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Detecting phase synchronization by localized maps:
Application to neural networks
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Abstract – We present an approach which enables to state about the existence of phase
synchronization in coupled chaotic oscillators without having to measure the phase. This is done
by observing the oscillators at special times, and analyzing whether this set of points is localized.
In particular, we show that this approach is fruitful to analyze the onset of phase synchronization
in chaotic attractors whose phases are not well defined, as well as, in networks of non-identical
spiking/bursting neurons connected by chemical synapses.
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Many neural networks rely on a synchronous behavior
for a proper functioning, e.g. information transmis-
sion [1,2], pattern recognition [3], and learning [4]. Never-
theless, the onset of synchronization in a network may
also lead to some diseases as Parkinson disease [5] and
epilepsy [6]. Studies on this topic have been concentrated
on synchronization of networks of identical chaotic oscil-
lators, in which the onset of complete synchronization
takes place [7]. However, they do not treat the onset
of synchronization in networks of non-identical chaotic
oscillators, case typically found in nature [8], where
complete synchronization is much harder to be achieved.
Indeed, in such networks a weaker kind of synchronization
may take place, the phase synchronization (PS). The
condition for PS between two subsystems k and j can be
written as

|φk(t)− rφj(t)|< c, (1)

where φk,j is the phase of the subsystem Σk,j , c∈R
is a constant, and r is a rational number. PS is a
common phenomenon in interacting chaotic oscillators [8],
and plays a major role in physical processes linked to
communication [9], and communication processes in the
human brain [6,10].
In order to state about the existence of PS, one has to

introduce a phase φ(t) for the chaotic oscillator, which is
not straightforward. Indeed, there is no general definition
of phase to chaotic attractors, and depending on the
situation one has to decide which phase is more suitable.
In fact, in some oscillators it is rather unclear which phase

one should use, especially in non-coherent oscillators with
more than one time scale, typically found in neuronal
dynamics with bursting/spiking behavior.
In this letter, we present a general and easy way to iden-

tify PS without having to access explicitly the phase. The
approach consists in defining maps, which are a natural
extension of the stroboscopic map, to coupled chaotic
oscillators, in which the oscillators are observed at special
times. PS implies the existence of maps of the attractor
that appear as localized structures in the accessible phase
space. The fact that PS produces subsets of the attractor
that are localized structures, by particular observations
was previously used as a way to detect PS in chaotic oscil-
lators [8,11,12]. Here, we extend these results by demon-
strating that localized sets can be constructed while in PS
by means of any typical physical observation, which has a
strong impact in the field of experimental physics, since in
the laboratory measurements are restricted to the limita-
tions of the experiment. Note that since this approach does
not require any further calculation, but just the analysis
of whether the sets are localized, it can be used in real-
time experiments for PS detection. We illustrate the power
of this approach by analyzing PS in a network of non-
identical Hindmarsh-Rose (HR) spiking/bursting neurons
connected via chemical synapses.
The classic stroboscopic map is defined in periodically

driven chaotic oscillators. It consists in sampling the
chaotic trajectory at times nT0, where n is an integer
and T0 is the period of the driver. The stroboscopic
map was used to detect PS [8,12]. The basic idea is
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Fig. 1: PS onset between a Lorenz oscillator driven by a Rössler oscillator. The attractor of the oscillators are depicted in gray
(a-d). In (a) we show the projection of the Rössler attractor into the subspace (xk, yk). The black line shows the Poincaré section
at yk = 0 with the constrain ẏk < 0. The projection of the Lorenz attractor in the subspace (xj , zj) is depicted in (b), and in
(c,d) into the subspace (u, zj). For ε= 0.0, the set Dj (in black) spreads over the attractor of the oscillator Σj (c), and there is
no PS; the phase difference diverges (e). For ε= 13.0 the oscillators present PS. The set Dj is localized, it does not fulfill the
attractor of Σj (d); the phase difference is bounded (f).

that if the stroboscopic map is localized in the attractor,
PS is present. To generalize the stroboscopic map to
coupled chaotic oscillators, we do the following: Given
two subsystems Σk and Σj , we observe Σk at times when
some event in the oscillator Σj happens. As a consequence
of these observations, we get a discrete set Dk. Then,
we demonstrate that if there is PS, then the set Dk is
localized.
In order to introduce our ideas, we analyze PS in two

coupled chaotic oscillators, namely the Lorenz oscillator
driven by the Rössler one. Furthermore, we extend this
result to general compact oscillators. The subsystem Σk
corresponds to the Rössler oscillator and Σj to the Lorenz
one. They are coupled unidirectionally in the driver
response scheme. An event in the Σk is considered to
happen when its trajectory crosses a Poincaré section
yk = 0. As a result, we get the series of times (τ

i
k)i∈N, where

τ ik is the time at which the i-th crossing of the trajectory of
Σk occurs in a Poincaré plane. The two coupled oscillators
are given by

ẋk = −α(yk + zk),
ẋj = σ(yj −xj)+ ε(xk −xj),
ẏk = α(xk +0.2yk),

ẏj = rxj − yj −xjzj ,
żk = α[0.2+ zk(xk − 5.7)],
żj = xjyj −βzj ,

with α= 13, σ= 16, r= 45.92, and β = 4. Since the trajec-
tory of the Rössler oscillator rotates around a fixed point
(fig. 1(a)), we can define a phase θk = tan

−1(yk/xk) which
gives: θk(t) =

∫ t
0
(ẏkxk− ẋkyk)/(x2k + y2k)dt. The trajectory

of the Lorenz does not have a unique center of rota-
tion, see fig. 1(b). However, if we consider the projection

(u, zj) with u=
√
x2j + yj , the trajectory projected into

this subspace presents a unique center of rotation. Thus we
also define a phase θj = tan

−1[(zj − zj0)/(u−u0)], where
(u0, zj0) = (19, 45) is the center of rotation in the sub-

space (u, zj), which gives θj(t) =
∫ t
0
[żju− u̇(zk − zj0)]/

[(u−u0)2+(zj − zj0)2]dt.
For ε= 0.0, we construct the set Dj by sampling the

trajectory of Σj at times τ
i
k. The set Dj spreads over

the trajectory of Σj ; there is no PS, the phase difference
∆θ= θk − θj diverges (fig. 1 (c,e)). Indeed, a calculation of
the frequencies shows that 〈θ̇k〉 ≈ 13.94 and 〈θ̇j〉 ≈ 13.75.
As we increase the coupling, PS appears. In particular, for
ε= 13.0 the set Dj is localized, and the phase difference
is bounded (fig. 1(d,f)). The average frequencies are
〈θ̇k〉= 〈θ̇j〉 ≈ 13.95.
Next, we demonstrate that the sets Dj of the attractor

that appear as localized structures imply PS, and vice
versa. We first show for a Poincaré section for a better
understanding of the ideas, and then we generalize these
results to any possible event. Σj is given by the dynamical
system ẋj =Gj(xj), let F

t
j be the flow, Γj the Poincaré

section, and Πj the Poincaré map associated to the section
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Γj , such that given a point x
i
j ∈ Γj , so xi+1j =Πj(x

i
j) =

F
∆τ i+1j

j (xij), where ∆τ
i
j = τ

i
j − τ i−1j . From now on, we use a

rescaled time t′ = t/〈Tj〉. For a slight abuse of notation we
omit the “ ′”. The average return time is given by 〈Tk〉=∑N
i=0∆τ

i
k/N = τ

N
k /N , and the time is rescaled, such that

〈Tk〉= 1. From our hypothesis that both oscillators present
phase-coherent oscillations, there is a number κk such that
|τ ik − i〈Tk〉|� κk, where κk� 1. If both oscillators are in
PS, then 〈Tk〉= 〈Tj〉, and so

|τ ik − τ ij |� κ̃, (2)

with κ̃� κk +κj� 1. Now, we analyze one typical
oscillation, using the basic concept of recurrence. Given
the following starting points x0k ∈ Γk and x0j ∈ Γj ,
we evolve both until x0j returns to Γj . Let us introduce

∆τ i =∆τ ik −∆τ ij . So, F
∆τ1j
j (x0j ) =Πj(x

0
j ) = x

1
j ∈ Γj . Anal-

ogously, F
∆τ1j
k (x0k) =F

∆τ1k+∆τ
1

k (x0k) =F
∆τ1

k ◦F∆τ1kk (x0k) =

F∆τ
1

k (Πk(x
0
k)) =F

∆τ1

k (x1k). Now, by using the fact that

|∆τ i|< κ̃, we can write: F∆τ
1

k (x1k)≈ x1k +G(x1k)κ̃+
O(κ̃2). So, given a point xk ∈ Γk evaluated by the time
when the trajectory of Σj returns to the section Γj , the
point xk returns near the section Γk, and vice versa.
For a general case, we have to show that a point, in the
section Γk, evolved by the flow for an arbitrary number of
events in the oscillator Σj , still remains close to Γk. But,

this is straightforward, since |∑Ni=0∆τ i|= |τNk − τNj |< κ̃.
So, we demonstrated that the PS regime implies
the localization of the set Dk. Now, we show that the
localization of the set Dk implies PS. Supposing that
we have a localized set Dk, so, eq. (2) is valid, by the
above arguments. Therefore, we just have to show that
eq. (2) implies PS. To do so, we note that at every
crossing of the trajectory with the Poincaré section the
phase increases 2π, as a consequence φk(τ

i
k) = 2i×π.

Then, |φk(τ ik)−φj(τ ik)|= |φk(τ ik)−φj(τ ij + ζ)|, where

ζ = τ ik − τ ij . Now, expanding the phase φj in Taylor series
around τ ij , we have φj(τ

i
j + ζ)≈ 2iπ+ φ̇j(τ ij)× ζ +O(ζ2),

as a result, the phase difference can be written as

|φk(τ ik)−φj(τ ik)|�Λ× |τ ik − τ ij |�Λ× κ̃, (3)

where, Λ=maxt,j{φ̇j(t)}. Therefore, we showed that
boundness in eq. (2) implies a bound in the phase
difference at times τ ik. However, since the phase depends
smoothly on time, and the Poincaré section can be
smoothly changed, the boundness in eq. (3) also holds at
the continuous time. Thus, we conclude our result.
An important point to stress is that it is not always

possible to define a Poincaré Section on the attractor in
such a way that a phase increases 2π every crossing. As
an example we quote the non-coherent attractors with no
proper rotations, where the definition of such section is not
possible. Moreover, even if the oscillators are coherent, it
might happen that the accessible data is not suitable to
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Fig. 2: PS implies the existence of localized sets, which is
generated by the observation of an arbitrary typical event. The
attractors of the oscillators are depicted in gray. For ε= 13.0,
we show the projections of the Rössler Lorenz attractors (a,b).
The black bold line shows the segment Sk (a). Dj is constructed
by observing the oscillator Σj whenever the trajectory of Σk
crosses the segment Sk. In (b) we show the set Dj in black.
Since there is PS, Dj is localized.

define a section, but rather to measure the entrance of
the trajectory in some small region of the phase space.
That does not constitute a problem, because PS implies
localization of the set Dk, independently on the event
definition.
Let us first discuss the idea of localization. If the set D

is a subset of Φ, we say that D is localized (with respect
to Φ) if there is a cross-section Ψ and a neighborhood
Λ of Ψ, such that D∪Λ= ∅. In particular, for practical
detections, one may check whether D is localized, by the
following technique. If there is PS, for y ∈D there exist
infinitely many x∈Λ such that y∩B�(x) = ∅, whereB�(x)
is an open ball of radius � centered at the point x, and �
is small. Then, we may vary y,x (one may take x to be
an arbitrary point of the attractor) and �, to determine
whether D is localized.
The event definition that generates the time series
{τ ik}i∈N can be arbitrary. Therefore, the event could be
a local maximum/minimum, the crossing of a dynamical
variable with a threshold, the entrance in an ε-ball, and so
on. The only constraint is the event must be typical. We
also suppose that there is a function phase φk, in such a
way that φ̇k =Ωk, where Ωk is continuous and Ωk �Υ.
Under such hypotheses, we can state that: Given any
typical event, with positive measure, in the oscillator Σk,j ,
generating the times(tik,j)i∈N, if there is PS the observation
of Σk at (t

i
j)i∈N generates a localized set Dk.

Next, we demonstrate this result, doing so we extent
these ideas to non-coherent oscillators. The strategy to
demonstrate the previous results to an arbitrary event is
the following: i) Note that the phase φj(t) naturally defines

a section, namely Γ̃j , in the attractor such that at the

N -th crossing of the trajectory of Σj with Γ̃j the phase
is equal to N × 2π. Obviously, this section depends on the
initial conditions. ii) Suppose that we construct the set
Dk by observing the trajectory of Σk at every crossing of
the trajectory of Σj with Γ̃j . Then, following the previous
results, PS implies the localization of Dk, and vice versa.
iii) Suppose that we have a small piece PΓ̃j of the section
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Fig. 3: Onset of PS in two HR neurons coupled via inhibitory synapses. In (a-b), we plot the attractor projection (xk, yk) in gray,
and the set Dk in black, constructed by observing the subsystem Σk whenever Σj crosses the threshold xj =−1.3 represented
by the dashed line in (c). In (a) the set Dk spreads over the attractor which shows that there is no PS. In (b) the set Dk is
localized which shows the presence of PS. In (c) we present the time series of the membrane potential of (b). The threshold
(dashed line) can mislead the burst occurrence (see the box) leading to the wrong statement that there is no PS. For (a) the
parameters are Ik = 3.12 and gsyn = 0.75, for (b) and (c) Ik = 3.12 and gsyn = 0.85.

Γ̃j , such that the crossings of the trajectory of Σj with PΓ̃j
produces a subsequence (τnij )ni∈N of the sequence (τ

i
j)i∈N.

Thus, we just note that if the observation of the trajectory
of Σk at times (τ

i
j)i∈N gives place to a localized set Dk,

the observation at times (τnij )ni∈N also gives place to a
localized set D̃k which is a subset of Dk. Therefore, we
showed that the observation of the trajectory of Σk, when
the trajectory of Σj returns to PΓ̃j , also leads to a localized

set in Σk. iv) Next, we show that an event does not have to
be a piece of the section Γ̃j in order to obtain a localized
set in Σk. Indeed, given an ε-ball event that produces the
time series τ̃ ij , in Σj , there is, at least, one intersection

of this ball with the section Γ̃j . Since Γ̃j depends on the
initial conditions, we can choose an initial condition right
at the ε-ball event. Next, we choose PΓ̃j such that it is
completely covered by the ε-ball. Since the measure of the
ε-ball is small, ε� 1, the time difference between crossings
of the trajectory with PΓ̃j and the ε-ball, namely τ̃

i
j − τnij ,

is also small. Therefore, if we observe the trajectory of Σk
at times (τ̃ ij)i∈N, we get a localized set in Σk close to the
set D̃k. Thus, we conclude our result.
In order to illustrate these ideas, we consider again the

Lorenz oscillator driven by the Rössler oscillator. As we
showed before, for ε= 13.0 there is PS. Thus the sets
D must be localized independently of the event chosen.
We define the event in the oscillator Σk to be the cross-
ing of the trajectory Sk = {xk, yk, zk ∈R|xj <−8, yk = 0,
ẏk < 0}. These crossings generate the times (tik)i∈N. Sk is

depicted in black bold line in fig. 2(a) together with the
attractor of the Rössler oscillator depicted in gray. The
observation of the trajectory of Σj at the times (t

i
k)i∈N

generates a localized set Dj (fig. 2(b)).
Keeping these results in mind, we analyze the onset

of PS between two non-coherent neurons of the HR
type coupled by chemical synapses. The neurons are
described by a 4-dimensional HR model [13] which consists
of four coupled differential equations: ẋk = ayk + bx

2
k −

cx3k − dzk + Ik + gsyn
∑
j γkjIsyn(xj), ẏk = e− yk + fx2k −

gwk, żk = µ(−zk +R(xk +H)), ẇk = ν(−kwk + r(yk + l)),
xk represents the membrane potential, yk is associated
with fast current dynamics, and (zk, wk) are associated
with slow currents, Isyn is the synaptic input, and γkj is
the connectivity matrix: γkj = 1 if neuron j is connected
to neuron k, and γkj = 0, otherwise, with j 
= k.
We set the parameters of the model in order to obtain

a spiking/bursting behavior [13]. Then, we couple the
neurons by means of chemical synapses. The current
Isyn injected in the postsynaptic cell is given by [14]:

Isyn(xj) = Sj [xj −Vrev], τ dSjdt = S∞j(xi)−SjS0−S∞j(xi) , where Vrev
is the synaptic potential, and τ is the timescale govern-
ing receptor binding. S∞ is given by S∞(V ) = tanh
[(V −Vth)/Vslope], if V > Vth and 0, otherwise. The
synapse parameters are chosen in order to have an
inhibitory effect, so, we set: Vth =−0.80, Vslope = 1.00,
Vrev =−1.58, and S0 � 1.
Now, the time series of events τ ij is the time at

which the i-th crossing of membrane potential xj reaches
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a threshold, namely x=−1.3. We fix Ik = 3.1200 and
Ij = 3.1205, then for gsyn = 0.75 the set Dk spreads over
the attractor (fig. 3(a)); there is no PS. As we increase
gsyn, the coupled neurons undergo a transition to PS, i.e.
the set Dk is localized, fig. 3(b). The neurons are highly
non-coherent, due to the existence of two time scales, and
the inhibitory synapse which causes one neuron that is
in a spiking behavior to inhibit the other neuron, which
hyperpolarizes, but still tries to spike. This competition
generates even more non-coherence in the phase space. As
a consequence, it is rather unclear how one can calculate
the phase for such dynamics. What has been currently
done is to estimate the phase of the chaotic neuron by
assuming that in every crossing in a given direction of the
membrane potential with a threshold, the phase increases
2π [8]. The main problem with this approach is that
the phase is threshold dependent, so, it can lead to the
false statement that PS does not exist. We illustrate this
problem in fig. 3(c), for the same parameter as in fig. 3(b);
there is, indeed, PS. For a threshold x=−1.3 (dashed
line), one burst is missed, what makes the phase difference
to be no longer bounded as the time goes to infinity,
leading to the wrong statement that there is no PS. Our
approach, on the other hand, is not event dependent.
Indeed, as we showed, a localized set Dk exists for this
threshold.
Next, we analyze a network of 16 non-identical HR

neurons, connected with excitatory chemical synapses. In
order to simulate a mismatch in the intrinsic current,
we set Ii = 3.12+ ηi, where ηi are uniformly distributed
within the interval [−0.05, 0.05]. To simulate the excita-
tory synapses, we use the same Isyn, but changing the
value of Vrev. Note that if Vrev � xi(t) the neuron presy-
naptic always injects a positive current in the postsynaptic
neuron. In the following, we set Vrev = 2. Our network is
a homogeneous random network, i.e. all neurons receive
the same number k of connections, namely k= 4. We
constrain gsyn to be equal to all neurons. We identify
the amount of phase synchronous neurons by analyzing
whether the sets Dj are localized, occupying no more than
80% of the attractor of Σj .
The onset of PS in the whole network takes place at
g∗syn ≈ 0.47, so all neurons become phase synchronized.
As the synapse strength crosses another threshold, g̃syn ≈
0.52, the neurons undergo a transition to the rest state,
and they no longer present oscillatory behavior. Clusters
of PS appear even for gsyn far smaller than g

∗
syn. In

fact, right at gsyn = 0.04, some clusters of neurons exhibit
PS among themselves. These clusters seem to be robust
under small perturbations. Clusters of PS inside the
network may offer a suitable environment for information
exchanging. Each one can be regarded as a channel of
communication, since they possess different frequencies,

and therefore each channel of communication operates in
different bandwidths. This scenario of cluster formation
is neither restricted to this HR model nor to the synapse
model. It can also be found in square-wave and parabolic
bursters.
In conclusion, we have proposed an extension of the

stroboscopic map, as a general way to detect PS in
coherent/non-coherent oscillators. The idea consists in
constraining the observation of the trajectory of an oscil-
lator at the times in which an event occurs in the other
oscillator. We have shown that if PS is present, the
maps of the attractor appear as a localized set in the
phase-space, and vice-versa. The ideas herein provide a
reliable and easy way of detecting PS, without having
to explicitly measure the phase. This method can be
applied in experiments in real time and networks.
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