its use also to homoclinic attractors.
© 2006 Elsevier B.V. All rights reserved.
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Phase of chaotic oscillators has attracted a great deal of at-
tention since it was found that not only the amplitude of the
trajectory but also the phase play an important role to under-
stand the onset of synchronization in coupled oscillators [1].
In particular, the phenomenon of phase synchronization (PS)
between coupled oscillators, for which the phase difference be-
comes bounded while the amplitudes may be uncorrelated [2].
In addition, the study of the phase of chaotic flows can provide
applications to important technological problems, e.g. commu-
nication with chaos [3,4], new insights into the collective be-
havior in networks of coupled chaotic oscillators [5,6] as well
as pattern formation [2,7].

In a common sense phase is related to rotations of a vec-
tor of the dynamical system. For chaotic attractors in which the
trajectory has a proper center of rotation, i.e. it spirals around
of a fixed point [4], it is possible to define a phase θ as the
angular displacement of the vector position. Moreover, when-
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ever the chaotic oscillators present a coherent character,1 one
can transform the original equation of motion ẏ = G(y), where
y ∈ R

m and G : Rm → R
m, to a new equation of motion that car-

ries the information of the radius and the phase [8]. So, given
a neighborhood N of the attractor of the oscillator y, the new
equations take the form Ṙ = G(R, ϑ) and ϑ̇ = 1 + δ(R, ϑ),
where R :N → R

m−1, ϑ :N → S1, and δ(R, ϑ) � O(1). The
phase ϑ , after this coordinate changing, is not unique, and it
will depend on how one approximates the function δ(R, ϑ).
Thus, one can define many phases on the attractor, however,
all having a physical meaning, e.g. giving the correct average
frequency [8].

When the trajectory does not present a coherent motion, or
a proper rotation, in Refs. [9,10], instead of analyzing phase
in the phase-space, a phase φ was introduced as the displace-
ment of the velocity vector. This is useful since in many cases

1 Following Ref. [8], coherence means that there is a section, in which

given a time interval for the i return T i , there are numbers ε and δ such that
|T i − ε| � δ, and δ � O(1) and ε = 〈T 〉.
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even though the trajectory may be non-coherent in the phase-
space, it may present a coherent motion in the velocity space.
Such a phase definition avoids the need of proper rotations since
a center of rotation is not necessary. Indeed, such a phase de-
finition can be interpreted as follows: the center of rotation is
the trajectory itself. Thus, given the trajectory at a time t + �t

the center of rotation is the trajectory at a time t . Therefore, one
avoids the need of a proper rotation. However, it is still unclear
what is the physical meaning of this phase, and whether this
phase generalizes the phase for coherent oscillators. It is also
unknown to what extent this phase works.

In this Letter, we analyze the phase φ and its geometri-
cal meaning. More specifically, we show that this phase is the
length of the Gauss map, the generator of the curvature in dif-
ferential geometry. φ generalizes θ , which implies also that
the phenomenon of PS is invariant under the change θ → φ.
In general, the phase φ will generate negative frequencies, and
therefore, the phase is not an one-to-one transformation with the
trajectory. However, this non-positiveness is important in order
to obtain the average time 〈T 〉 from this phase. Then, we in-
troduce an approach to recover the one-to-one correspondence
between phase and trajectory, and still being able to calculate
this quantity from the phase. Finally, we show to what extent
one could use this phase.

Let us start by noting that the phase φ can be derived by an-
alyzing the dynamics in the tangent field. Herein, we consider
low dimension dynamical systems, namely in R

3. So, given the
trajectory yt , with yt = (xt , yt , zt , ), we project it into the sub-
space (xt , yt ). From now on, we shall denote the projected flow
as xt = (xt , yt ). Let us give a geometrical interpretation for φ.
Before, we need two basic definition from differential geome-
try.

Definition 1. Suppose the plane curve C is parameterized by
x : R → R

2. The Gauss map G :C → S1 assigns to the point xt

the unity tangent vector Gt = ẋt /|ẋt |.

Definition 2. The curvature of the curve C at the point P is

κ(xt ) = lim
α↓xt

length of G
length of α

,

where

length of Gt =
t+ε∫

t−ε

|Ġt |dt, and length of α =
t+ε∫

t−ε

|ẋt |dt.

The geometrical idea of the transformation G in Definition 1
is given in Fig. 1.

Let us note that a small increment in the phase dφ is given
by the angle between ẋt and ẋt+dt . Now, since the multipli-
cation by a scalar does not change the angle between vectors,
measuring the angle between ẋt and ẋt+dt is the same as mea-
suring the angle between Gt and Gt+dt . So, we can interpret
the phase as being the angular displacement of Gt . In gen-
eral, even though xt may not present singularities (zero veloc-
ities) Gt will do, due to the inflections in the trajectory, and
therefore, we expect to have negative frequencies for the an-
Fig. 1. Illustration of the action of the Gauss map G :C → S1.

gular displacement of Gt . We can write an equation for the
phase φt , by noting that |Gt ∧ Gt+dt | = sindφt , where ∧ rep-
resents the vectorial product, by expanding the sinus in Taylor
series |Gt ∧ Ġt |dt ≈ dφt + O(dφ2

t ), we have:

(1)φ̇t = |Gt ∧ Ġt |.
However, since Gt ∈ (ẋ, ẏ), the vectorial product points to the
direction (0,0,1), presenting only one component whose sig-
nal changes when the tangent field changes the direction. To
take this signal change into account, we neglect the modulus.
Therefore, phase in terms of the vector field takes the form:

(2)φ̇t = ẋt ∧ ẍt

ẋ2
t

∣∣∣∣
k

where k denotes the component (0,0,1), the only non-zero
component. Next, we explore the relation of the phase φ and the
curvature. Using ds = r dφ, and noting that ds = |Gt+dt − Gt |,
and r = |Gt | = 1, we have that φ̇ = |Ġt |. So, the curvature
may be written as κ(xt ) = ∫ t+ε

t−ε
φ̇t dt/

∫ t+ε

t−ε
|ẋt |dt , which for

ε � O(1) can be written as κ(xt ) = φ̇t × 2ε/|ẋt | × 2ε. Thus,
the curvature takes the form:

(3)κ(xt ) = φ̇t

|ẋt | .
We conclude three important points here, (i) the phase φ is
equal to the length of Gt , taking into account the rotation direc-
tion. In general, Gt will have many singularities even though
the trajectory xt has none. This means that if Gt rotates in
a clockwise (respectively counterclockwise) direction it may
eventually rotates in a counterclockwise direction (respectively
clockwise), producing negative frequencies, what makes the
phase not to be a one-to-one transformation with the trajectory.
(ii) when the dynamical system presents cusps, e.g. to due the
projection, the curvature will be a sharp function on the cusps,
while the phase may not. Note that the curvature can be written
as

(4)κ(xt ) = ẋt ∧ ẍt

|ẋt |3
∣∣∣∣
k

.

At the cusps |ẋt | ≈ 0, so, the divergency in the phase is given
by ẍt /|ẋt |, while in the curvature ẍt /|ẋt |2. (iii) the phase mea-
sures how much a curve changes its direction, and it is equal
to the curvature when normalized by a scalar |ẋt |. Therefore,
the phase is not the curvature. Next, one last analysis may be
suitable.
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Let us note that since 〈Gt ,Gt 〉 = 1, with 〈·, ·〉 denoting the
scalar product, thus, we have 〈Gt , Ġt 〉 = 0. Hence, Gt and Ġt are
orthogonal vectors, but the phase is the length of Gt , taking into
account the rotation direction, which means φ̇ = |Ġt |× sgn(ẋt ),
where sgn(ẋt ) is 1 if ẋt rotates in a clockwise direction and
−1 if ẋt rotates in a counterclockwise direction. An explicitly
expression for Ġt can be easily obtained by derivating Gt , which
yields:

(5)Ġt = 1

|ẋt |
(
ẍt − Gt 〈Gt , ẍt 〉

)
.

Thus, from the perspective of an observer being led by the ve-
locity vector (using the interpretation of a moving reference
point, as we have discussed in the introduction) the phase φ

is the integral with respect to time of the orthogonal part of
the acceleration normalized by |ẋt |. The next step is to analyze
whether the phase φ generalizes the phase θ .

Periodic oscillators: A necessary condition to state that
a certain phase can be used to chaotic oscillators is that its ap-
plication to period oscillators has to give the correct frequency
and period. The phase φ fulfills these requirements. In fact, it is
easy to see that 〈φ̇〉 = 〈θ̇〉 = 2π/T0, if φ and θ increase 2π per
oscillation, where T0 is the period of the oscillator. To show this
relation, let us say that φ̇ = ν̃(φ) and θ̇ = ν(θ), where ν and
ν̃ are continuous functions with period 2π . Thus, taking the
averages, we have 〈θ̇〉 = 1

T0

∫ T0
0 ν(θ) dt = 1

T0

∫ 2π

0 dθ = 2π/T0

and 〈φ̇〉 = 1
T0

∫ T0
0 ν̃(φ) dt = 1

T0

∫ 2π

0 dφ = 2π/T0. A trivial ex-
ample where both phases can be analytically computed is for
the oscillator Y = [V cosωt,V sinωt]. In this case we have
φ̇Y = θ̇Y = w.

Coherent chaotic oscillators: We demonstrate that for two
coherent chaotic attractors, the phase synchronization phenom-
ena can be observed independently on the phase definition,
which means that one has boundness in the phase difference of
the two oscillators using either θ or φ. Under some hypotheses
one can show that there are numbers σ and γ , bounded away
from zero, for which holds:

(6)σθ � φ � γ θ.

This implies, in particular, that PS between two chaotic sys-
tems exist, with the phase being measured by θ , if and only if,
it exists PS with the phase being measured by φ. So, the phe-
nomenon of PS is, as it should be, invariant under the change
θ → φ.

In order to prove Eq. (6), we suppose that there are num-
bers α1, α2 and δ1, δ2 bounded away from zero, such that for
all times it holds: (i) α−1

2 x � ẋ � α−1
1 x and (ii) δ2ẋ � ẍ � δ1ẋ.

Conditions (i) and (ii) guarantees that the trajectory does not
visit a singularity, i.e. a fixed point. At the singularity ẋ = 0,
which breaks our hypotheses.2 Next, note that tan θ = y/x.

2 These hypotheses are violated by attractors which contain an equilibrium
point within the attractor, as an example the Lorentz attractor. Such a phenom-
enon does not interfere in the chaotic behavior [11], however, it does interfere
in the PS, since in a small neighborhood of the equilibrium the velocity ap-
proaches arbitrarily zero.
Taking the derivative we have ∂ tan θ
∂θ

× θ̇ = d
dt

y/x, which yields
sec2 θ × θ̇ = (ẏx − yẋ)/x2. Then, we get:

(7)θ = xt ∧ ẋt

x2
t

.

So, by using Eq. (2) and the conditions (i) and (ii) we have:

φ =
t∫

t0

ẋt ∧ ẍt

ẋ2
t

dt

(8)�
t∫

t0

α−1
1 α2

2δ1
xt ∧ ẋt

x2
t

dt = δ1α
2
2α−1

1 θ.

Now, identifying δ1α
2
2α−1

1 = γ , we conclude the first side
of Eq. (6). To show the other inequality, one can use the same
ideas to conclude that φ � δ2α

2
1α−1

2 θ = σθ . Next, we show that
under conditions (i) and (ii) the phases θ and φ are equiva-
lent for PS detection. Having Eq. (6), we suppose that there
is PS, and therefore, the phase difference �θ is bounded, i.e.
there is a number � such that |θ1 − θ2| < �. First, we show that
the boundness in the phase difference �θ implies the bound-
ness in the phase difference �φ. Indeed, we have σθ1 � φ1,
we have σθ1 − σθ2 � φ1 − σθ2, however, since σθ2 � φ2 � 0,
we get σ(θ1 − θ2) � φ1 − φ2. Next, once that |θ1 − θ2| � �,
it yields max(φ1 − φ2) � σ�, concluding the boundness in the
phase difference �φ. Using the same arguments, we show that
the boundness of the phase difference |φ1 − φ2| implies that
|θ1 − θ2| is bounded. This result holds for a phase that depends
smoothly on the coordinates.

The exact relation between φ and θ is less clear. φ depends
on the first and the second derivative, while θ only on the first.
So, in general, they differ by an amount Λφ which may be writ-
ten as: Λφ = φ̇ − θ̇ , where Λφ is a function of x, ẋ and ẍ, which
in terms of the vector field takes the form:

(9)Λφ = ẋt ∧ ẍt

ẋ2
t

− xt ∧ ẋt

x2
t

.

An analytical calculation of the deviation for a general case
might be impossible. However, if we bring about the fact that
coherent attractors have a well defined average period 〈T 〉,1 in
such a way that both phases grow governed by this average
time, then both phases are equivalent, the averages frequencies
are equal, due to the fact that both phases increase 2π for cycle,
which implies that 〈Λφ〉 = 0.

Positively defined frequency: φ̇ assumes negative values due
to the coordinate system. In principle one could proceed a co-
ordinate change in order to avoid the negativeness of φ̇. How-
ever, such a procedure is rather difficult, since even though the
transformation exists, it is unknown. Here we explore the sim-
plest way to avoid the fact that φ̇ is not positively defined.
We map the negative values to positive ones by a moduli op-
eration, in other words, we have a new frequency ψ̇ = |φ̇|.
Of course, now we have that the average increasing of the
phase ψ per cycle, namely 〈rψ 〉, is no longer equal to 2π ,
which is reflected in a positive average deviation 〈Λψ 〉 of ψ̇

from θ̇ . The phase in terms of the vector field takes the form
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ψ̇ =
√

ẍ2
t − 〈ẋt , ẍt 〉2/|ẋt |. The frequency θ̇ can be written as

(10)θ̇ = 1

|xt |

√
ẋ2
t − 〈xt , ẋt 〉2

x2
t

.

Having an equation for the phase θ3 the deviation Λψ can be
written as:

(11)Λψ = 1

|ẋt |

√
ẍ2
t − 〈ẋt , ẍt 〉2

ẋ2
t

− 1

|xt |

√
ẋ2
t − 〈xt , ẋt 〉2

x2
t

.

In general, 〈Λψ 〉 > 0 implies that 〈ψ̇〉 is no longer equal to
2π/〈T 〉, what does not constitute a problem because we can
analytically calculate the average increasing of the phase.

Let us call Tk , the time spent between two successive
crossing, namely k and k − 1, of the trajectory and a de-
fined Poincaré section. The average period is given by 〈T 〉 =
limN→∞ 1

N

∑N
i=1 Ti = t

N
. The average frequency, 〈ψ̇〉 =

limt→∞ 1
t

∫ t

0 ψ̇ dt = limN→∞ 1
〈T 〉 (

1
N

∫ t

0 ψ̇ dt). Thus, introduc-

ing 〈rψ 〉 = limτN→∞ 1
N

∫ t

0 ψ̇ dt , which is the average increas-
ing of the phase in one typical cycle, we get:

(12)〈T 〉 = 〈rψ 〉
〈ψ̇〉 .

Thus, we can also calculate the average period by ψ̇ , how-
ever, first, we have to calculate 〈rψ 〉 as a function of the vector
field. Noting that for coherent attractors 〈T 〉 = 2π

〈θ̇〉 , which is

also equal to 〈rψ 〉
〈ψ̇〉 , we have that 〈r〉 = 2π

〈θ̇〉+〈Λψ 〉
〈θ̇〉 , and finally:

(13)〈rψ 〉 = 2π

(
1 + 〈Λψ 〉

〈θ̇〉
)

.

The average frequency and the average period are no longer
straightforwardly related, as in periodic oscillators. However,
we can still obtain the average period 〈T 〉. In order to analyze
PS between oscillators using the phase ψ , we must subtract
from ψ , for each single oscillator, a drift that appears due to the
fact that 〈rψ 〉 � 2π . The drift is given by δψ = (〈rψ 〉−2π)× t .

We illustrate these ideas using two non-identical coupled
Rössler oscillators Σ1 and Σ2, given by ẋ1,2 = −α1,2y1,2 −
z1,2 + ε[x2,1 − x1,2], ẏ1,2 = α1,2x1,2 + ay1,2, ż1,2 = b +
z1,2(x1,2 − d), with α1 = 1 and α2 = α1 + δα. The constants
α = 1.00, a = 0.15, b = 0.4, and d = 8.5 are chosen such that
we have a chaotic attractor in a phase coherent regime.

Let us consider the two coupled Rössler. For δα = 0.001 and
ε = 0.01. First, we calculate the average frequency for the os-
cillator Σ1, Fig. 2(a), (b) using θ̇1 and φ̇1; the two phases give
the same average frequency 〈θ̇1〉 = 〈φ̇1〉 ≈ 1.0343, but, φ is
not a monotonic function, since φ̇ can be negative, Fig. 2(c).

3 Using the same ideas as before, ds = r dθ , where dθ is the angle between
xt /|xt | and xt+dt /|xt+dt |, we can write the equation stated. An interesting
case to use this equation for θ̇ is the central forces, where the frequency

is M

r2 . Noting that �r = rer ⇒ �̇r = ṙer + rφ̇eφ . We have θ̇ = 1
r

√
ṙ2 + 〈r,ṙ〉2

r2 =
1
r

√
ṙ2 + M

2 − r2 ṙ2
2 = M

2 .

r r r
Fig. 2. In (a) the projection of the Rössler oscillator on the plane (x, y). In (b)
the projection on the plane (ẋ, ẏ). The trajectory presents a coherent character
in both projections, however the instantaneous frequency φ̇ assumes negative
values. In (c) it is depicted, in black, the region of the attractor where φ̇ < 0,
and in gray, the attractor. We use three types of phases θ , φ, and ψ to measure
the phase difference �θ , �φ, and �ψ respectively, and to detect PS. In (d)
the phase is measured by θ , while in (e) by φ. For such oscillator we can also
use the phase ψ after removing the drift, i.e. one must analyze the quantity
|�ψ | = |(ψ1 − δψ1) − (ψ2 − δψ2)| which in PS is bounded (f ).

Therefore, the one-to-one correspondence of the phase with the
trajectory is lost. We can use the phase ψ which is one-to-one,
however, 〈ψ̇1〉 = 1.0373 which is not equal to 〈θ̇1〉. For these
values of δα and ε, the two oscillators are phase synchronized,
which means that the phase difference remains bounded for all
the time, and the average quantities, e.g. average period and av-
erage frequency, are equal in both oscillators. As we showed,
both phases θ and φ can be used to detect PS, Fig. 2(d), (e).
ψ can also be used once that one removes the drifting term
(〈r〉 − 2π) × t , Fig. 2(f).

Next, we analyze the average period. First, we calculate 〈T 〉
by defining a Poincaré section, and then we compare the aver-
age period obtained from the Poincaré section technique with
the average period given by Eq. (12). The Poincaré section is
defined at y = 0. We compute the return time to this section,
namely Tk , and then we take the average, which provides us
〈T 〉 ≈ 6.0710. Next, from Eq. (13), we have that the average
growing of the phase φ is 2π , which means that 〈Λφ〉 = 0.
Calculating the average period by Eq. (12), we have 〈T 〉 =
〈rφ〉/〈φ̇〉 ≈ 6.0710. Similarly, we calculate 〈rψ 〉, from Eq. (13),
which give us 〈rψ 〉 ≈ 6.2984 > 2π , and therefore 〈Λψ 〉 > 0,
(actually from Eq. (11), we have that 〈Λψ 〉 ≈ 0.005). So, us-
ing Eq. (12), we obtain the average period 〈T 〉 = 〈rψ 〉/〈ψ̇〉 ≈
6.0710, which shows that the approach is able to give the cor-
rect average time.

Non-coherent chaotic oscillators: By non-coherent oscilla-
tors, we mean those oscillators in which the trajectory does
not possess a proper rotation or has a broad distribution in the
power spectra.1 So, the phase θ cannot be defined. Here we
classify these attractors into two classes:
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Definition 3. Class I is composed by attractors in which the
trajectory presents a coherent motion in the velocity space, and
φ̇ is always positive.

Definition 4. Class II is composed by attractors in which the
trajectory presents weak non-coherent motion in the velocity
space, i.e. the trajectory is coherent, but φ̇ presents negative
values for short time intervals.

As example, the standard Rössler attractor is a coherent attrac-
tor in the phase space, and also in the velocity space, but for
some other parameters it belongs to the class I. The attrac-
tors from the forced Chua’s circuit, studied here, belong to the
class II. Our ideas hold for these two classes of attractors.

For oscillators of class I, φ̇ > 0, which implies φ = ψ . We
have also that 〈rψ,φ〉 = 2π . This is so, because a rotation of
the velocity vector increases 2π for a typical return time. Ac-
tually, the increasing of 2π in the rotation of the velocity vec-
tor defines a Poincaré section, since the motion is coherent in
the velocity space. So, we can compute the average period by
〈T 〉 = 2π/〈ψ̇〉.

For attractors of class II, the phases ψ and φ give differ-
ent results. Indeed, for this class 〈rψ 〉 > 2π , while 〈rφ〉 = 2π .
This occurs because the attractors of class II present a weak
non-coherence, characterized by non-coherences in the veloc-
ity space, where the frequency φ̇ is negative, which causes the
average growing of the phase ψ to be different than 2π . Since
frequency ψ̇ is positively defined, these small regions are incor-
porated in the phase ψ . On the other hand, the phase φ filters
this weak non-coherence, since it can be negative. Roughly
speaking, the phase φ increases in the first part of these re-
gions and decreases in the second part, and as a result these
non-coherent regions do not contribute to the phase growing,
as if the weak non-coherent attractors were actually a coherent
attractor in the velocity space.

An appropriate case to illustrate our ideas is the phase dy-
namics of a non-coherent chaotic attractor driven by a periodic
forcing. Let us denote the chaotic dynamics by X and the pe-
riodic forcing by Y . Thus, phase synchronization between the
forcing and the chaotic attractor implies 〈φ̇[X ]〉 = 〈θ̇[Y]〉. Keep-
ing this in mind, we analyze the case of the Chua’s circuit
driven by a periodic forcing, whose state equations are given by:
aẋ = g(y−x)−iNR(x), bẏ = g(x−y)+z, cż = −y−Vp sinω

and ω̇ = 2πfp . The term iNR is the non-linear electrical current
injected in the circuit, mathematically represented by: iNL(x) =
m0x + 0.5(m1 − m0){|x + Bp| − |x − Bp|}. The parameters
used in the numerical analyzes are a = 0.1, b = 1.0, c = 1/6,
g = 0.574, m0 = −0.5, m1 = −0.8, and Bp = 1.0.

The non-coherent attractors are found in the driven Chua’s
oscillator when the coupling strength increases. In particular,
for fp = 0.275 and Vp = 0.097. An usual stroboscopic tech-
nique shows that the two oscillators are phase synchronized,
Fig. 3(a), i.e. the stroboscopic map does not fulfill the attrac-
tor [12,13]. Using the phase ψ , we have that 〈ψ̇〉 = 0.275229.
The phase ψ was averaged in the time range of 1010. The phase
φ gives 〈φ̇〉 = 0.275000, Fig. 3(c). The phase ψ , in this situ-
ation, misleads the results, see Fig. 3(d), because it considers
Fig. 3. The non-coherent phase attractor of the periodic driven Chua’s circuit.
In (a) we depict, in gray, the attractor in the projection (x, y) and, in black,
a stroboscopic map. The stroboscopic map is confined which shows that the
attractor is phase synchronized. In (b) we show, in gray, the attractor in the
projection (ẋ, ẏ) and, in black, the region where φ̇ has negative values. In (c)
we show the phase difference |�φ| = |φ[X ] − φ[Y]|, which is bounded due
to PS. In (d) the phase difference |�ψ | = |ψ[X ] − ψ[Y]| diverges. In this case,
we cannot correct the drift in the phase ψ since we do not have an equation for
〈rψ 〉 in terms of the vector field. The perturbation parameters are f = 0.2750
and V = 0.097.

all non-coherence of the attractor in the velocity space, see
Fig. 3(b). So, for this class, the average period can be calcu-
lated by 〈T 〉 = 2π/〈φ̇〉.

Homo(hetero)clinic chaotic attractor: For such attractors
[14] the phases φ and ψ cannot be used to calculate the average
period. That is so, due to the fact that these dynamics get arbi-
trarily close to the “rest” state, i.e. near the unstable homoclinic
point. The phase depends on the derivatives of the trajectory
which vanishes in the homoclinic points causing the phase to
diverge.

We illustrate these ideas in the perturbed Hindmarsh–Rose
neuronal (HR) model [15] given by: ẋ = y +3x2 −x3 −z+I +
A sin(ωt), ẏ = 1 − 5x2 − y, ż = −rz + 4r(x + 1.6), where, A

is the amplitude and ω the frequency of the perturbation. (x, y)

have a fast dynamics and z a slow one. r is the ratio of fast/slow
time scales. First, we set r = 0.005 and I = 3.2499, in order
to produce a chaotic attractor with two distinct time scales, the
spikes and the bursts. In our numerical analysis we use the fol-
lowing initial conditions: x = −1.31, y = −7.32, and z = 3.35.
Next, we set A = 0.015 and ω = 0.00607, such that the HR
neuron phase synchronizes with the perturbation.

In Fig. 4(a) we depict the time series from x (in black) and
the sinusoidal perturbation (in gray). So, one can clearly see
that the HR neuron phase synchronizes with the perturbation.
Even though the HR neuron presents two time-scales, the phase
θ can be applied [16], since the trajectory has a proper rotation,
see Fig. 4(b).

The HR neuron synchronizes with the perturbation in the
slow time-scale, the bursts, which means that the average period
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Fig. 4. In (a) we plot the time series x of the neuron in black line and the si-
nusoidal perturbation in gray. In (b) we depict the attractor of the HR neuron
projected in the subspace (x, y). As one can see the attractor has a proper rota-
tion. In (c) we plot the phase difference �θ = θ − 6 × ωt , which is bounded,
showing the PS between the HR neuron and the periodic perturbation. In (d)
we show the phase differences �φ = φ − 6 × ωt and �ψ = ψ − 6 × ωt , that
diverge. So these phases fail to detect PS between the HR neuron and the per-
turbation.

between two bursts 〈Tburst〉 is equal to the average period of
the perturbation 2π/ω. The phases θ , φ and ψ capture only
the dynamics of the fast time scale.4 Therefore, we must have
a m : n PS, that is, the difference |mθ − nωt | is bounded. Since
within each burst there is on average 6 spikes, we have m =
1 and n = 6. In this case, the phase θ can be applied and it
gives the correct results, indeed by applying Eq. (10), it yields
〈θ̇〉/6 = 0.00607 = ω, and there is PS, see Fig. 4(c). However,
the phases φ and ψ mislead the results. Our numerical analysis
shows that 〈φ̇〉/6 ≈ 0.0045 and 〈ψ̇〉/6 ≈ 0.00715, and these
phases are not able to detect PS between the HR neuron and the
perturbation [Fig. 4(d)]. Of course, in this case the boundness
in the phase difference �θ does not imply the boundness in the
phase difference �φ, since ẋt = 0, which violates our results
for the equivalence of θ and φ.

This problem is not restricted to multi-time-scale oscilla-
tors. For instance, as the ratio r between the fast and slow time
scale is increased, the average interval between bursts is of the
same order of the average interval between spikes. In particu-
lar, for r = 0.04 the two time-scale merge into one [Fig. 5(a)],
e.g. only spikes are present. In addition, for A = 0.015 and
ω = 0.0353 the HR neuron phase synchronizes with the pertur-
bation. Again, even though the oscillator now presents only one
time scale and presents a coherent motion and proper rotation
[Fig. 5(b)] in the phase space, the dynamics is mainly consti-

4 For a numerical analysis of the system behavior on different time scales, the
continuous wavelet analysis is able to characterize each time scale by means of
its own phase. An approach to chaotic synchronization detection is developed
in Ref. [17] in terms of wavelet analysis.
Fig. 5. In (a) the time series x of the neuron in black line and the phase θ∗ in
bold gray, where θ∗ = θ/30, for a better visualization. In (b) the projection of
the attractor of the HR neuron in the subspace (ẋ, ẏ). In (c) the phase differ-
ences �θ = θ − ωt . In (d) we plot �ϕ = ϕ − ωt , which is a bounded quantity.

tuted by spikes, and therefore very often ẋt ≈ 0, see Fig. 5(b),
which misleads the results obtained from the phase φ. The tra-
jectory in the phase space is coherent and has a proper rotation,
therefore, Eq. (10) can be used, and indeed, it gives the correct
results. Actually, we have 〈θ̇〉 = 0.0353, and PS can be detected
by means of θ [Fig. 5(c)].

The trajectory in the velocity space (ẋ, ẏ) has a coherent
motion, however, it does not have a proper rotation, since the
trajectory in the velocity space visits the origin (0,0). Hence the
phase φ cannot be applied. This problem can be overcome by
a translation of the attractor on the velocity space (ẋ, ẏ). There-
fore, the introduction of a phase ϕ = tan−1[(ẏt − ẏ0)/(ẋt − ẋ0)]
is able to correct the problems of φ in this case. ϕ yields the
following equation for the frequency:

(14)ϕ̇t = ẋt ∧ ẍt + ẍt ∧ ẋ0

(ẋt − ẋ0)2
,

where, we denote ẋ0 = (ẋ0, ẏ0). This phase generalizes the
phase φ, with the condition that (i) (ẋt − ẋ0)

2 is bounded away
from zero, (ii) the trajectory spirals around x0 with a proper ro-
tation.

In the previous case of the HR neuron [Figs. 5(a) and (b)], if
we set ẋ0 = (0,−4), ϕ succeeds to extract the correct average
frequency, namely 〈ϕ̇〉 = 0.0353. Next, if we analyze the phase
difference �ϕ = ϕ − ωt , this quantity is bounded [Fig. 5(d)].
Therefore, the phase ϕ is able to detect PS. ϕ generalizes φ and
can be applied whenever the attractor on the velocity space has
a proper rotation. ϕ can extract the correct average frequency
and average period whenever the trajectory in the velocity space
possesses a coherent character.

Moreover, the ideas herein can be also applied to a case
where the oscillator is not coherent but present a proper rota-
tion, e.g. the Sprott E chaotic flow [18]. Both phases θ and φ
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are able to extract the average period of the attractor. Since the
attractor has a proper rotation we can define a Poincaré section,
and then, calculate the average period of the attractor. In par-
ticular, for α = 4.0 (see [18] for more details) we have that
〈T 〉 = 6.484, whereas 〈θ〉 = 〈φ〉 = 0.969, which is equal to
2π/〈T 〉.

In conclusion, we have analyzed a phase for chaotic attrac-
tors based on the rotation of the tangent vector of the trajectory.
We discussed the natural link between this phase, the curvature,
and the average period of the chaotic attractors. Moreover, we
demonstrated that for a broad class of chaotic attractors phase
synchronization is invariant under the phase definitions. We
adopt two new ideas: (i) the frequency might reach negative val-
ues but still possessing a physical meaning, however, losing its
one-to-one character with the trajectory, (ii) we can use a phase
which average growing per cycle can be bigger than 2π . Our
results holds for a broad class of chaotic attractors, basically all
the attractors whose dynamics possesses a coherent behavior ei-
ther in the phase space or in the velocity space. For homoclinic
type of attractors, we showed that in general the phase φ fails to
extract the correct average frequency of the attractor, due to the
fact that the trajectory goes arbitrarily close to the homoclinic
point. We overcame this problem by generalizing the phase φ.
Therefore, we have introduced the phase ϕ which is basically
the phase φ with a translation in the velocity space. This phase
solves the problems of the phase φ and works whenever the tra-
jectory presents a coherent behavior and a proper rotation after
the translation.
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K. Josić, D.J. Mar, Phys. Rev. E 64 (2001) 056234.
[9] J.Y. Chen, K.W. Wong, J.W. Shuai, Phys. Lett. A 285 (2001) 312.

[10] G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, J. Kurths, Phys. Rev.
Lett. 91 (2003) 024101.

[11] C. Bonatti, L.J. Diaz, M. Viana, Dynamics Beyond Uniform Hyperbolic-
ity, Springer, Berlin, 2004.

[12] M.S. Baptista, T. Pereira, J.C. Sartorelli, I.L. Caldas, J. Kurths, Physica
D 212 (2005) 216.

[13] C.M. Ticos, E. Rosa Jr., W.B. Pardo, J.A. Walkenstein, M. Monti, Phys.
Rev. Lett. 85 (2000) 2929.

[14] F.T. Arecchi, R. Meucci, A. Di Garbo, E. Allaria, Opt. Lasers Eng. 39
(2003) 393;
F.T. Arecchi, A. Lapucci, R. Meucci, et al., Europhys. Lett. 6 (1988) 677.

[15] J.L. Hindmarsh, R.M. Rose, Proc. R. Soc. London B 221 (1984) 87;
J.L. Hindmarsh, R.M. Rose, Nature 296 (1982) 162.

[16] J.W. Shuai, D. Durand, Phys. Lett. A 264 (1999) 289.
[17] A.E. Hramov, A.A. Koronovskii, Chaos 14 (2004) 603;

M. Chavez, C. Adam, V. Navarro, S. Boccaletti, J. Martinerie, Chaos 15
(2005) 023904.

[18] J.M. González-Miranda, Phys. Lett. A 352 (2006) 83.


	Phase and average period of chaotic oscillators
	Acknowledgements
	References


