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Abstract

Recurrence is a fundamental property of dynamical systems, which can be exploited to characterise the system’s behaviour in
phase space. A powerful tool for their visualisation and analysis called recurrence plot was introduced in the late 1980’s. This report
is a comprehensive overview covering recurrence based methods and their applications with an emphasis on recent developments.
After a brief outline of the theory of recurrences, the basic idea of the recurrence plot with its variations is presented. This includes the
quantification of recurrence plots, like the recurrence quantification analysis, which is highly effective to detect, e. g., transitions in the
dynamics of systems from time series. A main point is how to link recurrences to dynamical invariants and unstable periodic orbits.
This and further evidence suggest that recurrences contain all relevant information about a system’s behaviour. As the respective
phase spaces of two systems change due to coupling, recurrence plots allow studying and quantifying their interaction. This fact
also provides us with a sensitive tool for the study of synchronisation of complex systems. In the last part of the report several
applications of recurrence plots in economy, physiology, neuroscience, earth sciences, astrophysics and engineering are shown. The
aim of this work is to provide the readers with the know how for the application of recurrence plot based methods in their own field
of research. We therefore detail the analysis of data and indicate possible difficulties and pitfalls.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

El poeta tiene dos obligaciones sagradas: partir y regresar. (The poet has two holy duties: to set out and to return.)

Pablo Neruda

If we observe the sky on a hot and humid day in summer, we often “feel” that a thunderstorm is brewing. When
children play, mothers often know instinctively when a situation is going to turn out dangerous. Each time we throw
a stone, we can approximately predict where it is going to hit the ground. Elephants are able to find food and water
during times of drought. These predictions are not based on the evaluation of long and complicated sets of mathematical
equations, but rather on two facts which are crucial for our daily life:

(1) similar situations often evolve in a similar way;
(2) some situations occur over and over again.

The first fact is linked to a certain determinism in many real world systems. Systems of very different kinds, from very
large to very small time–space scales can be modelled by (deterministic) differential equations. On very large scales
we might think of the motions of planets or even galaxies, on intermediate scales of a falling stone and on small scales
of the firing of neurons. All of these systems can be described by the same mathematical tool of differential equations.
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They behave deterministically in the sense that in principle we can predict the state of such a system to any precision
and forever once the initial conditions are exactly known. Chaos theory has taught us that some systems—even though
deterministic—are very sensitive to fluctuations and even the smallest perturbations of the initial conditions can make
a precise prediction on long time scales impossible. Nevertheless, even for these chaotic systems short-term prediction
is practicable.

The second fact is fundamental to many systems and is probably one of the reasons why life has developed memory.
Experience allows remembering similar situations, making predictions and, hence, helps to survive. But remembering
similar situations, e.g., the hot and humid air in summer which might eventually lead to a thunderstorm, is only helpful
if a system (such as the atmospheric system) returns or recurs to former states. Such a recurrence is a fundamental
characteristic of many dynamical systems.

They can indeed be used to study the properties of many systems, from astrophysics (where recurrences have actually
been introduced) over engineering, electronics, financial markets, population dynamics, epidemics and medicine to brain
dynamics. The methods described in this review are therefore of interest to scientists working in very different areas
of research.

The formal concept of recurrences was introduced by Henri Poincaré in his seminal work from 1890 [1], for
which he won a prize sponsored by King Oscar II of Sweden and Norway on the occasion of his majesty’s 60th
birthday. Therein, Poincaré did not only discover the “homoclinic tangle” which lies at the root of the chaotic be-
haviour of orbits, but he also introduced (as a by-product) the concept of recurrences in conservative systems. When
speaking about the restricted three body problem he mentioned: “In this case, neglecting some exceptional trajec-
tories, the occurrence of which is infinitely improbable, it can be shown, that the system recurs infinitely many
times as close as one wishes to its initial state.” (translated from [1]) Even though much mathematical work was
carried out in the following years, Poincaré’s pioneering work and his discovery of recurrence had to wait for
more than 70 years for the development of fast and efficient computers to be exploited numerically. The use of
powerful computers boosted chaos theory and allowed to study new and exciting systems. Some of the tedious
computations needed to use the concept of recurrence for more practical purposes could only be made with this
digital tool.

In 1987, Eckmann et al. introduced the method of recurrence plots (RPs) to visualise the recurrences of dynamical
systems. Suppose we have a trajectory {�xi}Ni=1 of a system in its phase space [2]. The components of these vectors could
be, e.g., the position and velocity of a pendulum or quantities such as temperature, air pressure, humidity and many
others for the atmosphere. The development of the systems is then described by a series of these vectors, representing
a trajectory in an abstract mathematical space. Then, the corresponding RP is based on the following recurrence
matrix:

Ri,j =
{

1: �xi ≈ �xj ,

0: �xi /≈ �xj ,
i, j = 1, . . . , N , (1)

where N is the number of considered states and �xi ≈ �xj means equality up to an error (or distance) ε. Note that this ε is
essential as systems often do not recur exactly to a formerly visited state but just approximately. Roughly speaking, the
matrix compares the states of a system at times i and j. If the states are similar, this is indicated by a one in the matrix,
i.e. Ri,j = 1. If on the other hand the states are rather different, the corresponding entry in the matrix is Ri,j = 0. So the
matrix tells us when similar states of the underlying system occur. This report shows that much more can be concluded
from the recurrence matrix, Eq. (1). But before going into details, we use Eckmann’s representation of the recurrence
matrix, to give the reader a first impression of the patterns of recurrences which will allow studying dynamical systems
and their trajectories.

Let us consider the RPs of three prototypical systems, namely of a periodic motion on a circle (Fig. 1A), of the
chaotic Rössler system (Fig. 1B), and of uniformly distributed, independent noise (Fig. 1C). In all systems recurrences
can be observed, but the patterns of the plots are rather different. The periodic motion is reflected by long and non-
interrupted diagonals. The vertical distance between these lines corresponds to the period of the oscillation. The chaotic
Rössler system also leads to diagonals which are seemingly shorter. There are also certain vertical distances, which
are not as regular as in the case of the periodic motion. However, on the upper right, there is a small rectangular patch
which rather looks like the RP of the periodic motion. We will see later (Section 3.11) that this structure really is a
(nearly) periodic motion on the attractor of the Rössler system, which is called an unstable periodic orbit (UPO). The
RP of the uncorrelated stochastic signal consists of many single black points. The distribution of the points in this RP
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Fig. 1. Recurrence plots of (A) a periodic motion with one frequency, (B) the chaotic Rössler system (Eq. (A.5) with parameters a = b = 0.2 and
c = 5.7) and (C) of uniformly distributed noise.

looks rather erratic. Reconsidering all three cases, we might conjecture that the shorter the diagonals in the RP, the less
predictable the system. This conjecture was already made by Eckmann et al. who suggested that the inverse of the longest
diagonal (except the main diagonal for which i = j ) is proportional to the largest Lyapunov exponent of the system [2].
Later it will be shown how the diagonal lines in the RP are related to the predictability of the system more precisely
(Section 3.6). This very first visual inspection indicates that the structures found in RPs are closely linked to the
dynamics of the underlying system.

Scientists working in various fields have made use of RPs. Applications of RPs can be found in numerous fields of re-
search such as astrophysics [3–5], earth sciences [6–8], engineering [9,10], biology [11,12], cardiology or neuroscience
[13–18].

This report will summarise recent developments of how to exploit recurrences to gain understanding of
dynamical systems and measured data. We believe that much more can be learned from recurrences and that the
full potential of this approach is not yet tapped. This overview can by no means be complete, but we hope
to introduce this powerful tool to a broad readership and to enthuse scientists to apply it to their data and
systems.

Most of the described methods and procedures are available in the CRP toolbox for Matlab� (provided by TOCSY:
http://tocsy.agnld.uni-potsdam.de).

2. Theory

Recurrence is a fundamental characteristic of many dynamical systems and was introduced by Poincaré in 1890 [1],
as mentioned in Section 1. In the following century, much progress has been made in the theory of dynamical systems.
Especially, in the last decades of the 20th century, triggered by the development of fast and efficient computers, new and
deep-rooted mathematical structures have been discovered in this field. It has been recognised that in a larger context
recurrences are part of one of three broad classes of asymptotic invariants [19]:

(1) growth of the number of orbits of various kinds and of the complexity of orbit families (an important invariant of
the orbit growth is the topological entropy);

(2) types of recurrences; and
(3) asymptotic distribution and statistical behaviour of orbits.

The first two classes are of purely topological nature; the last one is naturally related to ergodic theory.

http://tocsy.agnld.uni-potsdam.de
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Of the different types of recurrences which form part of the second class of invariants, the Poincaré recurrence is of
particular interest to this work. It is based on the Poincaré Recurrence Theorem [19] (Theorem 4.1.19):

Let T be a measure-preserving transformation of a probability space (X, �) and let A ⊂ X be a measurable
set.1 Then for any natural number N ∈ N

�({x ∈ A | {T n(x)}n�N ⊂ X\A}) = 0. (2)

Here we give the rather short proof of this theorem:

Replacing T by T N in Eq. (2), we find that it is enough to prove the statement for N = 1. The set

Ã := {
x ∈ A | {T n(x)}n∈N ⊂ X\A}= A ∩

( ∞⋂
n=1

T −n(X\A)

)

is measurable. Note that

T −n(Ã) ∩ Ã = ∅
for every n, because if we suppose, on the contrary, that T −n(Ã)∩Ã=B with B �= ∅, this implies T n(B) ⊂ A.
This is inconsistent with the definition of Ã, because B ⊂ Ã.

Also note that

T −n(Ã) ∩ T −m(Ã) = ∅ ∀m, n ∈ N.

because if we assume, on the contrary, that T −n(Ã) ∩ T −m(Ã) = B with B �= ∅, this implies T n(B) ⊂ Ã
and T m(B) ⊂ Ã. Without loss of generality, we assume that m > n. Then T n(B) = C ⊂ Ã and T m(B) =
T m−n(T n(B)) = T m−n(C) ⊂ Ã, which is again inconsistent with the definition of Ã.

Furthermore, �(T −n(Ã)) = �(Ã) since T preserves �. Thus �(Ã) = 0 because

1 = �(X)��

( ∞⋃
n=0

T −n(Ã)

)
=

∞∑
n=0

�
(
T −n(Ã)

)
=

∞∑
n=0

�(Ã).

That means, that if we have a measure preserving transformation, the trajectory will eventually come back to the
neighbourhood of any former point with probability one.

However, the theorem only guarantees the existence of recurrence but does not tell how long it takes the system to
recur. Especially for high-dimensional complex systems the recurrence time might be extremely long. For the Earth’s
atmosphere the recurrence time has been estimated to be about 1030 years, which is many orders of magnitude longer
than the time the universe exists so far [20].

Moreover, the first return of a set is defined as follows: if A ⊂ X is a measurable set of a measurable (probability)
dynamical system {X, �, T }, the first return of the set A is given by


(A) = min{n > 0: T nA ∩ A �= ∅}. (3)

Generically, for hyperbolic systems the recurrence or first return time appears to exhibit certain universal
properties [21]:

(1) the recurrence time has an exponential limit distribution;
(2) successive recurrence times are independently distributed;
(3) as a consequence of (1) and (2), the sequence of successive recurrence times has a limit law that is a Poisson

distribution.

1 Here � is a Borel measure on a separable metrisable space X. Note that these assumptions are rather weak from a practical point of view. Such
a measure preserving function is obviously given in Hamiltonian systems and also for all points on (the �-limit set of) a chaotic attractor.
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ε

Fig. 2. A diagonal line in a RP corresponds with a section of a trajectory (dashed) which stays within an ε-tube around another section (solid).

These properties, which are also well-known characteristics of certain stochastic systems, such as finite aperiodic
Markov chains [22–24], have been rigourously established for deterministic dynamical systems exhibiting suffi-
ciently strong mixing [25–27]. They have also been shown valid for a wider class of systems that remains, however,
hyperbolic [28].

Recently, recurrences and return times have been studied with respect to their statistics [29,30] and linked to various
other basic characteristics of dynamical systems, such as the Pesin’s dimension [31], the point-wise and local dimensions
[32–34] or the Hausdorff dimension [35]. Also the multi-fractal properties of return time statistics have been studied
[36,37]. Furthermore, it has been shown that recurrences are related to Lyapunov exponents and to various entropies
[38,39]. They have been linked to rates of mixing [40], and the relationship between the return time statistics of
continuous and discrete systems has been investigated [41]. It is important to emphasise that RPs, Eq. (1), can help to
understand and also provide a visual impression of these fundamental characteristics.

However, for the study of RPs also the first class of the asymptotic invariants is important, namely invariants which
are linked to the growth of the number of orbits of various kinds and of the complexity of orbit families. In this report
we consider the return times and especially focus on the times at which these recurrences occur, and for how long
the trajectories evolve close to each other (the length of diagonal structures in recurrence plots will be linked to these
times): a central question will concern the interval of time, that a trajectory stays within an ε-tube around another
section of the trajectory after having recurred to it (Fig. 2). This time interval depends on the divergence of trajectories
or orbit growth of the respective system.

The most important numerical invariant related to the orbit growth is the topological entropy hD . It represents the
exponential growth rate for the number of orbit segments distinguishable with arbitrarily fine but finite precision. The
topological entropy hD describes, roughly speaking, the total exponential complexity of the orbit structure with a single
number. We just present the discrete case here (see also [19]).

Let F : X → X be a continuous map of a compact metric space X with distance function D. We define an increasing
sequence of metrics DF

n , n = 1, 2, 3, . . ., starting from DF
1 = D by

DF
n (x, y) = max

0� i �n−1
D(F i(x), F i(y)). (4)

In other words, DF
n measures the distance between the orbit segments In

x ={x, . . . , F n−1x} and In
y ={y, . . . , F n−1y}.

We denote the open ball around x by BF (x, ε, n) = {y ∈ X | DF
n (x, y) < ε}.

A set E ⊂ X is said to be (n, ε)-spanning if X ⊂ ⋃
x∈EBF (x, ε, n). Let SD(F, ε, n) be the minimal cardinality of

an (n, ε)-spanning set, or equivalently the cardinality of a minimal (n, ε)-spanning set. This quantity gives the minimal
number of initial conditions whose behaviour approximates up to time n the behaviour of any initial condition up to ε.
Consider the exponential growth rate for that quantity

hD(F, ε) = lim
n→∞

1

n
log SD(F, ε, n), (5)

where limn→∞ denotes the supremum limit. Note that hD(F, ε) does not decrease with ε. Hence, the topological
entropy hD(F ) is defined as

hD(F ) = lim
ε→0

hD(F, ε). (6)

It has been shown that if D′ is another metric on X, which defines the same topology as D, then hD′(F ) = hD(F ) and
the topological entropy will be an invariant of topological conjugacy [19]. Roughly speaking, this shows that a change
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of the coordinate system does not change the entropy. This is highly relevant, as it suggests that some of the structures
in RPs do not depend on the special choice of the metric. The entropy hD allows characterising dynamical systems
with respect to their “predictability”, e.g., periodic systems are characterised by hD = 0. If the system becomes more
irregular, hD increases. Chaotic systems typically yield 0 < hD < ∞, whereas time series of stochastic systems have
infinite hD .

Recurrences are furthermore related to UPOs and the topology of the attractor [42]. In Section 3.11 we will describe
this relationship in detail.

These considerations show that recurrences are deeply rooted in the theory of dynamical systems. Much of the efforts
have been dedicated to the study of recurrence times. Additionally, in the late 1980s Eckmann et al. have introduced
RPs and the recurrence matrix. This matrix contains much information about the underlying dynamical system and can
be exploited for the analysis of measured time series. Much of this report is devoted to the analysis of time series based
on this matrix. We show how these methods are linked to theoretical concepts and show their respective applications.

3. Methods

Now we will use the concept of recurrence for the analysis of data and to study dynamical systems. Nonlinear data
analysis is based on the study of phase space trajectories.At first, we introduce the concept of phase space reconstruction
(Section 3.1) and then give a technical and brief historical review on recurrence plots (Section 3.2). This part is followed
by the bivariate extension to cross recurrence plots (Section 3.3) and the multivariate extension to joint recurrence plots
(Section 3.4). Then we describe measures of complexity based on recurrence/cross recurrence plots (Section 3.5) and
how dynamical invariants can be derived from RPs (Section 3.6). Moreover, the potential of RPs for the analysis of
spatial data, the detection of UPOs, detection and quantification of different kinds of synchronisation and the creation
of surrogates to test for synchronisation is presented (Sections 3.7–3.11). Before we describe several applications, we
end the methodological section considering the influence of noise (Section 3.12).

Most of the described methods and procedures are available in the CRP toolbox for Matlab� (provided by TOCSY:
http://tocsy.agnld.uni-potsdam.de).

3.1. Trajectories in phase space

The states of natural or technical systems typically change in time, sometimes in a rather intricate manner. The study of
such complex dynamics is an important task in numerous scientific disciplines and their applications. Understanding,
describing and forecasting such changes is of utmost importance for our daily life. The prediction of the weather,
earthquakes or epileptic seizures are only three out of many examples.

Formally, a dynamical system is given by (1) a (phase) space, (2) a continuous or discrete time and (3) a time-
evolution law. The elements or “points” of the phase space represent possible states of the system. Let us assume that
the state of such a system at a fixed time t can be specified by d components (e.g., in the case of a harmonic oscillator,
these components could be its position and velocity). These parameters can be considered to form a vector

�x(t) = (x1(t), x2(t), . . . , xd(t))T (7)

in the d-dimensional phase space of the system. In the most general setting, the time-evolution law is a rule that allows
determining the state of the system at each moment of time t from its states at all previous times. Thus the most
general time-evolution law is time dependent and has infinite memory. However, we will restrict to time-evolution laws
which enable calculating all future states given a state at any particular moment. For time-continuous systems the time
evolution is given by a set of differential equations

�̇x(t) = d�x(t)

dt
= �F(�x(t)), F : Rd → Rd . (8)

The vectors �x(t) define a trajectory in phase space.
In experimental settings, typically not all relevant components to construct the state vector are known or cannot be

measured. Often we are confronted with a time-discrete measurement of only one observable. This yields a scalar and
discrete time series ui =u(i�t), where i =1, . . . , N and �t is the sampling rate of the measurement. In such a case, the

http://tocsy.agnld.uni-potsdam.de
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Fig. 3. (A) Segment of the phase space trajectory of the Rössler system, Eqs. (A.5), with a = 0.15, b = 0.20, c = 10, by using its three components
and (B) its corresponding recurrence plot. A phase space vector at j which falls into the neighbourhood (grey circle in (A)) of a given phase space
vector at i is considered as a recurrence point (black point on the trajectory in (A)). This is marked with a black point in the RP at the position (i, j).
A phase space vector outside the neighbourhood (empty circle in (A)) leads to a white point in the RP. The radius of the neighbourhood for the RP
is ε = 5; L2-norm is used.

phase space has to be reconstructed [43,44]. A frequently used method for the reconstruction is the time delay method:

�̂xi =
m∑

j=1

ui+(j−1)
 �ej , (9)

where m is the embedding dimension and 
 is the time delay. The vectors �ei are unit vectors and span an orthogonal
coordinate system (�ei · �ej =�i,j ). If m�2D2 +1, where D2 is the correlation dimension of the attractor, Takens’ theorem
and several extensions of it, guarantee the existence of a diffeomorphism between the original and the reconstructed
attractor [44,45]. This means that both attractors can be considered to represent the same dynamical system in different
coordinate systems.

For the analysis of time series, both embedding parameters, the dimension m and the delay 
, have to be chosen
appropriately. Different approaches for the estimation of the smallest sufficient embedding dimension (e.g. the false
nearest-neighbours algorithm [46]), as well as for an appropriate time delay 
 (e.g. the auto-correlation function, the
mutual information function; cf. [47,46]) have been proposed.

Recurrences take place in a systems phase space. In order to analyse (univariate) time series by RPs, Eq. (1), we will
reconstruct in the following the phase space by delay embedding, if not stated otherwise.

3.2. Recurrence plot (RP)

3.2.1. Definition
As our focus is on recurrences of states of a dynamical system, we define now the tool which measures recurrences

of a trajectory �xi ∈ Rd in phase space: the recurrence plot, Eq. (1) [2]. The RP efficiently visualises recurrences
(Fig. 3A) and can be formally expressed by the matrix

Ri,j (ε) = 	(ε − ‖�xi − �xj‖), i, j = 1, . . . , N , (10)

where N is the number of measured points �xi , ε is a threshold distance, 	(·) the Heaviside function (i.e. 	(x) = 0, if
x < 0, and 	(x)=1 otherwise) and ‖·‖ is a norm. For ε-recurrent states, i.e. for states which are in an ε-neighbourhood,
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Fig. 4. Three commonly used norms for the neighbourhood with the same radius around a point (black dot) exemplarily shown for the two-dimensional
phase space: (A) L1-norm, (B) L2-norm and (C) L∞-norm.

we introduce the following notion:

�xi ≈ �xj ⇐⇒ Ri,j ≡ 1. (11)

The RP is obtained by plotting the recurrence matrix, Eq. (10), and using different colours for its binary entries, e.g.,
plotting a black dot at the coordinates (i, j), if Ri,j ≡ 1, and a white dot, if Ri,j ≡ 0. Both axes of the RP are time
axes and show rightwards and upwards (convention). Since Ri,i ≡ 1 |Ni=1 by definition, the RP has always a black
main diagonal line, the line of identity (LOI). Furthermore, the RP is symmetric by definition with respect to the main
diagonal, i.e. Ri,j ≡ Rj,i (see Fig. 3).

In order to compute an RP, an appropriate norm has to be chosen. The most frequently used norms are the L1-norm,
the L2-norm (Euclidean norm) and the L∞-norm (Maximum or Supremum norm). Note that the neighbourhoods of
these norms have different shapes (Fig. 4). Considering a fixed ε, the L∞-norm finds the most, the L1-norm the least
and the L2-norm an intermediate amount of neighbours. To compute RPs, the L∞-norm is often applied, because it is
computationally faster and allows to study some features in RPs analytically.

3.2.2. Selection of the threshold ε

A crucial parameter of an RP is the threshold ε. Therefore, special attention has to be required for its choice. If
ε is chosen too small, there may be almost no recurrence points and we cannot learn anything about the recurrence
structure of the underlying system. On the other hand, if ε is chosen too large, almost every point is a neighbour of
every other point, which leads to a lot of artefacts. A too large ε includes also points into the neighbourhood which
are simple consecutive points on the trajectory. This effect is called tangential motion and causes thicker and longer
diagonal structures in the RP as they actually are. Hence, we have to find a compromise for the value of ε. Moreover,
the influence of noise can entail choosing a larger threshold, because noise would distort any existing structure in the
RP. At a higher threshold, this structure may be preserved (see Section 3.12).

Several “rules of thumb” for the choice of the threshold ε have been advocated in the literature, e.g., a few per cent
of the maximum phase space diameter has been suggested [48]. Furthermore, it should not exceed 10% of the mean or
the maximum phase space diameter [49,50].

A further possibility is to choose ε according to the recurrence point density of the RP by seeking a scaling region
in the recurrence point density [51]. However, this may not be suitable for non-stationary data. For this case it was
proposed to choose ε such that the recurrence point density is approximately 1% [51].

Another criterion for the choice of ε takes into account that a measurement of a process is a composition of the real
signal and some observational noise with standard deviation � [52]. In order to get similar results as for the noise-free
situation, ε has to be chosen such that it is five times larger than the standard deviation of the observational noise, i.e.
ε > 5� (cf. Section 3.12). This criterion holds for a wide class of processes.

For (quasi-)periodic processes, the diagonal structures within the RP can be used in order to determine an optimal
threshold [53]. For this purpose, the density distribution of recurrence points along the diagonals parallel to the LOI
is considered (which corresponds to the diagonal-wise defined 
-recurrence rate RR
, Eq. (50)). From such a density
plot, the number of significant peaks Np is counted. Next, the average number of neighbours Nn, Eq. (44), that each
point has, is computed. The threshold ε should be chosen in such a way that Np is maximal and Nn approaches Np.
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Fig. 5. Characteristic typology of recurrence plots: (A) homogeneous (uniformly distributed white noise), (B) periodic (super-positioned harmonic
oscillations), (C) drift (logistic map corrupted with a linearly increasing term xi+1 =4xi (1−xi )+0.01 i, cf. Fig. 23D) and (D) disrupted (Brownian
motion). These examples illustrate how different RPs can be. The used data have the length 400 (A, B, D) and 150 (C), respectively; RP parameters
are m = 1, ε = 0.2 (A, C, D) and m = 4, 
 = 9, ε = 0.4 (B); L2-norm.

Therefore, a good choice of ε would be to minimise the quantity

(ε) = |Nn(ε) − Np(ε)|
Nn(ε)

. (12)

This criterion minimises the fragmentation and thickness of the diagonal lines with respect to the threshold, which can
be useful for de-noising, e.g., of acoustic signals. However, this choice of ε may not preserve the important distribution
of the diagonal lines in the RP if observational noise is present (the estimated threshold can be underestimated).

Other approaches use a fixed recurrence point density. In order to find an ε which corresponds to a fixed re-
currence point density RR (or recurrence rate, Eq. (41)), the cumulative distribution of the N2 distances between
each pair of vectors Pc(D) can be used. The RRth percentile is then the requested ε (e.g. for RR = 0.1 the thresh-
old ε is given by ε = D with Pc(D) = 0.1). An alternative is to fix the number of neighbours for every point of
the trajectory. In this case, the threshold is actually different for each point of the trajectory, i.e. ε = ε(�xi) = εi

(cf. Section 3.2.5). The advantage of the latter two methods is that both of them preserve the recurrence point
density and allow to compare RPs of different systems without the necessity of normalising the time series
beforehand.

Nevertheless, the choice of ε depends strongly on the considered system under study.

3.2.3. Structures in RPs
As already mentioned, the initial purpose of RPs was to visualise trajectories in phase space, which is especially

advantageous in the case of high dimensional systems. RPs yield important insights into the time evolution of these
trajectories, because typical patterns in RPs are linked to a specific behaviour of the system. Large scale patterns in
RPs, designated in [2] as typology, can be classified in homogeneous, periodic, drift and disrupted ones [2,54]:

• Homogeneous RPs are typical of stationary systems in which the relaxation times are short in comparison with the
time spanned by the RP. An example of such an RP is that of a stationary random time series (Fig. 5A).

• Periodic and quasi-periodic systems have RPs with diagonal oriented, periodic or quasi-periodic recurrent structures
(diagonal lines, checkerboard structures). Fig. 5B shows the RP of a periodic system with two harmonic frequencies
and with a frequency ratio of four (two and four short lines lie between the continuous diagonal lines). Irrational
frequency ratios cause more complex quasi-periodic recurrent structures (the distances between the diagonal lines
are different). However, even for oscillating systems whose oscillations are not easily recognisable, RPs can be useful
(cf. unstable periodic orbits, Section 3.11).

• A drift is caused by systems with slowly varying parameters, i.e. non-stationary systems. The RP pales away from
the LOI (Fig. 5C).

• Abrupt changes in the dynamics as well as extreme events cause white areas or bands in the RP (Fig. 5D). RPs allow
finding and assessing extreme and rare events easily by using the frequency of their recurrences.
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A closer inspection of the RPs reveals also small-scale structures, the texture [2], which can be typically classified
in single dots, diagonal lines as well as vertical and horizontal lines (the combination of vertical and horizontal lines
obviously forms rectangular clusters of recurrence points); in addition, even bowed lines may occur [2,54]:

• Single, isolated recurrence points can occur if states are rare, if they persist only for a very short time, or fluctuate
strongly.

• A diagonal line Ri+k,j+k ≡ 1 |l−1
k=0 (where l is the length of the diagonal line) occurs when a segment of the trajectory

runs almost in parallel to another segment (i.e. through an ε-tube around the other segment, Fig. 2) for l time units:

�xi ≈ �xj , �xi+1 ≈ �xj+1, . . . , �xi+l−1 ≈ �xj+l−1. (13)

A diagonal line of length l is then defined by

(1 − Ri−1,j−1)(1 − Ri+l,j+l )

l−1∏
k=0

Ri+k,j+k ≡ 1. (14)

The length of this diagonal line is determined by the duration of such similar local evolution of the trajectory
segments. The direction of these diagonal structures is parallel to the LOI (slope one, angle �/4). They represent
trajectories which evolve through the same ε-tube for a certain time. Since the definition of the Rényi entropy of
second order K2 uses the time how long trajectories evolve in an ε-tube, the existence of a relationship between the
length of the diagonal lines and K2 (and even the sum of the positive Lyapunov exponents, Eq. (67)) is plausible
(cf. invariants, Section 3.6). Note that there might be also diagonal structures perpendicular to the LOI, representing
parallel segments of the trajectory running with opposite time directions, i.e. �xi ≈ �xj , �xi+1 ≈ �xj−1, . . . (mirrored
segments). This is often a hint for an inappropriate embedding.

• A vertical (horizontal) line Ri,j+k ≡ 1 |v−1
k=0 (with v the length of the vertical line) marks a time interval in which a

state does not change or changes very slowly:

�xi ≈ �xj , �xi ≈ �xj+1, . . . , �xi ≈ �xj+v−1. (15)

The formal definition of a vertical line is

(1 − Ri,j−1)(1 − Ri,j+v)

v−1∏
k=0

Ri,j+k ≡ 1. (16)

Hence, the state is trapped for some time. This is a typical behaviour of laminar states (intermittency) [14].
• Bowed lines are lines with a non-constant slope. The shape of a bowed line depends on the local time relationship

between the corresponding close trajectory segments (cf. Eq. (17)).

Diagonal and vertical lines are the base for a quantitative analysis of RPs (cf. Section 3.5).
More generally, the line structures in RPs exhibit locally the time relationship between the current close trajectory

segments [55]. A line structure in an RP of length l corresponds to the closeness of the segment �x(T1(t)) to another
segment �x(T2(t)), where T1(t) and T2(t) are two local and in general different time scales which preserves �x(T1(t)) ≈
�x(T2(t)) for some (absolute) time t = 1, . . . , l. Under some assumptions (e.g., piece-wise existence of an inverse of the
transformation T (t), the two segments visit the same area in the phase space), a line in the RP can simply be expressed
by the time-transfer function (Fig. 6)

ϑ(t) = T −1
2 (T1(t)). (17)

Particularly, we find that the local slope b(t) of a line in an RP represents the local time derivative of the inverse second
time scale T −1

2 (t) applied to the first time scale T1(t)

b(t) = �t T
−1
2 (T1(t)) = �tϑ(t). (18)

This is a fundamental relation between the local slope b(t) of line structures in an RP and the time scaling of the
corresponding trajectory segments. As special cases, we find that the slope b = 1 (diagonal lines) corresponds to



250 N. Marwan et al. / Physics Reports 438 (2007) 237–329

Time t

T
im

e
 t

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1

f2 (t)

T
im

e
 t

0 0.2 0.4 0.6 0.8 1
0

0.5

1

f 1
 (

t)

Time t

Fig. 6. Detail of a recurrence plot for a trajectory f (t) = sin(�t) whose sub-sections f1(t) and f2(t) undergo different transformations in the time
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√

1 − t2. The resulting bowed line (dash–dotted line) has the slope b(t) = 1−t√
1−(1−t)2

, which corresponds with a

segment of a circle.

T1 = T2, whereas b = ∞ (vertical lines) corresponds to T2 → 0, i.e. the second trajectory segment evolves infinitely
slow through the ε-tube around first trajectory segment. From the slope b(t) of a line in an RP we can infer the relation
ϑ(t) between two segments of �x(t) (ϑ(t) = ∫

b(t) dt). Note that the slope b(t) depends only on the transformation of
the time scale and is independent of the considered trajectory �x(t) [55].

This feature is, e.g., used in the application of CRPs as a tool for the adjustment of time scales of two data series
[55,56] and will be discussed in Section 3.3.

To summarise the explanations about typology and texture, we present a list of features and their corresponding
interpretation in Table 1.

It is important to note that some authors exclude the LOI from the RP. This may be useful for the quantification of
RPs, which we will discuss later. It can also be motivated by the definition of the Grassberger-Procaccia correlation
sum [57] (or generalised 2nd-order correlation integral) which was introduced for the determination of the correlation
dimension D2 and is closely related to RPs:

C2(ε) = 1

N2

N∑
i,j=1
i �=j

	(ε − ‖�xi − �xj‖). (19)

Eq. (19) excludes the comparisons of �xi with itself. Nevertheless, since the threshold value ε is finite (and normally
about 10% of the mean phase space radius), further long diagonal lines can occur directly below and above the LOI
for smooth or high resolution data. Therefore, the diagonal lines in a small corridor around the LOI correspond to the
tangential motion of the phase space trajectory, but not to different orbits. Thus, for the estimation of invariants of the
dynamical system, it is better to exclude this entire corridor and not only the LOI. This step corresponds to suggestions
to exclude the tangential motion as it is done for the computation of the correlation dimension (known as Theiler
correction or Theiler window [58]) or for the alternative estimators of Lyapunov exponents [59,60] in which only those
phase space points are considered that fulfil the constraint |j − i|�w. Theiler has suggested using the auto-correlation
time as an appropriate value for w [58], and Gao and Zheng propose to use w = (m − 1)
 [60]. However, the LOI
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Table 1
Typical patterns in RPs and their meanings

Pattern Meaning

(1) Homogeneity The process is stationary

(2) Fading to the upper left and lower right corners Non-stationary data; the process contains a trend or a drift

(3) Disruptions (white bands) Non-stationary data; some states are rare or far from the normal;
transitions may have occurred

(4) Periodic/quasi-periodic patterns Cyclicities in the process; the time distance between periodic patterns
(e.g. lines) corresponds to the period; different distances between
long diagonal lines reveal quasi-periodic processes

(5) Single isolated points Strong fluctuation in the process; if only single isolated points occur,
the process may be an uncorrelated random or even anti-correlated
process

(6) Diagonal lines (parallel to the LOI) The evolution of states is similar at different epochs; the process
could be deterministic; if these diagonal lines occur beside single
isolated points, the process could be chaotic (if these diagonal lines
are periodic, unstable periodic orbits can be observed)

(7) Diagonal lines (orthogonal to the LOI) The evolution of states is similar at different times but with reverse
time; sometimes this is an indication for an insufficient embedding

(8) vertical and horizontal lines/clusters Some states do not change or change slowly for some time; indication
for laminar states

(9) Long bowed line structures The evolution of states is similar at different epochs but with different
velocity; the dynamics of the system could be changing

might be helpful for the visual inspection of the RP. Furthermore, the LOI plays an important role in the applications
of cross recurrence plots (Section 4.4).

The visual interpretation of RPs requires some experience. RPs of paradigmatic systems provide an instructive
introduction into characteristic typology and texture (e.g. Fig. 5). However, a quantification of the obtained structures
is necessary for a more objective investigation of the considered system (see Section 3.5).

The previous statements hold for systems, whose characteristic frequencies are much lower than the sampling
frequency of their observation. If the sampling frequency is only one magnitude higher than the system’s frequencies,
and their ratio is not an integer, some recurrences will not be detected [61]. This discretisation effect yields in extended
characteristic gaps in the recurrence plot, those appearances depend on the modulations of the systems frequencies
(Fig. 7).

3.2.4. Influence of embedding on the structures in RPs
In the case that only a scalar time series has been measured, the phase space has to be reconstructed, e.g., by means of

the delay embedding technique. However, the embedding can cause a considerable amount of spurious correlations in
the regarded system, which are then reflected in the RP (Fig. 8). This effect can even yield distinct diagonally oriented
structures in an RP of a time series of uncorrelated values if the embedding is high, although diagonal structures should
be extremely rare for such uncorrelated data.

In order to understand this, we consider uncorrelated Gaussian noise �i with standard deviation � and compute ana-
lytically correlations that are induced by a non-appropriate embedding. Because the considered process is uncorrelated,
the correlations detected afterwards must be due to the method of embedding.

Using time delay embedding, Eq. (9), with embedding dimension m and delay 
, a vector in the reconstructed phase
space is given by

�xi =
m−1∑
k=0

�i+k
�ek . (20)
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Fig. 7. (A) Characteristic patterns of gaps (all white areas) in a recurrence plot of a modulated harmonic oscillation cos(2�1000t + 0.5 sin(2�25t)),
which is sampled with a sampling frequency of 1 kHz. (B) Magnified detail of the RP presented in (A), which obtains the actual periodic line structure
due to the oscillation, but disturbed by extended white areas. (C) Corresponding RP as shown in (B), but for a higher sampling rate of 10 kHz. The
periodic line structure due to the oscillation covers now the entire RP. Used RP parameters: m = 3, 
 = 1, ε = 0.05�, L∞-norm.
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Fig. 8. Correlation between a single recurrence point at (15, 30) (marked with grey circle) and other recurrence points in an RP for an uncorrelated
Gaussian noise (estimated from 2 000 realisations). The embedding parameters are (A) m = 1, 
 = 1, ε = 0.38, (B) m = 3, 
 = 5, ε = 1.22 and (C)
m = 5, 
 = 2, ε = 1.62, which preserve an approximately constant recurrence point density (0.2).

The distance between each pair of these vectors is Di,j = ‖�xi − �xj‖. Moving h steps ahead in time (i.e. along a
diagonal line in the RP) the respective distance is Di+h,j+h = ‖�xi+h − �xj+h‖. For convenience, the auto-covariance
function of D2

i,j will be computed instead of computing the auto-covariance function of Di,j . Using the L2-norm, the
auto-covariance function is

covD2(h, j − i) =
〈(

m−1∑
k=0

(�i+k
 − �j+k
)
2 − E

)(
m−1∑
k=0

(�i+h+k
 − �j+h+k
)
2 − E

)〉
, (21)

where

E =
〈

m−1∑
k=0

(�i+k
 − �j+k
)
2

〉
= 2�2m(1 − �0,j−i ) (22)
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is the expectation value and �i,j is the Kronecker delta (�i,j = 1 if i = j , and �i,j = 0 if i �= j ). Setting p = j − i and
assuming p > 0 and h > 0 to avoid trivial cases, we find [62]

covD2(h, p) =
m−1∑
k=0

(m − k)(8�k
,h + 2�k
,p+h + �k
,p−h). (23)

This equation shows that there will be peaks in the auto-covariance function if h, p + h or p − h are equal to one
of the first m − 1 multiples of 
. These peaks are not present when no embedding is used (m = 1). Such spurious
correlations induced by embedding lead to modified small-scale structures in the RP: an increase of the embedding
dimension cleans up the RP from single recurrence points (representatives for the uncorrelated states) and emphasises
the diagonal structures as diagonal lines (representatives for the correlated states). This, of course, influences any
quantification of RPs, which is based on diagonal lines. Hence, we should be careful in interpreting and quantifying
structures in RPs of measured systems. If the embedding dimension is, e.g., inappropriately high, spurious long
diagonal lines will appear in the RP. In order to avoid this problem, the embedding parameters have to be chosen
carefully, or alternatively quantification measures which are independent of the embedding dimension have to be used
(cf. Section 3.6).

The spurious correlations in RPs due to embedding can also be understood from the fact that an RP computed with
any embedding dimension can be derived from an RP computed without embedding (m = 1). Consider, e.g., m = 2
with certain 
 and the maximum norm. A recurrence point at (i, j) will occur if

�xi ≈ �xj ⇐⇒ max(|xi − xj |, |xi+
 − xj+
|) < ε. (24)

This is the same as xi ≈ xj and xi+
 ≈ xj+
 and corresponds to two recurrence points at (i, j) and (i + 
, j + 
) in
an RP without embedding. Thus, a recurrence point for a reconstructed trajectory with an embedding dimension m is

R(m)
i,j = R(1)

i,j · R(1)
i+
,j+
 · · · · · R(1)

i+(m−1)
,j+(m−1)
, (25)

where R(1) is the RP without embedding (or parent RP) and R(m) is the RP for embedding dimension m [8]. The entry
at (i, j) in the recurrence matrix R(m) consists of information at times (i + 
, j + 
), . . . , (i + (m− 1)
, j + (m− 1)
).
If the threshold ε is large enough, spurious recurrence points along the line (i + k, j + k) for k = 0, . . . , (m − 1)

can appear. It is clear that, e.g., in the case of a stochastic signal which is embedded in a high-dimensional space, such
diagonal lines in an RP may feign a non-existing determinism.

3.2.5. Modifications and extensions
In the original definition of RPs, the neighbourhood is a ball (i.e. L2-norm is used) and its radius is chosen in such a

way that it contains a fixed amount Nn of states �xj [2]. With such a neighbourhood, the radius ε=εi changes for each �xi

and Ri,j �= Rj,i because the neighbourhood of �xi is in general not the same as that of �xj . This leads to an asymmetric
RP, but all columns of the RP have the same recurrence density (Fig. 11D). Using this neighbourhood criterion, εi can
be adjusted in such a way that the recurrence point density has a fixed predetermined value (i.e. RR = Nn/N ). This
neighbourhood criterion is denoted as fixed amount of nearest neighbours (FAN). However, the most commonly used
neighbourhood is that with a fixed radius εi = ε, ∀i. For RPs this neighbourhood was firstly used in [13]. A fixed radius
implies Ri,j = Rj,i resulting in a symmetric RP. The type of neighbourhood that should preferably be used depends on
the purpose of the analysis. Especially for the later introduced cross recurrence plots (Section 3.3) and the detection of
generalised synchronisation (Section 3.8.4), the neighbourhood with a FAN will play an important role.

In the literature further variations of RPs have been proposed (henceforth we assume �x ∈ Rd ):

• Instead of plotting the recurrence matrix (Eq. 10), the distances

Di,j = ‖�xi − �xj‖ (26)

can be plotted (Fig. 11H). Although this is not an RP, it is sometimes called global recurrence plot [63] or unthresh-
olded recurrence plot [64]. The name distance plot would be perhaps more appropriate.
A practical modification is the unthresholded recurrence plot defined in terms of the correlation sum C2, Eq. (19),

Ui,j = C2(‖�xi − �xj‖), (27)
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where the values of the correlation sum with respect to the distance ‖�xi − �xj‖ are used [8]. Applying a threshold ε

to such an unthresholded RP reveals an RP with a recurrence point density which is exactly ε.
These representations can also help in studying phase space trajectories. Moreover, they may help to find an appro-
priate threshold value ε.

• Iwanski and Bradley defined a variation of an RP with a corridor threshold [εin, εout] (Fig. 11E) [64],

Ri,j ([εin, εout]) = 	(‖�xi − �xj‖ − εin) · 	(εout − ‖�xi − �xj‖). (28)

Those points �xj that fall into the shell with the inner radius εin and the outer radius εout are considered to be recurrent.
An advantage of such a corridor thresholded recurrence plot is its increased robustness against recurrence points
coming from the tangential motion. However, the threshold corridor removes the inner points in broad diagonal
lines, which results in two lines instead of one. These RPs are, therefore, not directly suitable for a quantification
analysis. The shell as a neighbourhood was used in an attempt to compute Lyapunov exponents from experimental
time series [65].

• Choi et al. introduced the perpendicular recurrence plot (Fig. 11F) [66]

Ri,j (ε) = 	(ε − ‖�xi − �xj‖) · �( �̇xi · (�xi − �xj )), (29)

with � denoting the Delta function (�(x) = 1 if x = 0, and �(x) = 0 otherwise). This RP contains only those points
�xj that fall into the neighbourhood of �xi and lie in the (d − 1)-dimensional subspace of Rd that is perpendicular to
the phase space trajectory at �xi . These points correspond locally to those lying on a Poincaré section. This criterion
cleans up the RP more effectively from recurrence points based on the tangential motion than the previous corridor
thresholded RPs. This kind of RP is more efficient for estimating invariants and is more robust for the detection of
UPOs (if they exist).

• The iso-directional recurrence plot, introduced by Horai and Aihara [67],

Ri,j (ε, T ) = 	(ε − ‖(�xi+T − �xi) − (�xj+T − �xj )‖), (30)

is another variant which takes the direction of the trajectory evolution into account. Here a recurrence is related
to neighboured trajectories which run parallel and in the same direction. The authors introduced an additional
iso-directional neighbours plot, which is simply the product between the common RP and the iso-directional RP
[67]

Ri,j (ε, T ) = 	(ε − ‖�xi − �xj‖) · 	(ε − ‖(�xi+T − �xi) − (�xj+T − �xj )‖). (31)

The computation of this special recurrence plot is simpler than that of the perpendicular RP. Although the cleaning
of the RP from false recurrences is better than in the common RP, it does not reach the quality of a perpendicular RP.
A disadvantage is the additional parameter T which has to be determined carefully in advance (however, it seems
that this parameter can be related to the embedding delay 
).

• It is also possible to test each state with a pre-defined amount k of subsequent states [13,49,68]

Ri,j (ε) = 	(ε − ‖�xi − �xi+i0+j−1‖), i = 1, . . . , N − k, j = 1, . . . , k. (32)

This reveals an (N − k) × k-matrix which does not have to be square (Fig. 11J). The y-axis represents the time
distances to the following recurrence points but not their absolute time. All diagonally oriented structures in the
common RP are now projected to the horizontal direction. For i0 = 0, the LOI, which was the main diagonal line
in the original RP, is now the horizontal line which coincides with the x-axis. With non-zero i0, the RP contains
recurrences of a certain state only in the pre-defined time interval after time i0 [49].
This representation of recurrences may be more intuitive than that of the original RP because the consecutive states
are not oriented diagonally. However, such an RP represents only the first (N − k) states. Mindlin and Gilmore
proposed the close returns plot [48] which is, in fact, such an RP exactly for dimension one. Using this definition
of RP, a first quantification approach of RPs (or “close returns plots”) was introduced (“close returns histogram”,
recurrence times; cf. Section 3.5.2). It has been used for the investigation of periodic orbits and topological properties
of strange attractors [48,69,70].

• The windowed and meta recurrence plots have been suggested as tools to investigate an external force or non-
stationarity in a system [71,72]. The first ones are obtained by covering an RP with w×w-sized squares (windows) and
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Fig. 9. Order patterns for dimension d = 3. They describe a specific rank order of three data points and can be used to exhibit a recurrence by means
of local rank order sequence.

by averaging the recurrence points that are contained in these windows [72]. Consequently, a windowed recurrence
plot is an Nw × Nw-matrix, where Nw is the floor-rounded N/w, and consists of values which are not limited to
zero and one (this suggests a colour-encoded representation). These values correspond to the cross correlation sum,
Eq. (42),

CI,J (ε) = 1

w2

w∑
i,j=1

Ri+(I−1)w,j+(J−1)w(ε), I, J = 1, . . . ,
N

w
(33)

between sections in �x with length w and starting at (I − 1)w + 1 and (J − 1)w + 1 (for cross correlation integral
cf. [73]). Windowed RPs can be useful for the detection of transitions or large-scale patterns in RPs of very long
data series.
The meta recurrence plot, as defined in [72], is a distance matrix derived from the cross correlation sum, Eq. (33),

DI,J (ε) = 1

εd
(CI,I (ε) + CJ,J (ε) − 2 CI,J (ε)). (34)

By applying a further threshold value to DI,J (ε) (analogous to Eq. (10)), a black-white dotted representation is also
possible.
Manuca and Savit have gone one step further by using quotients from the cross correlation sum to form a meta
phase space [71]. From this meta phase space a recurrence or non-recurrence plot is created, which can be used to
characterise non-stationarity in time series.

• Instead of using the spatial closeness between phase space trajectories, order patterns recurrence plots (OPRP) are
based on order patterns � for the definition of a recurrence. An order pattern � of dimension d is defined by the
discrete order sequence of the data series xi and has the length d. For d = 3 we get, e.g., six different order patterns
(Fig. 9). Using these order patterns, the data series xi is symbolised by order patterns:

xi, xi−
1 , . . . , xi−
d−1 → �i .

The order patterns recurrence plot (Fig. 11G) is then defined by the pair-wise test of order patterns [74]:

Ri,j (d) = �(�i , �j ). (35)

Such an RP represents those times, when specific rank order sequences in the system recur. Its main advantage is
its robustness with respect to non-stationary data. Moreover, it increases the applicability of cross recurrence plots
(cf. Section 3.3).

A hybrid between a common RP and an OPRP is the ordinal recurrence plot (Fig. 11I) [75]:

Ri,j (d) = 	(s(xi+
 − xi))	(s(xj+
 − xj )) · 	(s(xi+
 − xj ))	(s(xj+
 − xi)) for s ∈ {−1, +1}. (36)

It looks whether two states are close and, additionally, whether such both states grow or shrink simultaneously
(Fig. 10).

Furthermore, the term recurrent plots can be found for RPs in the literature (e.g. [76]). However, this term is not
appropriate for RPs, because it is sometimes used for return time plots as well. Finally, it should be mentioned that the
term recurrence plots is sometimes used for another representation not related to RPs (e.g. [77]) (Fig. 11).
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Fig. 10. Ordinal cases which are considered to be a recurrence in an ordinal recurrence plot.

The selection of a specific definition of the RP depends on the problem and on the kind of system or data. Perpendicular
RPs are highly recommended for the quantification analysis based on diagonal structures, whereas corridor thresholded
RPs are not suitable for this task. Windowed RPs are appropriate for the visualisation of the long-range behaviour of
rather long data sets. If the recurrence behaviour for the states �xi within a pre-defined section {�xi+i0 , . . . , �xi+i0+k} of
the phase space trajectory is of special interest, an RP with a horizontal LOI will be suitable. In this report we will use
the standard definition of RP, Eq. (10), according to [2].

It should be emphasised again that the recurrence of states is a fundamental concept in the analysis of dynamical
systems. Besides RPs, there are some other methods based on recurrences: e.g. recurrence time statistics [34,41,79],
first return map [69], space time separation plot [80] or recurrence-based measures for the detection of non-stationarity
(closely related to the recurrence time statistics [81,82]).

The pair-wise test between all elements of a series or of two different series, can also be found in other methods
much earlier than 1987. There are some methods rather similar to RPs developed in several fields. To our knowledge,
first ideas go back to the 1970s, where the dynamic time warping was developed for speech recognition. The purpose
was to match or align two sequences [83,84]. For a similar purpose, but for genome sequence alignment, the dot
matrix, similarity plot or sequence matrix (several terms for the same thing) were introduced e.g. [85–87]. Remarkable
variations thereof are dot plots and link plots, which were developed to detect structures in text and computer codes [88],
and similarity plots, developed for the analysis of changing images [89]. The self-similarity matrix and the ixegram
represent similarities or distances of features in long data series, like frequencies, histograms or specific descriptors.
They are used to recognise specific structures in music and the ixegram is part of the MPEG-7 standard [90,91]. Contact
maps are used to visualise the complex structures of folded proteins and to reconstruct them (e.g. by measuring the
distances between C atoms) and go back to the early 1970s (e.g. [92–94]). We have already mentioned the close returns
plots as a special case of the RPs for m = 1, but they should be listed here too. They were introduced to recognise
periodic orbits and topological properties of attractors and differ from RPs in the use of consecutive states as the y-axis
instead of all states [48].

3.3. Cross recurrence plot (CRP)

The CRP is a bivariate extension of the RP and was introduced to analyse the dependencies between two different
systems by comparing their states [95,96]. They can be considered as a generalisation of the linear cross-correlation
function. Suppose we have two dynamical systems, each one represented by the trajectories �xi and �yi in a d-dimensional
phase space (Fig. 12A). Analogously to the RP, Eq. (10), the corresponding cross recurrence matrix (Fig. 12B) is
defined by

CR�x,�y
i,j (ε) = 	(ε − ‖�xi − �yj‖), i = 1, . . . , N, j = 1, . . . , M , (37)
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Fig. 11. Examples of various definitions of RPs for a section of the x-component of the Lorenz system, Eqs. (A.6), r = 28, � = 10, b = 8
3 , sampling

time �t = 0.03 [78]: (A) RP by using the L∞-norm, (B) RP by using the L1-norm, (C) RP by using the L2-norm, (D) RP by using a fixed amount
of nearest neighbours (FAN), (E) RP by using a threshold corridor [εin, εout], (F) perpendicular RP (L2-norm), (G) order patterns RP (m = 3,

1, 2, 3 = 9), (H) distance plot (unthresholded RP, L2-norm), (I) ordinal RP (m = 1, 
 = 5), (J) RP where the y-axis represents the relative time
distances to the next recurrence points but not their absolute time (“close returns plot”, L2-norm). Except for (F), (G), (H) and (I), the parameter ε

is chosen in such a way that the recurrence point density (RR) is approximately the same. The embedding parameters (m = 5 and 
 = 5) correspond
to an appropriate time delay embedding.

where the length of the trajectories of �x and �y is not required to be identical, and hence the matrix CR is not necessarily
square. Note that both systems are represented in the same phase space, because a CRP looks for those times when a
state of the first system recurs to one of the other system. Using experimental data, it is often necessary to reconstruct
the trajectories in phase space. If the embedding parameters are estimated from both time series, but are not equal,



258 N. Marwan et al. / Physics Reports 438 (2007) 237–329

Time

10 20 30

Time

10 20 30

Time
10 20 30

Time
10 20 30

T
im

e

10

20

30

T
im

e

10

20

30

T
im

e

m=5, τ =5

5

10

15

20

25

30

35 40

30

20

10

0

m=3, τ =9, RR=0.17 

m=5,  =5,  =0.15

T
im

e

0

5

10

15

m=1, τ=5, RR=0.05 m=5, τ=5, ε=0.15

G H

I J

Fig. 11. (continued).

the higher embedding should be chosen. However, the data under consideration should be from the same (or a very
comparable) process and, actually, should represent the same observable. Therefore, the reconstructed phase space
should be the same. An exception is the order patterns cross recurrence plot, where the values of the states are not
directly compared but the local rank order sequence of the two systems [97]. Then both systems can be represented by
different observables (or time series of very different amplitudes).

This bivariate extension of the RP was introduced for the cross recurrence quantification [95]. Independently, the
concept of CRPs also surfaces in an approach to study interrelations between time series [98]. The components of
�xi and �yi are usually normalised before computing the cross recurrence matrix. Other possibilities are to use a fixed
amount of neighbours (FAN) for each �xi or to use order patterns [74]. This way the components of �xi and �yi do not need
to be normalised. The latter choices of the neighbourhood have the additional advantage of working well for slowly
changing trajectories (e.g. drift).

Since the values of the main diagonal CRi,i |Ni=1 are not necessarily one, there is usually not a black main diagonal
(Fig. 12B). Apart from that, the statements given in the subsection about all the structures in RPs (Sections 3.2.3,
Table 1) hold also for CRPs. The lines which are diagonally oriented are here of major interest too. They represent
segments on both trajectories, which run parallel for some time. The frequency and length of these lines are obviously
related to a certain similarity between the dynamics of both systems. A measure based on the lengths of such lines can
be used to find nonlinear interrelations between two systems (cf. Sections 3.5 and 4.5), which cannot be detected by
the common cross-correlation function [96].

An important advantage of CRPs is that they reveal the local difference of the dynamical evolution of close trajectory
segments, represented by bowed lines.A time dilatation or time compression of one of the trajectories causes a distortion
of the diagonal lines (cf. remarks about the relationship between the slope of RP lines and local time transformations in
Section 3.2.3). Assuming two identical trajectories, the CRP coincides with the RP of one trajectory and contains the
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Fig. 12. (A) Phase space trajectories of two coupled Rössler systems, Eqs. (A.7) and (A.8), with a = 0.15, b = 0.20, c = 10, � = 0.015 and � = 0.01
by using their three components (black and grey line correspond to the first and second oscillator). In (B) the corresponding CRP is shown (L2 norm
and ε = 3 is used). (A) If a phase space vector of the second Rössler system at j (grey point on the grey line) falls into the neighbourhood (grey
circle) of a phase space vector of the first Rössler system at i, in the CRP (B) at the location (i, j) a black point will occur.

main black diagonal or line of identity (LOI). If the values of the second trajectory are slightly modified, the LOI will
become somewhat disrupted and is called line of synchronisation (LOS). However, if we do not modify the amplitudes
but stretch or compress the second trajectory slightly, the LOS will still be continuous but not a straight line with slope
one (angle of �/4). This line can rather become bowed (Fig. 13). As we have already seen in the Section 3.2.3, the local
slope of lines in an RP as well as in a CRP corresponds to the transformation of the time axes of the two considered
trajectories, Eq. (18) [55]. A time shift between the trajectories causes a dislocation of the LOS. Hence, the LOS may
lie rather far from the main diagonal of the CRP. As we will see in the following example, the LOS allows finding the
non-parametric rescaling function between different time series.

Example. Time scale alignment of two harmonic functions with changing frequencies.

We consider two sine functions f (t)=sin(�t) and g(t ′)=sin(�t ′)=sin(�t2), where the time scale of the second sine
differs from the first by a quadratic transformation (t ′=t2) and has a frequency of �=0.01 �. Such a nonlinear changing
of time scales can be found in nature, e.g., with increasing depth, sediments in a lake undergo an increasing amount of
pressure resulting in compression (cf. Section 4.4). It can be assumed that both data series come from the same process
and were subjected to different deposital compressions (e.g. a squared or exponential increasing of the compression).
Hence, their CRP contains a bowed LOS (Fig. 14A). We have used no embedding and a varying threshold ε, such
that the CRP contains a constant recurrence density of 10% (FAN). In order to find the non-parametrical time-transfer
function t =�(t ′), the LOS has to be resolved from the CRP. The resulting rescaling function has the expected squared
shape t = �(t ′) = 0.01 t ′2 (grey dashed curve in Fig. 14B). Substituting the time scale t ′ in the second data series
g(t ′) by this rescaling function t = �(t ′), we get a set of aligned data f (t) and g(t) with the non-parametric rescaling
function t = �(t ′) (Fig. 15). The aligned data series are now approximately the same.

3.4. Joint recurrence plot (JRP)

As we have seen in the previous section, the bivariate extension of RPs to CRPs allows studying the relationship
between two different systems by examining the occurrence of similar states. However, CRPs cannot be used for the
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Fig. 14. (A) Cross recurrence plot of two sine functions f (t) = sin(�t) and g(t) = sin(�t2), which is the base for the determination of the rescaling
function between both data series. The CRP was created without embedding and using FAN ε = 0.1 (constant recurrence density of 10%). (B)
Time-transfer function (black) determined from the CRP. It has the expected parabolic shape of the squared coherence in the time domain (dotted
line: square function).

analysis of two physically different time series, because the difference between two vectors with different physical
units or even different phase space dimension does not make sense.

Another possibility to compare different systems is to consider the recurrences of their trajectories in their respective
phase spaces separately and look for the times when both of them recur simultaneously, i.e. when a joint recurrence
occurs. By means of this approach, the individual phase spaces of both systems are preserved. Formally, this corresponds
to an extension of the phase space to Rdx+dy , where dx and dy are the phase space dimensions of the corresponding
systems, which are in general different (i.e. it corresponds to the direct product of the individual phase spaces).
Furthermore, two different thresholds for each system, ε�x and ε�y , are considered, so that the criteria for choosing the
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Fig. 16. (A, B) Phase space trajectories of two coupled Rössler systems, Eqs. (A.7) and (A.8), with a = 0.15, b = 0.20, c = 10, � = 0.015 and
� = 0.01. In (C) the corresponding JRP is shown (L2 norm and ε = 5 is used for both systems). If two phase space vectors of the second Rössler
system at i and j are neighbours (black points in (B)) and if two phase space vectors of the first Rössler system at same i and j are also neighbours
(black points in (A)), a black point in the JRP at the location (i, j) will occur.

threshold (Section 3.2.2) can be applied separately, respecting the natural measure of both systems. Hence, it is intuitive
to introduce the joint recurrence matrix (Fig. 16) for two systems �x and �y

JR�x,�y
i,j (ε�x, ε�y) = 	(ε�x − ‖�xi − �xj‖)	(ε�y − ‖�yi − �yj‖), i, j = 1, . . . , N , (38)
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Fig. 17. (A) Phase space trajectory of the Rössler system (Eqs. A.5, with a = 0.15, b = 0.2 and c = 10). (B) Same trajectory as in (A) but rotated on
the z-axis by 3

5 �. (C) Same trajectory as in (A) but time scale transformed by t̃ = t2.

or, more generally, for n systems �x(1), �x(2), . . . , �x(n) and using Eq. (10), the multivariate joint recurrence matrix can
be introduced

JR
�x(1,...,n)

i,j (ε�x(1) , . . . , ε�x(n) ) =
n∏

k=1

R
�x(k)

i,j (ε�x(k) ), i, j = 1, . . . , N . (39)

In this approach, a recurrence will take place if a point �xj on the first trajectory returns to the neighbourhood of a
former point �xi , and simultaneously a point �yj on the second trajectory returns to the neighbourhood of a former point
�yi . That means, that the joint probability that both recurrences (or n recurrences, in the multidimensional case) happen
simultaneously in their respective phase spaces are studied.

The graphical representation of the matrix JRi,j is called JRP. The definition of the RP, Eq. (10), is a special case of
the definition of the JRP for only one system.

This way, if the systems are physically different (e.g. they may have different phase space dimensions d1, . . . , dn or
may be reconstructed from different physical observables), the joint recurrences are still well-defined, in contrast to
the cross recurrences, Eq. (37). Additionally, the JRP is invariant under permutation of the coordinates in one or both
of the considered systems.

Moreover, a delayed version of the joint recurrence matrix can be introduced

JR�x,�y
i,j (ε�x, ε�y, 
) = R�x

i,j (ε
�x)R�y

i+
,j+
(ε
�y), i, j = 1, . . . , N − 
, (40)

which is very useful for the analysis of interacting delayed systems (e.g. for lag synchronisation) [99,100], or even for
systems with feedback (cf. Section 3.8).

The JRP can also be computed by using a fixed amount of nearest neighbours. Then, each single RP which contributes
to the final JRP is computed by using the same number of nearest neighbours.

Example. Comparison between CRPs and JRPs.

In order to illustrate the difference between CRPs and JRPs, we consider the phase space trajectory of the Rössler
system in three different situations: the original trajectory (Fig. 17A), the trajectory rotated on the z-axis (Fig. 17B)
and the trajectory under a parabolic stretching/compression of the time scale (Fig. 17C). These three trajectories look
very similar; one of them is rotated and the other one contains a different time parametrisation (but looks identical to
the original trajectory in phase space).

At first, let us look at the RPs of these three trajectories. The RP of the original trajectory is identical to the RP of
the rotated one, as expected (Fig. 18A and B). The RP of the stretched/compressed trajectory looks different than the
RP of the original trajectory (Fig. 18C): it contains bowed lines, as the recurrent structures are shifted and stretched in
time with respect to the original RP.
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Fig. 18. RPs of the (A) original trajectory of the Rössler system, (B) of the rotated trajectory and (C) of the stretched/compressed trajectory. (D) CRP
and (E) JRP of the original and rotated trajectories and (F) CRP and (G) JRP of the original and stretched/compressed trajectories. The threshold for
recurrence is ε = 1.

Now we calculate the CRP between the original trajectory and the rotated one (Fig. 18D) and observe, that it is rather
different from the RP of the original trajectory (Fig. 18A). This is because in the CRP the difference between each pair
of vectors is computed, and this difference is not invariant under rotation of one of the systems. Hence, a rotation of
the reference system of one trajectory changes the CRP. Therefore, the CRP cannot detect that both trajectories are
identical up to a rotation. In contrast, the JRP of the original trajectory and the rotated one (Fig. 18E) is identical to
the RP of the original trajectory (Fig. 18A). This is because the JRP considers joint recurrences, i.e. recurrences which
occur simultaneously in both systems, and they are invariant under affine transformations.

The CRP between the original trajectory and the stretched/compressed one contains the bowed LOS, which re-
veals the functional shape of the parabolic transformation of the time scale (Fig. 18F). Note that the CRP repre-
sents the times at which both trajectories visit the same region of the phase space. On the other hand, the JRP of
these trajectories is almost empty (Fig. 18G) because the recurrence structure of both systems is now different. Both
trajectories have different time scales, and hence, there are almost no joint recurrences. Therefore, the JRP is not able
to detect the time transformation applied to the trajectory, even though the shape of the phase space trajectories is
very similar.

To conclude, we can state that CRPs are more appropriate to investigate relationships between the parts of the
same system which have been subjected to different physical or mechanical processes, e.g., two borehole cores in
a lake subjected to different compression rates (see Section 4.4). On the other hand, JRPs are more appropriate for
the investigation of two interacting systems which influence each other, and hence, adapt to each other, e.g., in the
framework of phase and generalised synchronisation (see Sections 3.8 and 4.7).

3.5. Measures of complexity (recurrence quantification analysis, RQA)

In order to go beyond the visual impression yielded by RPs, several measures of complexity which quantify the small-
scale structures in RPs (Section 3.2.2), have been proposed in [14,50,101] and are known as recurrence quantification
analysis (RQA). These measures are based on the recurrence point density and the diagonal and vertical line structures
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of the RP. A computation of these measures in small windows (sub-matrices) of the RP moving along the LOI yields
the time dependent behaviour of these variables. Some studies based on RQA measures show that they are able to
identify bifurcation points, especially chaos–order transitions [102]. The vertical structures in the RP are related to
intermittency and laminar states. Those measures quantifying the vertical structures enable also to detect chaos–chaos
transitions [14].

In the following, we focus on the application of the RQA to RPs, but it is important to emphasise that the RQA
can also be analogously applied to CRPs and JRPs. However, some of the interpretations of the RQA given below are
not valid for CRPs. Henceforth, we assume that the RP is calculated by using a fixed threshold ε (hence the RP is
symmetric).

First, we introduce several such measures and then their potentials and limits for the identification of changes are
discussed.

3.5.1. Measures based on the recurrence density
The simplest measure of the RQA is the recurrence rate (RR) or per cent recurrences

RR(ε) = 1

N2

N∑
i,j=1

Ri,j (ε), (41)

which is a measure of the density of recurrence points in the RP. Note that it corresponds to the definition of the
correlation sum, Eq. (19), except that the LOI is usually not included. Furthermore, in the limit N → ∞, RR is the
probability that a state recurs to its ε-neighbourhood in phase space. On the other hand, the RR of CRPs corresponds
to the cross correlation sum [73]

CC2(ε) = 1

N2

N∑
i,j=1

CRi,j (ε), (42)

and the RR of JRPs of n systems to the joint correlation sum

JC2(ε
(1), . . . , ε(n)) = 1

N2

N∑
i,j=1

n∏
k=1

R
�x(k)

i,j (ε(k)). (43)

The value

Nn(ε) = 1

N

N∑
i,j=1

Ri,j (ε) (44)

is simply the average number of neighbours that each point on the trajectory has in its ε-neighbourhood.

3.5.2. Measures based on diagonal lines
The next measures are based on the histogram P(ε, l) of diagonal lines of length l, i.e.

P(ε, l) =
N∑

i,j=1

(1 − Ri−1,j−1(ε))(1 − Ri+l,j+l (ε))

l−1∏
k=0

Ri+k,j+k(ε). (45)

In the following subsections we omit the symbol ε from the RQA measures for the sake of simplicity (i.e. P(l)=P(ε, l)).
Processes with uncorrelated or weakly correlated, stochastic or chaotic behaviour cause none or very short diagonals,

whereas deterministic processes cause longer diagonals and less single, isolated recurrence points. Therefore, the ratio
of recurrence points that form diagonal structures (of at least length lmin) to all recurrence points

DET =
∑N

l=lmin
lP (l)∑N

l=1lP (l)
(46)
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is introduced as a measure for determinism (or predictability) of the system. The threshold lmin excludes the diagonal
lines which are formed by the tangential motion of the phase space trajectory. For lmin = 1 the determinism is one. The
choice of lmin could be made in a similar way as the choice of the size for the Theiler window [58], but we have to take
into account that the histogram P(l) can become sparse if lmin is too large, and, thus, the reliability of DET decreases.

A diagonal line of length l means that a segment of the trajectory is rather close during l time steps to another segment
of the trajectory at a different time; thus these lines are related to the divergence of the trajectory segments. The average
diagonal line length

L =
∑N

l=lmin
lP (l)∑N

l=lmin
P(l)

(47)

is the average time that two segments of the trajectory are close to each other, and can be interpreted as the mean
prediction time.

Another RQA measure considers the length Lmax of the longest diagonal line found in the RP, or its inverse, the
divergence,

Lmax = max({li}Nl

i=1), respectively DIV = 1

Lmax
, (48)

where Nl =∑l � lmin
P(l) is the total number of diagonal lines. These measures are related to the exponential divergence

of the phase space trajectory. The faster the trajectory segments diverge, the shorter are the diagonal lines and the higher
is the measure DIV.

Eckmann et al. have stated that “the length of the diagonal lines is related to the largest positive Lyapunov exponent”
if there is one in the considered system [2]. Different approaches have been suggested in order to use these lengths,
Eqs. (47) and (48), to estimate the largest positive Lyapunov exponent, such as computing the DIV [102] or the average
of the inverse of the half lengths of the diagonals (using perpendicular RPs) [66]. However, the relationship between
these measures and the positive Lyapunov exponent is not as simple as it was mostly stated in the literature. As already
mentioned, the K2 entropy is related with the (cumulative) frequency distribution of the lengths of the diagonal lines
and, therefore, with the lower limit of the sum of the positive Lyapunov exponents. In Section 3.6 we explain this
relationship in detail and show how Lmax can be used as an estimator for K2 (and, hence, for the lower limit of the sum
of the positive Lyapunov exponents).

The measure entropy refers to the Shannon entropy of the probability p(l) = P(l)/Nl to find a diagonal line of
exactly length l in the RP,

ENTR = −
N∑

l=lmin

p(l) ln p(l). (49)

ENTR reflects the complexity of the RP in respect of the diagonal lines, e.g. for uncorrelated noise the value of ENTR
is rather small, indicating its low complexity.

The measures introduced up to now, RR, DET, L, etc. can also be computed separately for each diagonal parallel to
the LOI. Henceforth, RQA measures for a certain line parallel to the LOI and with distance 
 from the LOI are called

-recurrence rate, 
-determinism, etc., and the measures are marked with a subscribed index, like RR
, DET
, L
, etc.
Following this procedure, we need to define the number of diagonal lines P
(l) of length l on each diagonal RRi,i+

parallel to the LOI. 
 = 0 corresponds to the main diagonal, 
 > 0 to diagonals above and 
 < 0 diagonals below the
LOI (i.e. RRi+|
|,i), which represent positive and negative time delays, respectively.

The 
-recurrence rate for those diagonal lines with distance 
 from the LOI is then

RR
 = 1

N − 


N−
∑
i=1

Ri,i+
 = 1

N − 


N−
∑
l=1

lP 
(l). (50)

This measure corresponds to the close returns histogram introduced for quantifying close returns plots [69]. It can be
considered as a generalised auto-correlation function, as it also describes higher-order correlations between the points
of the trajectory in dependence on 
. A further advantage with respect to the linear auto-correlation function is that RR
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can be determined for a trajectory in phase space and not only for a single observable of the system’s trajectory. It can
be interpreted as the probability that a state recurs to its ε-neighbourhood after 
 time steps.

Analogous to the RQA, the 
-determinism

DET
 =
∑N−


l=lmin
lP 
(l)∑N−


l=1 lP 
(l)
, (51)

is the proportion of recurrence points forming diagonal lines longer than lmin to all recurrence points, and the 
-average
diagonal line length

L
 =
∑N−


l=lmin
lP 
(l)∑N−


l=lmin
P
(l)

(52)

is the mean length of the diagonal structures on the considered diagonal parallel to the LOI. The 
-entropy can be
applied to the diagonal-wise consideration as well.

These diagonal-wise computed measures, RR
, DET
 and L
, over time distance 
 from the LOI can be used, e.g.,
to determine the Theiler window. This diagonal-wise determination of the RQA measures plays an important role in
the analysis of CRPs as well. Long diagonal structures in the CRP reveal a similar time evolution of the trajectories
of both processes. It is obvious that a progressively increased similarity between both processes causes an increase of
the recurrence point density along the main diagonal CRi,i |Ni=1 until finally the LOI appears and the CRP becomes
an RP. Thus, the occurrence of diagonal lines in a CRP can be used in order to benchmark the similarity between the
considered processes. Using this approach it is possible to assess the similarity in the dynamics of two different systems
in dependence on a certain time delay.

The 
-recurrence RR
 of a CRP reveals the probability of the occurrence of similar states in both systems with a
certain delay 
. RR
 has a high value for systems whose trajectories often visit the same phase space regions.

As already mentioned, stochastic as well as strongly fluctuating processes cause none or only short diagonals, whereas
deterministic processes cause longer diagonals. If two deterministic processes have the same or similar time evolution,
i.e. parts of the phase space trajectories visit the same phase space regions for certain times, the amount of longer
diagonals increases and the amount of shorter diagonals decreases. The 
-determinism DET
 of a CRP is related to the
similar time evolution of the systems’ states. The measure L
 quantifies the duration of the similarity in the dynamics
of both systems. A high coincidence of both trajectories increases the length of these diagonals.

Considering CRPs, smooth trajectories with long auto-correlation times will result in a CRP with long diagonal
structures, even if the trajectories are not linked to each other (this effect corresponds to the tangential motion of one
trajectory). In order to avoid counting such “false” diagonals, the lower limit for the diagonal line length lmin should
be of the order of the auto-correlation time.

By applying a measure of symmetry and asymmetry on the 
-RQA measures (for a small range 0�
>N ), e.g. on
RR
,

Q(
) = RR
 + RR−


2
and q(
) = RR
 − RR−


2
, (53)

we can simply quantify interrelations between two systems and are able to determine which system leads the other
(Fig. 19; this is similar to an approach for the detection of event synchronisation proposed in [103]).

Summarising, we can state that high values of RR
 indicate a high probability of occurrence of the same state in
both systems, and high values of DET
 and L
 indicate a long time span, in which both systems visit the same region
of phase space. Therefore, DET
 and L
 are sensitive to fast and strongly fluctuating data. It is important to emphasise
that these parameters are statistical measures and that their validity increases with the size of the CRP, i.e. with the
length of the regarded trajectory.

The consideration of an additional CRP

CR−
i,j = 	(ε − ‖�xi + �yj‖) (54)

with a negative signed second trajectory −�yj allows distinguishing correlation and anti-correlation between the con-
sidered trajectories [96]. In order to recognise the measures for both possible CRPs, the superscript index + is added
to the measures for the positive linkage and the superscript index − for the negative linkage, e.g. RR+


 and RR−

 .
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Fig. 19. Measure of symmetry (A) and asymmetry (B) applied on the diagonal-wise computed recurrence rate RR
 of the CRP of two mutually
coupled Rössler systems in the funnel regime, Eqs. (A.9) and (A.10), for a = 0.2925, b = 0.1, c = 8.5, � = 0.02, with a slight time lag. (A) The
maxima for the symmetry measure Q(
) at a time lag of k = 0.3 reveals the synchronisation between both systems after the detected lag. (B) The
negative value of the asymmetry measure q(
) at this lag reveals that the second Rössler oscillator leads the first one.

Another approach used to study positive and negative relations between the considered trajectories involves the
composite measures for the 
-recurrence rate

RRc

 = 1

N − k

∑
j−i=k

(CR+
i,j − CR−

i,j ), (55)

the 
-determinism

DETc

 = DET+


 − DET−

 , (56)

and the 
-average diagonal length

Lc

 = L+


 − L−

 , (57)

as it was used in [7]. This presentation is similar to the time-dependent presentation of the cross correlation function (but
with the important difference that the 
-RQA measures consider also higher-order moments) and is more intuitive than
the separate representation of RR+


 , RR−

 , etc. However, for the investigation of interrelations based on even functions,

these composite measures are not suitable.
A further substantial advantage of applying the 
-RQA on CRPs is the capability to find also nonlinear similarities

in short and non-stationary time series with high noise levels as they typically occur, e.g., in life or earth sciences. In
these cases, using a fixed amount of nearest neighbours is more appropriate than a fixed threshold ε. Also the use of
OPRPs or JRPs is appropriate for the analysis of this kind of data.

Note that the 
-RQA measures as functions of the distance 
 to the main diagonal are also important for the
quantification of RPs. For example, the measure RR
 can be used to find UPOs in low-dimensional chaotic systems
[48,69,104]. Since periodic orbits are more closely related to the occurrence of longer diagonal structures, the measures
DET
 and L
 are more suitable candidates for this kind of study. The measure RR
 has been already used in [2] for the
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study of non-stationarity in the data. Beyond this, RR
 can be applied to analyse synchronisation between oscillators
(Section 3.8).

Another RQA measure is the trend, which is a linear regression coefficient over the recurrence point density RR
 of
the diagonals parallel to the LOI as a function of the time distance between these diagonals and the LOI

TREND =
∑Ñ


=1(
 − Ñ/2)(RR
 − 〈RR
〉)∑Ñ

=1(
 − Ñ/2)2

. (58)

It provides information about non-stationarity in the process, especially if a drift is present in the analysed trajectory.
The computation excludes the edges of the RP (Ñ < N ) because of the lack of a sufficient number of recurrence points.
The choice of Ñ depends on the studied system. Whereas N − Ñ > 10 should be sufficient for noise, this difference
should be much larger for a system with some auto-correlation length (10 times the order of magnitude of the auto-
correlation time should be enough). It should be noted that if the time dependent RQA (measures computed in sliding
windows) is used, TREND will depend strongly on the size of the window and may yield ambiguous results for differ-
ent window sizes.

A further measure, the ratio, has been defined as the ratio between DET and RR [101]. It can be computed based on
the number P(l) of diagonal lines of length l as follows

RATIO = N2

∑N
l=lmin

lP (l)

(
∑N

l=1lP (l))2
. (59)

A heuristic study of physiological time series has revealed that this ratio can be used to uncover transitions in the
dynamics; during certain types of qualitative transitions RR decreased, whereas DET remained constant [101].

The RQA measures discussed so far, are based on diagonal structures in the RP. In Section 3.5.3, this quantitative
view is extended to vertical (horizontal) structures and further measures of complexity based on the distribution of the
vertical lines are proposed.

Example. Finding nonlinear interrelations by applying RQA on CRPs.

This example shows the ability of CRPs to find nonlinear interrelations between two processes, which cannot be
detected by means of linear tests [96]. We consider linear correlated noise (auto-regressive process) which is nonlinearly
coupled with the x-component of the Lorenz system (for standard parameters �=10, r =28, b= 8

3 and a time resolution
of �t = 0.01 [78,105]):

yi = 0.86yi−1 + 0.500�i + �x2
i , (60)

where � is Gaussian white noise and xi (x(t) → xi , t = i�t) is normalised with respect to the standard deviation. The
data length is 8000 points and the coupling � is realised without any lag.

As expected, due to the nonlinear linkage the cross correlation analysis between x and y does not reveal a significant
linear correlation between these data series (Fig. 20A). However, the mutual information as a well-established measure
to detect nonlinear dependencies [46] shows a strong dependence between x and y at a delay of 0.05 (Fig. 20B). The
CRP based 
-recurrence rate RR
 and 
-average diagonal length L
 exhibit maxima at a lag of about 0.05 for RR+/L+
and RR−


 /L−

 and additionally at 0.45 and −0.32 for RR−


 /L−

 (Fig. 20C and D). The maxima around 0.05 for the

+ and − measures are a strong indication of a nonlinear relationship between the data. The delay of approximately
0.05 stems from the auto-correlation of y and approximately corresponds to its correlation time �t/ ln 0.86 = 0.066.
The maxima at 0.45 and −0.32 correspond to the half mean period of the Lorenz system. Since the result is rather
independent of the sign of the second data, the found interrelation is of the kind of an even function. A total of 500
realisations of the AR model have been used in order to estimate the distributions of the measures. The 2� margins of
these distributions can be used to assess the significance of the results.

Due to the rapid fluctuation of y, the number of long diagonal lines in the CRP decreases. Therefore, measures based
on these diagonal structures, especially DET
, do not work well with such heavily fluctuating data. However, we can
infer that the measures RR
 as well as L
 (though less significant for rapidly fluctuating data) are suitable for finding
a nonlinear relation between the considered data series x and y, where the linear analysis is not able to detect such
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Fig. 20. (A) Cross correlation C(
), (B) mutual information I (
), (C) 
-recurrence rate RR
 and (D) 
-average line length L
 for the forced
auto-regressive process and the forcing function; the curves represent the measures for one realisation as functions of the delay 
 for a coupling
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i i+1

Xi

i+2

Fig. 21. States of subsequent time may fall into the neighbourhood of the state at time i, pretending artificial recurrences (grey dots). This is called
tangential motion and such points are referred to as sojourn points.

a relation. Furthermore, this technique is applicable to rather short and non-stationary data compared to the mutual
information.

3.5.3. Measures based on vertical lines
A vertical line of length v starting at the coordinates (i, j) of a RP is given by condition (16). In continuous time

systems discretised with sufficiently high time resolution and with an appropriate large threshold ε, a large part of
these vertical lines usually correspond to the tangential motion of the phase space trajectory (Fig. 21). However, not
all elements of these sets belong to the tangential motion. For example, even though there is no tangential motion in
maps, we find vertical lines in their RPs, e.g. in the presence of laminar states in intermittent regimes. Furthermore, in
systems with two different time scales, we might find vertical lines because of the finite size of the threshold ε, and not
because of tangential motion. Sometimes, the points belonging to the tangential motion are called sojourn points [34].
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But we will not use this term, because it is a bit misleading, and actually those points forming vertical lines but which
do not belong to the tangential motion would be the sojourn points.

The total number of vertical lines of the length v in the RP is then given by the histogram

P(v) =
N∑

i,j=1

(1 − Ri,j )(1 − Ri,j+v)

v−1∏
k=0

Ri,j+k . (61)

Analogous to the definition of the determinism, Eq. (46), the ratio between the recurrence points forming the vertical
structures and the entire set of recurrence points can be computed,

LAM =
∑N

v=vmin
vP (v)∑N

v=1vP (v)
, (62)

and is called laminarity. The computation of LAM is realised for those v that exceed a minimal length vmin in order
to decrease the influence of the tangential motion. For maps, vmin = 2 is an appropriate value. LAM represents the
occurrence of laminar states in the system without describing the length of these laminar phases. LAM will decrease if
the RP consists of more single recurrence points than vertical structures.

The average length of vertical structures is given by (cf. Eq. (47))

T T =
∑N

v=vmin
vP (v)∑N

v=vmin
P(v)

, (63)

and is called trapping time. Its computation requires also the consideration of a minimal length vmin, as in the case of
LAM. TT estimates the mean time that the system will abide at a specific state or how long the state will be trapped.

Finally, the maximal length of the vertical lines in the RP

Vmax = max
(
{vl}Nv

l=1

)
(64)

can be regarded, analogously to the standard measure Lmax (Nv is the absolute number of vertical lines).
In contrast to the RQA measures based on diagonal lines, these measures are able to find chaos–chaos transitions

[14]. Hence, they allow for the investigation of intermittency, even for rather short and non-stationary data series.
Furthermore, since for periodic dynamics the measures quantifying vertical structures are zero, chaos–order transitions
can also be identified.

Example. Comparison of measures based on diagonal and vertical lines.

Next, we illustrate the application of the RQA for the logistic map, Eq. (A.3), and compare the measures based on
diagonal with the ones based one vertical structures. We generate for each value of the control parameter a ∈ [3.5, 4],
with �a = 0.0005 a separate time series (Fig. 22) of the rather short length 1000. In the analysed range of a, various
dynamical regimes and transitions between them occur, e.g., accumulation points, periodic and chaotic states, band
merging points, period doublings, inner and outer crises, i.e. system (A.3) generates various order–chaos, chaos–order
as well as chaos–chaos transitions [106].

Useful tools for studying the chaotic behaviour of the logistic map are the supertrack functions, which are recursively
generated from

si+1(a) = a si(a)(1 − si(a)), s0(a) = 1
2 , i = 1, 2, . . . (65)

si(a) represent the functional dependence of stable states at a given iteration number i on the control parameter a
[107]. The intersection of si(a) with si+j (a) indicates the occurrence of a j-period cycle, and the intersection of si(a)

with the fixed-point (1 − 1/a) of the logistic map indicates the point of an unstable singularity, i.e. laminar behaviour
(Fig. 22, intersection points are marked with dotted lines).

Although an embedding is not necessary for maps (i.e. m=1), we use here an embedding of m=3 and 
=1 in order
to compare the results with [102]. The cut-off distance ε is selected to be 10% of the standard deviation of the data
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Fig. 22. (A) Bifurcation diagram of the logistic map. (B) Low ordered supertrack functions si (a)

∣∣∣10
i=1 and the fixed point of the logistic map 1−1/a

(dashed). Their intersections represent periodic windows, band merging and laminar states. The dotted lines show a choice of points, which represent
band merging and laminar phases (a = 3.678, 3.727, 3.752, 3.791, 3.877, 3.927) [14].

series. Smaller values would lead to a better distinction of small variations (e.g. the range before the accumulation point
consists of small variations), but the recurrence point density would decrease and hence, the statistics of continuous
structures in the RP would become poor.

RPs for various values of the control parameter a exhibit already visually specific characteristics (Fig. 23). Periodic
states cause continuous and periodic diagonal lines in the RP, but no vertical or horizontal lines (Fig. 23A). On the other
hand, chaos–chaos transitions, as band merging points, inner crises or regions of intermittency represent states with
short laminar behaviour and cause vertically and horizontally spread black areas in the RP (Fig. 23B and C). Moreover,
diagonal lines occur. The fully developed chaotic state (a = 4) causes a rather homogeneous RP with numerous single
points and some short (in comparison to the length of the LOI), diagonal or vertical lines (Fig. 23D). Vertical (and
horizontal) lines occur much more frequently at supertrack crossing points (chaos–chaos transitions) than in other
chaotic regimes (Fig. 22).

The measures DET, L and Lmax, which are basing on the diagonal lines, show clear maxima at the periodic-
chaos/chaos–periodic transitions. The measure Lmax finds all of such transitions, but DET and L do not detect all
of them (Fig. 24A, C, E and Table 2). However, they all are not able to detect chaos–chaos transitions. But, the
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A B

C D

Fig. 23. RPs of the logistic map for various values of the control parameters a: (A) periodic-3-window a = 3.830, (B) band merging a = 3.679,
(C) supertrack intersection a = 3.720 and (D) chaos (exterior crisis) a = 4; with embedding dimension m = 3, time delay 
 = 1 and threshold
ε = 0.1� [14].
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Fig. 24. Selected RQA measures DET, Lmax and L and the measures LAM, Vmax and TT. The vertical dotted lines indicate some of the points,
at which band merging and laminar behaviour occur (cf. Fig. 22), whereby not all of them have been marked. Whereas (A) DET, (C) Lmax and
(E) L show periodic–chaos/chaos–periodic transitions (maxima), (B) LAM, (D) Vmax and (F) TT exhibit in addition to those transitions (minima)
chaos–chaos transitions (maxima). The differences between LAM and Vmax are caused by the fact that LAM measures only the amount of laminar
states, whereas Vmax measures the maximal duration of the laminar states. Although some peaks of Vmax and TT are not at the dotted lines, they
correspond to laminar states (not all can be marked) [14].

chaos–chaos transitions to the laminar states are identified by the measures LAM, TT and Vmax, which are based on
the vertical structures (Fig. 24B, D, F and Table 2). These measures show distinct maxima or peaks at the chaos–chaos
transitions. Furthermore, the measures fall to zero within the period windows, hence, the chaos–order transitions can
also be identified. Since vertical lines occur much more frequently at inner crisis, band merging points and in regions
of intermittency (i.e. laminar states) than in other chaotic regimes, TT and Vmax grow up significantly at those points.
This can also be seen by looking at the supertrack functions (Fig. 22B). Although LAM also reveals laminar states, it
is quite different from the other two measures because it does not increase at inner crises (Table 2). Noise, of course,
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Table 2
Comparison of RQA measures based on diagonal (DET, L and Lmax) and vertical structures (LAM, TT and Vmax) regarding periodic-
chaos/chaos–periodic transitions (PC/CP), chaos–chaos transitions (band merging—BM and inner crisis—IC) and laminar states

Measure PC/CP transitions BM and IC Laminar states

DET Increases — —
L Increases — —
Lmax Increases — —
LAM Drops to zero — Increases
TT Drops to zero Increases Increases
Vmax Drops to zero Increases Increases

influences these results. For small noise levels, the transitions can still be identified. Moreover, LAM is more robust
against noise than TT and Vmax [14].

The behaviour of these measures regarding the control parameter a is similar to some of formerly proposed measures
of complexity [108,109]. The Rényi dimension Dq of order q < 0, the fluctuation complexity as well as the re-normalised
entropy exhibit local maxima in regions of intermittency, a rapid increase at inner crises and a rapid decrease and increase
at the transitions between chaos and periodic windows. The difference between the formerly proposed measures and
LAM, TT and Vmax is the amount of data points needed. It is important to emphasise that for the methods proposed
in [108] and [109], more than 100,000 data points are needed, whereas 1000 data points are enough for the measures
based on RPs.

3.6. Dynamical invariants derived from RPs

The RQA measures introduced in Section 3.5 are rather heuristic but describe RPs quantitatively and are especially
helpful to find various transitions in dynamical systems. However, their major drawback is that they are typically not
invariant with respect to the embedding used to reconstruct the phase space trajectory, i.e. the values of the RQA
measures depend rather strongly on the embedding parameters. Therefore, it is important to know, whether typical
invariants in nonlinear dynamics, like entropies or dimensions, can be inferred from the recurrence matrix, too.

Let us start with the generalised correlation sum (the generalisation of Eq. (19)),

Cq(ε) = 1

N

N∑
i=1

⎡⎣ 1

N

N∑
j=1

	(ε − ‖�xi − �xj‖)
⎤⎦q−1

, (66)

which can be used to estimate generalised entropies, dimensions, mutual information and redundancies (e.g.
[59,110–113]). From Eq. (66) it is obvious that the density of recurrence points in an RP can also be used to esti-
mate these invariants. However, some of these invariants, such as the mutual information and the generalised entropies,
are related to further features of RPs and not just the density of recurrence points.

As we have mentioned in Section 3.5, an important ingredient for the computation of the RQA measures is the
length-distribution of diagonal lines P(ε, l) in the RP, Eq. (45), because it encodes main properties of the system, such
as predictability and measures of complexity. Diagonal lines in the RP represent co-moving segments of different parts
of the trajectory �xi+k and �xj+k for some k = 1, . . . , l, Eqs. (13) and (14). The longer the trajectories move within an
ε-tube (cf. Fig. 2), the longer the diagonal lines in the RP will be. As the time for which trajectories starting at close
initial conditions move within an ε-tube is related to the inverse of the largest Lyapunov exponent, it can be supposed
that also the length of the diagonal lines in an RP can be linked to the predictability of the underlying system. Since
the introduction of RPs a relationship between the length of the diagonal lines and the maximal Lyapunov exponent
has been stated [2]. As already mentioned, several attempts have been tried to heuristically fix this relationship as a
direct inverse relation between the maximal or averaged line length and the Lyapunov exponent [68,102]. Choi et al.
introduced a measure based on the width and the absolute number of diagonal lines and related this measure to the
largest Lyapunov exponent [66]. However, we show next that the distribution of diagonal lines is not directly related
to the maximal Lyapunov exponent but to the correlation entropy [8,114–116]. The formal relationship between the
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correlation entropy and the Lyapunov exponents [117,118] is

K2 �
∑
�i>0

�i , (67)

where �i denote the Lyapunov exponents. Moreover, the algorithm for the estimation of these invariants gives some
justification for the ad hoc measures of the RQA.

3.6.1. Correlation entropy and correlation dimension
At first, the definition of the Rényi entropy of second order is recalled in order to deduce how it is linked to the

distribution of diagonal lines in the RP. Let us consider a trajectory �x(t) in the basin of an attractor in a d-dimensional
phase space. We divide the phase space into d-dimensional hyper-cubes of size ε. Then pi1,...,il (ε) denotes the joint
probability that �x(t = 1�t) is in the ε-box i1, �x(t = 2�t) is in the box i2, …, and �x(t = l�t) is in the box il . The second
order Rényi entropy (correlation entropy) [111,119] is then defined by

K2 = − lim
�t→0

lim
ε→0

lim
l→∞

1

l�t
ln
∑

i1,...,il

p2
i1,...,il

(ε). (68)

Assuming that the system is ergodic, which is always the case for chaotic systems as they are mixing, we obtain

∑
i1,...,il

p2
i1,...,il

(ε) = 1

N

N∑
t=1

pi1(t),...,il (t+(l−1)�t)(ε), (69)

where i1(t) is the box that the t th data point is in, i2(t + �t) is the box that the (t + �t)th data point is in, etc. [113].
Furthermore, approximating pi1(t),...,il (t+(l−1)�)(ε) by the probability pt (ε, l) of finding a sequence of l points in boxes
of size ε centred at the points �x(t), ..., �x(t + (l − 1)�t), we can state

1

N

N∑
t=1

pi1(t),...,il (t+(l−1)�t)(ε) ≈ 1

N

N∑
t=1

pt (ε, l). (70)

Moreover, pt (ε, l) can be expressed by means of the recurrence matrix

pt (ε, l) = lim
N→∞

1

N

N∑
s=1

l−1∏
k=0

Rt+k,s+k(ε). (71)

Based on Eqs. (68)–(71), an estimator for the second order Rényi entropy can be found by means of the RP

K̂2(ε, l) = − 1

l�t
ln (pc(ε, l)) = − 1

l�t
ln

⎛⎝ 1

N2

N∑
t,s=1

l−1∏
k=0

Rt+k,s+k(ε)

⎞⎠ , (72)

where pc(ε, l) is the probability to find a diagonal of at least length l in the RP. Therefore, if we plot pc(ε, l) in a
logarithmic scale versus l, we should obtain a straight line with slope −K̂2(ε)�t for large l.

On the other hand, the l-dimensional second-order correlation sum

C2(ε, l) = lim
N→∞

1

N2

N∑
i,j=1

	

⎛⎝ε −
√√√√ l−1∑

k=0

‖�xi+k − �xj+k‖2

⎞⎠ (73)

can be used in the definition for K2 [110]

K2(ε, l) = − lim
�t→0

lim
ε→0

lim
l→∞

1

l�t
ln C2(ε, l). (74)
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Due to the exponential divergence of the trajectories, the condition in Eq. (73)

l−1∑
k=0

‖�xi+k − �xj+k‖2 �ε2

is essentially equivalent to

‖�xi+k − �xj+k‖ < ε for k = 1, . . . , l,

and, therefore, equivalent to the product in Eq. (71).
If only a scalar time series is available, embedding is used, Eq. (9). Taking the embedding dimension l (here l is used

for the embedding dimension instead of m for didactical reasons) and time delay 
 = 1, the l-dimensional correlation
sum can be estimated by

C̃2(ε, l) = lim
N→∞

1

N2

N∑
i,j=1

	

⎛⎝ε −
√√√√ l−1∑

k=0

|xi+k − xj+k|2
⎞⎠ . (75)

Then, an estimator of K2 (Grassberger–Procaccia (G–P) algorithm) can be obtained by

K̃2(ε, l) = 1

�t
ln

C̃2(ε, l)

C̃2(ε, l + 1)
. (76)

Moreover, C2(ε, l) scales like C2(ε, l) ∼ εD2 [120], what leads with Eq. (74) to

C2(ε, l) ∼ εD2 e−l�t K2 . (77)

Due to the similarity between the approaches using RPs and the correlation sum, we state the basic relation

pc(ε, l) ≈
∑

i1,...,il

p2(i1, . . . , il) ≈ C̃2(ε, l) ∼ εD2 e−l�t K2 . (78)

The difference between both approaches is that in pc(ε, l) we include information about l vectors, whereas in C̃2(ε, l)

we have just information about l coordinates. Besides this, in the RP approach l is a length in the plot, whereas in the
G–P algorithm l means the embedding dimension.

Relationship (78) also allows to estimate D2 from pc(ε, l). Considering Eq. (78) for two different thresholds ε and
ε + �ε and dividing both of them, we get

D̂2(ε) = ln

(
pc(ε, l)

pc(ε + �ε, l)

)/
ln

(
ε

ε + �ε

)
, (79)

which is an estimator of the correlation dimension D2 [111].
Analogously to Eq. (72), the joint Rényi entropy of second order can be estimated using the probability to find a

diagonal of at least length l in the JRP instead of the RP of a single system. This extension of the estimator of Eq. (72)
is useful for the analysis of two or more interacting systems, as will be shown in Section 3.8. The joint Rényi entropy
of second order is defined as

JK2 = − lim
�t→0

lim
ε→0

lim
l→∞

1

l�t
ln

∑
i1,...,il
j1,...,jl

p2
i1,...,il ,j1,...,jl

(ε), (80)

where pi1,i2,...,il ,j1,j2,...,jl
(ε) is the joint probability that �x(t = �t) is in box i1, �x(t = 2�t) is in box i2, …, �x(t = l�t)

is in box il and simultaneously �y(t = �t) is in box j1, �y(t = 2�t) is in box j2, . . ., and �y(t = l�t) is in box jl . Using
again the ergodicity of the system,

∑
i1,...,il
j1,...,jl

p2
i1(t),...,il (t+(l−1)�t),j1(t),...,jl (t+(l−1)�t)

= 1

N

N∑
t=1

pi1,...,il ,j1,...,jl
(81)
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Fig. 25. (A) Total number of diagonal lines of at least length l in the RP of the Bernoulli map. Each histogram is computed for a different threshold
ε, from 0.000436 (bottom) to 0.0247 (top). 10,000 data points have been used for the computation. (B) Estimate of K2 in dependence on ε.
(C) Estimate of D2 in dependence on ε.

can be stated. On the other hand, the following approximation

pi1(t),...,il (t+(l−1)�t),j1(t),...,jl (t+(l−1)�t) ≈ 1

N

N∑
s=1

l−1∏
m=0

	(ε�x − ‖�xt+m − �xs+m‖)	(ε�y − ‖�yt+m − �ys+m‖)
(82)

can be made (cf. Eqs. (69) and (71)). Then, substituting this expression in Eq. (80), the estimator for the joint Rényi
entropy of second order is

ĴK2(ε
�x, ε�y, l) = − 1

l�t
ln

⎛⎝ 1

N2

N∑
t,s=1

l−1∏
k=0

JRt+k,s+k(ε
�x, ε�y)

⎞⎠
︸ ︷︷ ︸

∗

. (83)

Note, that ∗ is the probability pc(ε
�x, ε�y, l) to find a diagonal of at least length l in the JRP. Hence, the logarithmic

representation of pc(ε
�x, ε�y, l) versus l reveals a straight line for small thresholds ε�x, ε�y and long lines, whose slope is

equal the joint Rényi entropy multiplied with the sampling time interval �t .

Example. Estimation of invariants by recurrences in chaotic systems.

We illustrate the algorithm based on RPs to estimate K2 and D2 by applying it to two prototypical nonlinear systems:
the Bernoulli map, Eq. (A.4), and the Rössler system, Eqs. (A.5), with parameters a = b = 0.2, c = 5.7 and sampling
rate 0.2. The RPs are computed without using embedding, i.e. taking the original components.

The distribution of the diagonal lines with at least length l in the RP of the Bernoulli map is computed for 100
different values of the threshold ε = [0.000436, 0.0247]. The plot of the logarithm of this length distribution reveals
straight parallel lines for the different values of ε (Fig. 25A). The slope of these lines is an estimate for K2 (Fig. 25B).
The obtained estimate is K̂2 = 0.6929 ± 0.0016, which is very close to the theoretical value K2 = ln 2 ≈ 0.6931. For
D̂2 we obtain a value of 0.9930 ± 0.0098, which is also close to the theoretical value of D2 = 1. These results confirm
numerically the relationships presented in Section 3.6.1.

In the case of the Rössler system (Fig. 1B), the most remarkable finding is the existence of two well-differentiated
scaling regions for the distribution of diagonal lines of at least length l (Fig. 26A): for 1� l�84 the slope is about 3–4
times larger than the slope for l > 84 (the time interval between two points of the integrated trajectory is 0.2, hence
l = 84 corresponds to 16.8). As K2 is defined for l → ∞ the second slope yields the estimation of the entropy, which
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Fig. 26. (A) Total number of diagonal lines of at least length l in the RP of the Rössler system. Each histogram is computed for a different threshold
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computation. (C) Estimate of D2 in dependence on ε (D2 = 2.03 ± 0.03). 200,000 data points have been used for the computation.

is K̂2 = 0.069 ± 0.003 (Fig. 26B). Note, that K2 is a lower bound for the sum of the positive Lyapunov exponents and
the estimated value of K2 is close to the largest Lyapunov exponent of the Rössler system, which is ∼ 0.072 [121].

However, the slope of the first part of the curve is interesting too, as it is also independent of ε. The region 1� l�84
characterises the short-term dynamics of the system up to three cycles around the attractor and corresponds in absolute
units to a time of t=16.8. These three cycles reflect a characteristic period of the Rössler system that is called recurrence
period Trec. It is different from the dominant phase period Tph, which is given by the dominant frequency of the power
spectrum. Trec, however, is given by the recurrences to the same state in phase space.

For predictions on time scales below the recurrence period, the second slope of ln(p̂c(ε, l)) versus l gives a better
predictability than the first slope (more than three times better), which means that there exist two time scales that
characterise the attractor. The first slope is greater than the second one because it is more difficult to predict the next
step if we have only information about a piece of the trajectory for less than one recurrence period. Once we have
scanned the trajectory for more than Trec, the predictability increases and hence, the slope of pc(ε, l) in the logarithmic
plot decreases. Hence the first slope, as well as the time at which the second slope begins, reveal important characteristics
of the attractor. Note that even though the first slope is not a dynamical invariant (it changes if one uses embedding
coordinates), most of the initial conditions “diverge” at a rate given by the first slope and not by the second one.

The relationship between the transition of the scaling regions and the phase period can also be seen in attractors of
different shape. For a Rössler system with fixed a = b = 0.1, but varied parameter c, the form of the attractor as well
as Trec and Tph change. For example, c = 9 yields Trec = 2Tph (with Tph ≈ 6), and c = 30, gives Trec = 4Tph (with
Tph ≈ 6.2). In both cases the length of the first scaling region (Trec =12 and 24.8, resp.) corresponds as expected to 2Tph
and 4Tph, respectively (Fig. 27). The existence of two scaling regions in the Rössler system is a new and striking point
of the recurrence analysis that cannot be observed with the method proposed by Grassberger and Procaccia to estimate
K2 [110]. The existence of the two different scaling regions can also be found in other non-hyperbolic systems, such
as the Lorenz oscillator, Eqs. (A.6). This is an indication of the non-hyperbolic nature of such systems and fits well
with results obtained by other approaches [122].

Next, we estimate D2 for the Rössler system for various choices of the threshold ε (Fig. 26D) using Eq. (79) and
the average over lines of length l which correspond to the first scaling region. The estimated value using 200,000 data
points is D̂2 = 1.86 ± 0.04. This result is in accordance with the estimation of D2 by the G–P algorithm given in [123],
where the value 1.81 was obtained. Restricting the average in l to the second scaling region, we obtain the slightly
higher value D̂2 =2.03±0.03, which is in accordance with the value D2 =2.06±0.02 obtained in [110,124]. Note that
the extent and the onset of a scaling region in D2(ε) may lead to problems in the D2 estimation [125]. Furthermore, the
number of points needed to estimate D2 accurately is much larger than the one needed for the estimation of K2 (in the
examples shown here, we used 10,000 data points for the estimation of K2 and 200,000 data points for the estimation
of D2).
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Therefore, it is interesting to investigate the dependence of the estimated value for D2 on the number of points of the
trajectory used for the computation. Let us consider the Bernoulli map and the Rössler system (Fig. 28). We estimate
D2 by the mean value over 50 different values of the threshold ε in the same range as in Figs. 25 and 26, respectively.
For the Bernoulli map, the estimation of D2 is rather accurate for already 10,000 data points. On the other hand, for
the Rössler system, at least 50,000 data points are necessary for a more precise estimation. This result confirms the
expectation that the higher the dimension or the more complex a system is, the more data points are necessary for its
characterisation [46].

As mentioned at the beginning of this section, it is also possible to estimate the generalised dimensions [111] from
the recurrence matrix by

Dq = lim
ε→0

log(Cq(ε))

log ε
, (84)

with Cq given by Eq. (66). The estimation of Dq for the simple case of the Bernoulli map reveals Dq ≈ 1 ∀ q

(Fig. 29), which corresponds to the theoretical value Dq = 1 ∀ q. However, it must be noted that the problems that
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arise for the estimation of Dq for q �1 are also present in the recurrence approach. In order to improve the accuracy
of the estimation more sophisticated methods, such as the Enlarged Box Algorithm [126] should be used.

3.6.2. Recurrence times and point-wise dimension
Another invariant characteristic, the point-wise dimension, can be also estimated by using recurrence times [34].

Recurrence times can be directly picked up from the RP. First, we denote the set of points of the trajectory �x which fall
into the ε-neighbourhood B�xi

(ε) of an arbitrary chosen point at i with

Ri = {�xj1 , �xj2 , . . . |Ri,jk
= 1}. (85)

The elements of this set correspond to the recurrence points of the ith column {Ri,j }Nj=1 of an RP. The corresponding
recurrence times between these recurrence points (recurrence times of first type, according to the notation given in
[34]) are {T (1)

k = jk+1 − jk}k∈N. Due to possible tangential motion, some of the recurrence points in Ri correspond

to recurrence times T
(1)
k = 1 (Fig. 21). However, in order to obtain the real recurrence times (Poincaré recurrence

times), such points must be discarded. One approach is to remove all consecutive recurrence points with T
(1)
k = 1 from

the set Ri . This results in a new set R′
i = {�xj ′

1
, �xj ′

2
, . . .}. Then, the recurrence times (recurrence times of second type

according to [34]) {T (2)
k = j ′

k+1 − j ′
k}k∈N are calculated from the remaining recurrence points (i.e. from R′

i). Hence,
T (2) measures vertically the time distance between the beginning of (vertically) subsequent recurrence structures
in the RP. An alternative estimator for the recurrence times T (2) is the average of the lengths of the white vertical
lines at a specific column of the RP. For systems with less laminar structures in the RP (i.e. LAM and TT tend to
zero), the distribution of such an average almost coincides with the distribution of T (2) as defined by [34]. However,
for systems with laminar states (e.g. logistic map for certain values of the control parameter), T (2) as defined by
Gao [34] over-estimates the recurrence times and T (2) computed from the white vertical lines under-estimates the
recurrence times.

Based on the recurrence times T (1) and T (2), it is possible to estimate the point-wise dimension DP (i), which is
defined by

�(B�xi
(ε)) ∼ εDP (i), (86)

where �(·) is the probability measure (cf. Eq. (2)). The measure �(B�xi
(ε)) can be estimated by the frequency at which

the neighbourhood of the point at i is visited by the trajectory, which is the reciprocal of the mean recurrence time
〈T (1)〉, i.e. �(B�xi

(ε)) = �(Ri ) ≈ 1/〈T (1)〉 and thus [34]

〈T (1)(ε)〉 ∼ ε−DP (i). (87)
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This measure depends on the chosen point �xi , because some parts of the attractor are visited more frequently than
others.

Analogously, we can state that the measure of the set of neighbours of �xi without points belonging to the tangential
motion R′

i is �(R′
i ) ≈ 1/〈T (2)〉. When the points belonging to the tangential motion represent a zero-dimensional set,

�(R′
i ) = �(Ri ) ∼ εDP (i). When these points represent a one-dimensional set, �(R′

i ) ∼ εDP (i)−1. Hence, for discrete
maps and continuous systems with small ε,

〈T (2)(ε)〉 ∼ ε−DP (i), (88)

and for continuous systems with large ε,

〈T (2)(ε)〉 ∼ ε−(DP (i)−1). (89)

Furthermore, the mean recurrence times can be used to analyse transient and non-stationary dynamics, computing them
in sliding windows and monitoring how 〈T (1)(ε)〉 and 〈T (2)(ε)〉 change in different blocks of sub-data sets. When
analysing experimental data, often only scalar time series are available. Hence, the time delay embedding technique
must be used. In this case, the disadvantage of using 〈T (1)(ε)〉 to analyse the non-stationarity, is that it sensitively
depends on the used embedding parameters. Hence, in this case 〈T (2)(ε)〉 yields more robust results.

3.6.3. Generalised mutual information (generalised redundancies)
The mutual information quantifies the amount of information that we obtain from the measurement of one variable

on another. It has become a widely applied measure to quantify dependencies within or between time series (auto
and cross mutual information). The time delayed generalised mutual information (redundancy) Iq(
) of a system �xi is
defined by [119]

I �x
q (
) = 2Hq − Hq(
). (90)

Hq is the qth-order Rényi entropy of �xi and Hq(
) is the qth-order joint Rényi entropy of �xi and �xi+


Hq = − ln
∑

k

p
q
k , Hq(
) = − ln

∑
k,l

p
q
k,l(
), (91)

where pk is the probability that �xi is in the kth box and pk,l(
) is the joint probability that �xi is in box k and �xi+
 is
in box l (note that we use here the same neighbourhood definition as for Eq. (68)). Assuming that the system under
consideration is ergodic and approximating the probability that �xi is in the kth box of the partition by the probability
to find a point of the trajectory in a box of size ε centred at �xi , the recurrence matrix can be used to estimate Eq. (91)
in the case q = 2,

Ĥ2 = − ln

⎛⎝ 1

N2

N∑
i,j=1

Ri,j

⎞⎠ (92)

and

Ĥ2(
) = − ln

⎛⎝ 1

N2

N∑
i,j=1

Ri,j Ri+
,j+


⎞⎠= − ln

⎛⎝ 1

N2

N∑
i,j=1

JR�x,�x
i,j (
)

⎞⎠ , (93)

where JR�x,�x
i,j (
) denotes the delayed joint recurrence matrix, Eq. (40). The second order generalised mutual information

can be estimated then by means of RPs [115]

Î �x
2 (
) = ln

⎛⎝ 1

N2

N∑
i,j=1

JR�x,�x
i,j (
)

⎞⎠− 2 ln

⎛⎝ 1

N2

N∑
i,j=1

Ri,j

⎞⎠ . (94)
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Fig. 30. (A) Mutual information for the x-component of the Rössler system, Eqs. (A.5), with a = 0.15, b = 0.2 and c = 10, and time step �t = 0.2,
computed by the RP method (solid line) and the correlation sum approach (dashed line). (B) Cross mutual information between the x and y-components
of the Lorenz system, Eqs. (A.6), for � = 10, b = 5

3 and r = 28 and time step �t = 0.04, computed by the RP method (solid line) and the correlation
sum approach (dashed line). The difference between the two estimations is due to the used Euclidean norm; using the maximum norm, both curves
coincide.

As mentioned in the introduction of this section, the mutual information can be estimated by means of the correlation
sum [127]. The joint distribution can be considered as the distribution in a two-dimensional embedding space [73].
Hence,

Ĩ �x
2 (
) = ln C


2(ε) − 2 ln C2(ε), (95)

where C

2(ε) is the correlation dimension of the embedded two-dimensional vectors �xi(
) = (ui, ui+
)

T, and C2(ε) is
the correlation sum of the scalar time series ui . This corresponds to Eq. (94) in the special case that the dimension of
�x is equal to one (i.e. that it is a scalar time series) and for the maximum norm (Fig. 30A). The advantage using the
RP approach is that we can compute the mutual information for an entire phase space vector and not only for a single
component.

Moreover, the generalised cross mutual information of second order of two different systems �x and �y
I

�x,�y
2 = H �x

2 + H
�y

2 − H
�x,�y

2 (96)

can be estimated by means of RPs as well:

Î
�x,�y
2 = − ln

1

N2

N∑
i,j=1

R�x
i,j − ln

1

N2

N∑
i,j=1

R�y
i,j + ln

1

N2

N∑
i,j=1

JR�x,�y
i,j . (97)

However, Î
�x,�y
2 depends on the special choices of the thresholds ε�x and ε�y . If, e.g., the phase space diameter of �x is

very large in comparison with the one of �y, then the value for ε�x should be chosen larger than the value for ε�y . One
possibility to equilibrate the difference between the sizes of both phase spaces is to choose the thresholds in such a way
that the recurrence rate of �x is equal to the recurrence rate of �y (as described in Section 3.2.2), i.e.

1

N2

N∑
i,j=1

R�x
i,j = 1

N2

N∑
i,j=1

R�y
i,j = RR. (98)

Then, the estimate of I
�x,�y
2 can be written as

Ĩ
�x,�y
2 = ln

1

N2

N∑
i,j=1

JRi,j − 2 ln RR. (99)

Using the delayed joint recurrence matrix, Eq. (40), the cross mutual information can be computed as a function of the
time delay (Fig. 30B). The cross mutual information is also called cross redundancy [113].
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3.6.4. Influence of embedding on the invariants estimated by RPs
We have seen in the last subsections, that it is possible to estimate basic dynamical invariants by means of RPs. As

usually in nonlinear time series analysis, if the time evolution of only one component of the state vector is observed,
the trajectory in the phase space has to be reconstructed by means of an appropriate embedding before computing the
dynamical invariants (cf. Section 3.1). However, we show in this section, that this additional step is not necessary for
the estimation of K2 and D2 by means of RPs.

As we have shown in Section 3.6.1, the estimation of K2 and D2 is based on the probability pc(ε, l) to find a diagonal
of at least length l in an RP. Using embedded vectors, Eq. (9), with embedding dimension m and delay 
, and considering
the maximum norm for the estimation of pc(ε, l), we get

p(m,
)
c (ε, l) = 1

N2

N∑
i,j=1

l−1∏
k=0

	

(
ε − max

s=0,...,m−1
|xi+k+s
 − xj+k+s
|

)
. (100)

The product in Eq. (100) can be written as

l−1∏
k=0

	

(
ε − max

s=0,...,m−1
|xi+k+s
 − xj+k+s
|

)
= 	

⎛⎝ε − max
m=0,...,l−1
s=0,...,m−1

|xi+k+s
 − xj+k+s
|
⎞⎠ . (101)

Hence, substituting this into Eq. (100), we obtain

p(m,
)
c (ε, l) = 1

N2

N∑
i,j=1

	

⎛⎝ε − max
k=0,...,

l−1+(m−1)


|xi+k − xj+k|
⎞⎠ . (102)

From this equation it follows that for different embedding (m, 
) and (m′, 
′) the following relationship holds

p(m,
)
c (ε, l) = p(m′,
′)

c (ε, l′) if l + (m − 1)
 = l′ + (m′ − 1)
′, (103)

provided that l, l′ > 
, 
′ and m, m′ �1 [116]. Hence, the decay of p
(m,
)
c (ε, l) is the same for different embedding.

The curve is only shifted to larger l’s if the dimension is decreased. Since the slope of ln p
(m,
)
c (ε, l) for large l’s is

used in order to the estimate K2 (see Section 3.6.1), the estimated value is independent of the choice of the embedding
parameters.

Analogously, substituting

ln

(
p

(d,
)
c (ε1, l)

p
(d,
)
c (ε2, l)

)
= ln

(
p

(d ′,
)
c (ε1, l

′)
p

(d ′,
)
c (ε2, l′)

)
(104)

in Eq. (79), we see that the estimation of D2 by means of RPs is also independent of the choice of the embedding
parameters. Hence, this is one important advantage of the RPs method compared to others.

3.7. Extension to spatial data

The concept of recurrence is not only restricted to univariate time series. It is clear that recurrence is also a basic
phenomenon in spatio-temporal dynamical systems. But even for snapshots of such high-dimensional dynamics, such
as images, we can expect recurrent structures. However, RPs cannot be directly applied to spatial data. One possibility
to study the recurrences of spatial data is to separate these objects into many one-dimensional data series, and to apply
the recurrence analysis separately to each of these series [128]. Another possibility, suggested in this section, is the
extension of the temporal approach of RPs to a spatial one [129]. With this step we focus on the RPs’ potential to
determine similar (recurrent) epochs in data.

For a d-dimensional (Cartesian) space, we define a spatial recurrence plot by

R�™,�E = 	(ε − ‖�x�™ − �x�E‖), �x�™ ∈ Rm, �™,�E ∈ Nd , (105)

where �™ is the d-dimensional coordinate and �x�™ is the phase-space vector at the location given by coordinate �™. This
means, we consider each direction in space as a single embedding vector of dimension m, but compare each of them with
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Fig. 31. Two-dimensional examples representing (A) uniformly distributed white noise, (B) a two-dimensional auto-regressive process and (C)
periodically recurring structures.

all others. The resulting RP has now the dimension 2×d and cannot be visualised anymore. However, its quantification
is still possible.

Analogously to the one-dimensional case, where the LOI is a one-dimensional line (Section 3.2.1), a similar diagonal-
oriented, d-dimensional structure in the n-dimensional recurrence plot (n = 2 d), the hyper-surface of identity (HSOI),
can be defined:

R�™,�E ≡ 1 ∀�™=�E. (106)

In the special case of a two-dimensional image with scalar values instead of phase-space vectors, i.e. m = 1, we have

Ri1,i2,j1,j2 = 	(ε − |xi1,i2 − xj1,j2 |), (107)

which is in fact a four-dimensional recurrence plot, and its HSOI is a two-dimensional plane.
In two-dimensional RPs, the recurrence quantification is based on line structures. Thus, the definition of equivalent

structures in higher-dimensional RPs is crucial for their quantification analysis.
Analogously to the definition of diagonal lines, Eq. (14), a diagonal hyper-surface of size l (�l = (l, . . . , l), �l ∈ Nd )

is then defined by

(1 − R�™−�1,�E−�1)(1 − R�™+�l,�E+�l )
l−1∏

k1,...,kd=0

R�™+�k,�E+�k ≡ 1, (108)

and a vertical hyper-surface of size v (�v = (v, . . . , v), �v ∈ Nd ) is given by

(1 − R�™,�E−�1)(1 − R�™,�E+�v)
v−1∏

k1,...,kd=0

R�™,�E+�k ≡ 1. (109)

Using these definitions, we can compute the frequency distributions of the sizes of diagonal and vertical hyper-surfaces
in the spatial RP. The recurrence quantification measures, as defined in Section 3.5, can be applied to these distributions,
and hence, these quantification measures are now suitable for characterising spatial data as well.

Example. RQA of spatial data.

To illustrate the extension of temporal RPs to higher-dimensional spatial RPs, we consider three prototypical examples
in two dimensions (i.e. images). The first image (A) is uniformly distributed white noise, the second image (B) is the
result of a static two-dimensional auto-regressive process (2nd order,AR2), Eq. (A.2), and the third image (C) represents
periodically recurrent structures (Fig. 31). All these examples have a geometric size of 200×200 pixels, and the values
of the spatial series are normalised to a mean of zero and a standard deviation of one.

The resulting RPs are four-dimensional matrices of size 200 × 200 × 200 × 200, and can hardly be visualised.
However, we can reduce their dimension by one in order to visualise these RPs: we consider only that part of the RP,
where i2 = j2 (the resulting 200 × 200 × 200 cube is a hyper-surface of the four-dimensional RP along the LOI).
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Fig. 32. Slices through three-dimensional subsections of four-dimensional RPs of the two-dimensional examples shown in Fig. 31. As known from
one-dimensional data, (A) random data causes homogeneous RPs consisting of single points, (B) correlations in data cause extended structures and
(C) periodic data causes periodically occurring structures in the RPs (ε = 0.2)

Table 3
Recurrence quantification measures for prototypical examples in 2D

Example RR DET LAM

(A) noise 0.218 0.007 0.006
(B) 2D-AR2 0.221 0.032 0.065
(C) periodic 0.219 0.322 0.312

For the minimal size of the diagonal and vertical planes lmin = 3 and vmin = 4 is used.

The features obtained in higher-dimensional RPs can be interpreted analogously to the case of two-dimensional RPs.
Single points correspond to strongly fluctuating, uncorrelated data, as it is typical for noise (Fig. 32A). Correlations
in the data cause extended structures, which can be lines, planes or even cuboids (Fig. 32B). Periodically recurrent
patterns in data induce periodic line and plane structures in the spatial RP (Fig. 32C).

The recurrence quantification of these four-dimensional RPs confirms these observations. Except from the recurrence
rate RR, the other recurrence quantification measures discriminate clearly between the three features (Table 3). Because
all images were normalised to the same standard deviation, the recurrence rate RR is roughly the same for all examples.
For the random image (A) the determinism DETHS and laminarity LAMHS tend to zero, what is expected, because the
values in the image heavily fluctuate even between adjacent pixels. For the two-dimensional-AR2 image (B), DETHS

and LAMHS are slightly above zero, revealing the correlation between adjacent pixels. The last example (C) has, as
expected, the highest values in DETHS and LAMHS , because same structures occur several times in this image and
the image is rather smooth. Although the variation in DETHS and LAMHS seems to be similar, there is a significant
difference between both measures. Whereas LAMHS represents the probability that a specific value will not change
over spatial variation (what results in extended same-coloured areas in the image), DETHS measures the probability
that similar changes in the image recur. The value obtained for LAMHS is twice the one obtained for DETHS in the two-
dimensional-AR2 image. Hence, there are more areas without changes in the image than such with typical, recurrent
changes. In contrast, DETHS is higher than LAMHS for the periodic image, because it contains characteristic changing
structures which recur several times but do not have a constant value.

3.8. Synchronisation analysis by means of recurrences

In this section, the relationship between recurrences and synchronisation of complex systems will be discussed. This
relationship can be used in order to detect different transitions to synchronisation and also to detect synchronisation in
cases where known methods fail.

There are three basic types of synchronisation in coupled complex systems: if the trajectories of the systems evolve
due to coupling on the same trajectory, they are completely synchronised. If there exists a functional relationship
between the systems, they are generalised synchronised, and if their phases adapt to each other so that they evolve in
the same manner, the systems are phase synchronised.
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If two systems synchronise in some way, their recurrences in phase space are not independent from each other.
Hence, comparing the recurrences of each single system with the joint recurrences of the entire system, we can expect
to get indications about their synchronisation type and degree.

On the other hand, RPs reflect the different time scales which play a crucial role in the dynamics of a system.
For example, the RP of a periodic trajectory (Fig. 1A) consists of uninterrupted diagonal lines equally spaced. The
distance between the diagonal lines is the period of the trajectory. In the case of white noise (Fig. 1C), the RP
consists of mostly isolated points uniformly distributed, thus, the distances between the recurrence points are uniformly
distributed, indicating that there is no predominant time scale in the series. Hence, there is an equivalence between the
distances which separate the recurrent points in the RP and the characteristic time scales of the considered system. This
correspondence is crucial in order to analyse phase synchronisation, where the phases or time scales of the interacting
systems are locked.

In this section, we give first a brief overview about synchronisation of chaotic systems. Then, the detection of different
kinds of transitions to synchronisation by means of joint recurrences is presented. At last, some indices for the detection
of phase and generalised synchronisation based on recurrences are introduced.

3.8.1. Synchronisation of chaotic systems
Chaotic systems defy the concept of synchronisation due to the high sensitivity to slightly different initial conditions.

However, it has been demonstrated that this kind of systems can synchronise.
The first studies about synchronisation of chaotic systems consider complete synchronisation (CS). In this case,

coupled identical chaotic systems which start at different initial conditions evolve onto the same trajectory [130–132].
However, under experimental conditions it is difficult and mostly impossible to have two fully identical systems.
Usually, there is some mismatch between the parameters of the systems under consideration. Hence, it is important
to study synchronisation between non-identical systems. Starting with two uncoupled non-identical oscillators and
increasing the coupling strength, a rather weak degree of synchronisation may occur, where the phases and frequencies
of the chaotic oscillators become locked, whereas their amplitudes often remain almost uncorrelated. This behaviour
is denoted by phase synchronisation (PS).

The phase of a chaotic autonomous oscillator is closely related to its zero Lyapunov exponent because it corresponds
to the translation along the chaotic trajectory. Hence, a perturbation in this direction neither decays nor grows. This
property makes the adjustment of the phases of two chaotic oscillators (or of one oscillator and a force) possible. If two
chaotic oscillators are not coupled, the two zero Lyapunov exponents will be linked to the individual phases. Increasing
the coupling strength, PS can be obtained by the transition of one of the zero Lyapunov exponents to negative values,
indicating the establishment of a relationship between the phases [133].

If the coupling strength between non-identical chaotic oscillators is further increased, a strong dependence between
the amplitudes will then be established, so that the states of both oscillators become almost identical but shifted in time,
i.e. �x(t) ≈ �y(t + 
) [99]. This regime is called lag synchronisation (LS). The transition to LS has also been related to
the transition of a positive Lyapunov exponent to negative values. Actually, LS sets in after the zero crossing of the
Lyapunov exponent. After the onset of LS, a further increase of the coupling strength leads to a decrease of the time
lag 
 between the trajectories of the oscillators. Hence, the oscillators tend to be almost synchronised, i.e. �x(t) ≈ �y(t).

Note that the above descriptions of synchronisation transitions and their connection with the changes in the Lyapunov
spectrum is valid for phase coherent oscillators, for which a phase can be defined as a monotonously increasing function
of time. However, for non-phase coherent chaotic oscillators, this definition may not be possible and the crossing of
the zero Lyapunov exponent to negative values may not be an indicator for the onset of PS [134].

The question about synchronisation of coupled systems which are essentially different has been addressed first in
[131,135]. In this case, there is in general no trivial manifold in phase space which attracts the systems’ trajectories. It
has been shown, that these systems can synchronise in a more general way, namely �y= �f (�x), where �f is a transformation
which maps asymptotically the trajectories of �x into the ones of the attractor �y, leading to generalised synchronisation
(GS). The properties of the function �f depend on the features of the systems �x and �y, as well as on the attraction
properties of the synchronisation manifold �y= �f (�x). In most cases, evidence of GS has been provided for unidirectional
coupling schemes. However, examples of bidirectionally coupled systems that undergo GS also exist, as e.g. shown
in [136,137].

All these different types of synchronisation between complex systems have been demonstrated in numerous laboratory
experiments [132,138–143] and in natural systems [144–146].
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Fig. 33. The difference |��| between the mean frequencies of two Rössler oscillators in dependence on the frequency mismatch � and coupling
strength � shows the well-known Arnold tongue [147].

3.8.2. Detection of synchronisation transitions
As we have seen in Section 3.6, it is possible to estimate the joint Rényi entropy by means of JRPs (cf. Eq. (83)).

In this section, the transitions to PS and LS will be characterised by means of the joint Rényi entropy. To exemplify
this, we consider the prototypical chaotic system of two mutually coupled Rössler oscillators, Eqs. (A.7) and (A.8)
with a = 0.15, b = 0.20, c = 10, for the coupling parameters � ∈ [−0.04, 0.04] and � ∈ [0.0, 0.12], for which the two
oscillators undergo transitions to PS. The difference of the mean frequencies �� = �1 − �2 of both oscillators reveals
the well-known Arnold tongue (Fig. 33; the mean frequencies �1 and �2 are calculated as proposed in [133]).

Next, we estimate JK2 based on JRPs, Eq. (83), in the same parameter range for both oscillators. The results also
reflect the Arnold tongue (Fig. 34A), but exhibit more details than �� (Fig. 33).

• First, two “borders” in the upper part of the plot can be observed (� > 0.04): the outer one corresponds to the border
of the Arnold tongue, i.e. inside this border the oscillators are in PS, whereas outside they are not. Both borders have
very low values of ĴK2, i.e. the behaviour of the system is rather regular there, even periodic in small regions on
both borders. This is a remarkable fact, because it means that for relatively high coupling strengths the transition to
PS is chaos–period–chaos, since inside the tongue is ĴK2 > 0, indicating a chaotic regime.

• Inside the Arnold tongue, for coupling strengths � between ∼ 0.025 and 0.04, a region can be found (which looks
like two eyes), where the value of ĴK2 is (almost) zero, i.e. the region is periodic or quasi-periodic.

• For ��0.03 the region inside the Arnold tongue is “more chaotic” (larger ĴK2) than outside the tongue. This is
surprising, as we would expect that if both oscillators are synchronised, the behaviour of the whole system becomes
more and more regular for increasing coupling.

Hence, by means of JK2 estimated by recurrences, new characteristics of the transition to PS can be found.
In order to validate these results, the formal relationship between K2 and the Lyapunov exponents, Eq. (67), can be

used. As two coupled systems can be regarded as a single system, the joint Rényi entropy corresponds to the Rényi
entropy of the whole system. Therefore, Eq. (67) is also valid for JK2, considering the sum over the positive Lyapunov
exponents of both sub-systems.

We calculate the Lyapunov spectrum of the whole system defined by Eqs. (A.7) and (A.8), by using the equations (i.e.
not estimated from the time series). As JK2 is bounded from above by the sum of the positive Lyapunov exponents,
Eq. (67), the plot of

∑
�i>0 �i shows qualitatively the same structures as the plot of ĴK2 (Fig. 34A and B). It is

noteworthy, that JK2 was estimated from the time series of both oscillators, consisting of 10,000 data points and with
a sampling rate corresponding to 30 data points per oscillation, whereas for the computation of the sum of the positive
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Fig. 34. (A) Estimate of the joint Rényi entropy ĴK2 of two Rössler oscillators in dependence on the frequency mismatch � and coupling strength �.
(B) Sum of the positive Lyapunov exponents of the two Rössler oscillators in dependence on the frequency mismatch � and coupling strength �. (C)
and (D) magnifications of the joint Rényi entropy (C) and the sum of the positive Lyapunov exponents (B) for low values of the coupling strength:
The tip of the Arnold tongue cannot be clearly distinguished by the sum of the positive Lyapunov exponents, but by the joint Rényi entropy [147].

Lyapunov exponents, Eqs. (A.7) and (A.8) were used [147]. Hence, the technique to estimate the predictability of the
system in parameter space based on JRPs is quite appropriate and yields robust and reliable results even in cases, where
the equations governing the system are not known.

However, there is one qualitative difference between both approaches: for � ∈ [0, 0.006] the tip of the Arnold tongue
can be clearly identified by ĴK2, but it cannot be distinguished by considering the sum of the positive Lyapunov
exponents (Fig. 34C and D). This is due to the fact, that the equality K2 =∑

�i>0 �i holds only for hyperbolic systems,
but the six-dimensional system, Eqs. (A.7) and (A.8), is not hyperbolic, and hence only the relation (67) holds. Hence,
JK2 provides important complementary information to the sum of the positive Lyapunov exponents.

3.8.3. Detection of PS by means of recurrences
In order to detect PS, now we use the relationship between the (vertical) distances which separate diagonal lines in

an RP, and the time scales which characterise the dynamical system.
The straightforward procedure to detect PS in complex oscillators is to estimate explicitly their phases. If the system

has a dominant peak in the power spectrum, there are several methods to define the phase. One possibility is to project
the trajectory on an appropriate plane, so that the projection looks like a smeared limit cycle with well-defined rotations
around a centre (Fig. 35A). Then the phase can be identified with the angle of rotation [133,148]

�(t) = arctan
y(t)

x(t)
. (110)
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the Rössler attractor in the funnel regime, Eqs. (A.5), with a = 0.3, b = 0.4 and c = 7.5, on the (x, y)-plane. There is no point around which the
trajectory oscillates. Hence, the definition of the phase by Eq. (110) is not appropriate in this case.

But a pre-requisite for the appropriate application of these techniques is that the trajectory in a certain projection plane
moves around an origin. This condition may not be met if the signal has a broad-band spectrum, which is typical for
non-coherent signals (Fig. 35B) [133,148,149].

One approach to overcome this problem is to use an ensemble of well-defined oscillators which act as a filter to find
out the frequency of the complex signal [149]. However, depending on which coordinate used to couple the complex
system to the ensemble of oscillators, the value obtained for the frequency can vary. Another definition of the phase,
based on the general idea of the curvature, has recently been proposed to treat such systems, e.g., the Rössler system in
the non-coherent funnel regime [150]. However, this approach is in general limited to lower-dimensional systems and
is rather sensitive to high levels of noise.

Alternatively, the concept of recurrence can be used to detect indirectly PS in a wide class of chaotic systems and
even for time series corrupted by noise, where other methods fail [151]. As demonstrated in Section 3.5.2, diagonal
lines in the RP indicate the existence of some determinism in the system under consideration. The vertical distances
between these diagonal lines reflect the characteristic time scales of the system. In contrast to periodic dynamics, for
a chaotic oscillator the diagonal lines are interrupted due to the divergence of nearby trajectories. Furthermore, the
distances between the diagonal lines are not constant, i.e. we find a distribution of distances, reflecting the different
time scales present in the chaotic system (Fig. 36).

If two oscillators are in PS, the distances between diagonal lines in their respective RPs coincide, because their
phases, and hence their time scales adapt to each other. However, the amplitudes of oscillators, which are only PS but
not in GS or CS, are in general uncorrelated. Therefore, their RPs are not identical. However, if the probability that
the first oscillator recurs after 
 time steps is high, then the probability that the second oscillator recurs after the same
time interval will be also high, and vice versa. Therefore, looking at the probability p(ε, 
) that the system recurs to
the ε-neighbourhood of a former point �xi of the trajectory after 
 time steps and comparing p(ε, 
) for both systems
allows detecting and quantifying PS properly. p(ε, 
) can be estimated directly from the RP by using the diagonal-wise
calculated 
-recurrence rate, Eq. (50),

p̂(ε, 
) = RR
(ε) = 1

N − 


N−
∑
i=1

	(ε − ‖�xi − �xi+
‖). (111)

As already stated in Section 3.5.2, p̂(ε, 
) can be considered as a generalised auto-correlation function, revealing also
higher-order correlations between the points of the trajectory in dependence on 
. In order to simplify the notation,
henceforth we will use p(
) instead of p̂(ε, 
).
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Fig. 36. (A) RP of the Rössler system, Eqs. (A.5), for a = 0.15, b = 0.2 and c = 10. (B) Corresponding probability of recurrence p(
), i.e. RR
.

Studying the coincidence of the positions of the maxima of p
 for two coupled systems �x and �y, PS can be identified.
More precisely, the correlation coefficient between p�x


 and p�y(
)

CPR = 〈p̄�x(
)p̄�y(
)〉, (112)

can be used in order to quantify PS, where p̄�x(
) and p̄�y(
) are the probabilities normalised to zero mean and standard
deviation of one. If both systems are in PS, the probability of recurrence will be maximal at the same time and
CPR ≈ 1. On the other hand, if the systems are not in PS, the maxima of the probability of recurrence will not occur
simultaneously. Then we observe a drift and hence expect low values of CPR.

Example. Detection of PS in mutually coupled Rössler oscillators.

In order to exemplify how this method works, we consider two mutually coupled Rössler systems, Eqs. (A.9) and
(A.10), in the phase coherent regime (a = 0.16, b = 0.1, c = 8.5). According to [150], for � = 0.02 and � = 0.05 both
systems are in PS. We observe that the local maxima of p�x(
) and p�y(
) occur at 
 = nT , where T is the mean period
of both Rössler systems and n is an integer (Fig. 37A).

It is important to emphasise that the heights of the local maxima are in general different for both systems if they
are only in PS and not in GS, as we will see later. But the positions of the local maxima of p(
) coincide, and the
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synchronised and (B) non-phase synchronised regime. Solid line: oscillator �x, dashed line: oscillator �y.

correlation coefficient is CPR = 0.998. For �= 0.02 the systems are not in PS and the positions of the maxima of p(
)
do not coincide anymore (Fig. 37B), clearly indicating that the frequencies are not locked. In this case, the correlation
coefficient is CPR = 0.115.

It is important to emphasise that this method is highly efficient even for non-phase coherent oscillators, such
as two mutually coupled Rössler systems in the funnel regime, Eqs. (A.9) and (A.10), for a = 0.2925, b = 0.1,
c = 8.5, � = 0.02. We analyse again two different coupling strengths: � = 0.2 and � = 0.05. The peaks in p(
)
(Fig. 38) are not as well-pronounced and regular as in the coherent regime, reflecting the different time scales
that play a relevant role and the broad band power spectrum of these systems. However, for � = 0.2 the posi-
tions of the local maxima coincide for both oscillators (Fig. 38A), indicating PS, whereas for � = 0.05 the posi-
tions of the local maxima do not coincide anymore (Fig. 38B), indicating non-PS. These results are in accordance
with [150].

In the PS case of this latter example, the correlation coefficient is CPR=0.988, and in the non-PS case, CPR=0.145.
Note that the positions of the first peaks in p(
) coincide (Fig. 38B), although the oscillators are not in PS. This is due
to the small frequency mismatch (2� = 0.04). However, by means of the index CPR we can distinguish rather well
between both regimes.

Furthermore, the index CPR is able to detect PS even in time series which are strongly corrupted by noise [151].
Additionally, CPR indicates clearly the onset of PS. In [151], the results obtained for CPR in dependence on the
coupling strength were compared with the Lyapunov exponents, as they theoretically indicate the onset of PS (in
the phase-coherent case). The results obtained with CPR coincide with the ones obtained by means of the Lyapunov
exponents.

The results obtained with CPR are very robust with respect to the choice of the threshold ε. Simulations show
that the outcomes are almost independent of the choice of ε corresponding to a percentage of black points in the RP
between 1% and 90%, even for non-coherent oscillators. The patterns obtained in the RP of course depend on the
choice of ε. But choosing ε for both interacting oscillators in such a way that the percentage of black points in both
RPs is the same, the relationship between their respective recurrence structures does not change for a broad range of
values of ε.



292 N. Marwan et al. / Physics Reports 438 (2007) 237–329

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

Lag τ 

p
(τ

)
p
(τ

)

0 5 10 15 20 25 30 35 40 45 50

0

0.1

0.2

0.3

0.4

Lag τ 

A

B

Fig. 38. Recurrence probability t (
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3.8.4. Detection of GS by means of recurrences
Now we demonstrate that it is also possible to detect GS by means of RPs [151]. When the equations of the

system are known, GS can be characterised by the conditional stability of the driven chaotic oscillator [152]. However,
when analysing measured time series, the model equations are usually not known. Hence, several methods based on
the technique of delay embedding and on conditional neighbours have been developed to characterise GS, such as
the method of mutual false nearest neighbours (MFNN) [135,137,153]. But systems exhibiting non-invertibility or
wrinkling hamper the detection of GS by such techniques [154]. Further techniques, such as the �p and �p,q method,
have been developed to overcome these problems [155].

We develop an index for GS based on RPs which can also deal with such problems. It is based on the results
presented in Section 3.9: the recurrence matrix of a system contains the whole information necessary to reconstruct it
topologically, i.e. the recurrence matrix contains all “essential” dynamical information about the system. On the other
hand, two systems connected by a homeomorphism are said to be topologically equivalent. Hence, two such systems
should have a very similar recurrence matrix.

Let us consider the average probability of recurrence over time for systems �x and �y, i.e. the recurrence rate, Eq. (41),
RR �x and RR �y . The average probability of joint recurrence over time is then given by RR �x,�y , which is the recurrence
rate of the JRP of systems �x and �y [147]. If both systems are independent, the average probability of the joint recurrence
will be RR �x,�y =RR �xRR �y . On the other hand, for both systems in GS, we expect approximately the same recurrences,
and hence RR �x,�y ≈ RR �x = RR �y. For the computation of the recurrence matrices in the case of essentially different
systems that undergo GS, it is more appropriate to use a fixed amount of nearest neighbours Nn for each column in
the matrix than using a fixed threshold (FAN, cf. Section 3.2.5) [153], which corresponds, as already stated, to the
original definition of RPs by Eckmann et al. [2]. RR �x and RR �y are then equal and fixed by Nn, because of Eq. (44)
RR �x = RR �y = Nn/N . Now we call RR = Nn/N and define the coefficient

S = RR �x,�y

RR
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Fig. 39. Projection of the (A) Rössler driving system, (B) the driven Lorenz system and (C) the plot of the second components of these systems x2
vs. y2.

as an index for GS that varies from RR (independent) to 1 (GS). Furthermore, in order to be able to detect also lag
synchronisation (LS) [99] with this index, a time lag is included by using the time delayed JRP, Eq. (40),

S(
) =
1

N2

∑N
i,j JR�x,�y

i,j (
)

RR
, (113)

where JRP is computed by using FAN. Then, we introduce an index for GS based on the average joint probability of
recurrence JPR by choosing the maximum value of S(
) and normalising it,

JPR = max



S(
) − RR

1 − RR
. (114)

The index JPR ranges from 0 to 1. RR is a free parameter. However, simulations show that the JPR index is rather
independent of the choice of RR.

Example. Detection of GS in a driven Lorenz system.

To illustrate the application of JPR, we analyse an interaction of two rather different chaotic oscillators, the Lorenz
system (Eqs. (A.12) with � = 10, r = 28 and b = 8

3 ) driven by a Rössler system (Eqs. (A.11) with a = 0.45, b = 2 and
c = 4). Since the driven Lorenz system is asymptotically stable [152], systems (A.11) and (A.12) are in GS. However,
the shapes of both attractors in phase space are very different (Fig. 39A and B), and both are neither in LS nor in CS
(Fig. 39C).

To mimic typical experimental situations, we perform the analysis with just one component of each system. 10,000
data points are used with a sampling time interval of 0.02. Using x3 and y3 as observables, we reconstruct the phase
space vectors using delay coordinates, Eq. (9), for �x: m = 3, 
 = 85 and for �y: m = 3, 
 = 10.

The RPs of both sub-systems �x and �y are rather similar despite of the essential difference between the shapes of the
attractors (Fig. 40A and B). Therefore, the structures of each single RP are also reflected in the JRP (Fig. 40C) and
consequently, its recurrence rate is rather high. With the choice RR = 0.02 the JPR index is JPR = 0.64 (the value of
JPR is similar for other choices of RR).

In contrast, the RPs of the independent systems (u = y1 in Eqs. (A.12), Fig. 41) look rather different (Fig. 42A and
B; using embedding parameters m = 3 and 
 = 5 for both systems, and RR = 0.02). Therefore, the JRP is almost
empty (Fig. 42C), i.e. the mean probability over time for a joint recurrence is very small. In this case, the JRP index is
JPR = 0.03.
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Fig. 40. RPs of (A) the Rössler sub-system, (B) the driven Lorenz sub-system, and (C) the JRP of the whole system.
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Fig. 41. Projection of the (A) Rössler system, (B) the independent Lorenz system and (C) the plot of the second components of these systems
x2 vs. y2.

3.8.5. Comparison with other methods
As mentioned at the beginning of this section, there are several methods to detect GS. They might be divided in

three main kinds: the conditional stability approach [152], the auxiliary system approach [156] and the MFNN-based
approach [135,137,153].

In the case of the analysis of experimental time series, the conditional stability approach has the disadvantage that it
requires the estimation of the Lyapunov exponents, which might be rather difficult by dealing with observed data. The
auxiliary system approach requires an identical copy of the response system, which might be problematic to obtain in
the case of measured data due to noise influences and inaccuracy in the parameters of the system. In contrast, the false
nearest neighbours approach is more appropriate for the analysis of experimental data. However, if the systems to be
analysed have more than one predominant time scale, some errors might occur. For example, if the systems have a slow
and a fast time scale, even though the driver and the response systems are not in GS, the parameter MFNN might be
of the order of one. This is because the distance between the nearest neighbours of points of the trajectory belonging
to the fast time scale is of the order of the size of the attractor. For example, in the case of experimental data from
electrochemical oscillators which are characterised by a non-phase coherent dynamics, the method of the false nearest
neighbours does not work to detect GS. In contrast, the recurrence-based method detects the onset of GS correctly
(cf. Section 4.7). Note that the recurrence-based method does not consider the distances between nearest neighbours
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Fig. 42. RPs of (A) the Rössler sub-system, (B) the independent Lorenz sub-system, and (C) the JRP of the whole system.

to detect GS, but marginal and joint probabilities of recurrence for the driver and response systems. The recurrence-
based approach is close to the concept of transfer entropy [157] used for the detection of the direction of the coupling
between systems.

Furthermore, there might be complications in the dynamics of the systems, such as non-invertibility and wrinkling,
which hamper the detection of GS [154]. Some approaches, such as the time series based implementation of the aux-
iliary systems approach [158] and the �p,q method [155] have been introduced to overcome such problems. The �p,q

method considers two points of the trajectory as neighbours, if they are neighbouring not only at one time instant,
but during some longer interval of time. By means of this extension, it is possible to detect GS also in the compli-
cated cases of non-invertibility and wrinkling. Introducing an analogous extension in the recurrence-based approach,
which can be accomplished increasing the embedding dimension, it is also possible to detect GS in such more in-
tricated cases.

With respect to the computational demand, the recurrence-based approach is comparable to the false nearest neighbour
or �p,q approaches, as in all cases the distances between all pairs of points of the trajectories have to be computed,
which is a N2 problem.

3.8.6. Onset of different kinds of synchronisation
We have seen that the indices CPR and JPR clearly distinguish between oscillators in PS and oscillators which

are not in PS, respectively, GS. On the other hand, the synchronisation indices should not only distinguish between
synchronized and not synchronised regimes, but also indicate clearly the onset of PS, respectively, of GS.

In order to demonstrate that the recurrence based indices fulfill this condition, we exemplify their application with
two mutually coupled Rössler systems in a phase coherent regime, Eqs. (A.9), with a = 0.16, c = 8.5 and � = 0.02. We
increase the coupling strength � continuously and compute for each value of � the indices CPR, and JPR.

For a not too large but fixed frequency mismatch between both oscillators and increasing coupling strength, the
transitions to PS and LS are reflected in the Lyapunov spectrum [133,134]. If both oscillators are not in PS, there are
two zero Lyapunov exponents, that correspond to the (almost) independent phases. Increasing the coupling strength, the
fourth Lyapunov exponent �4 becomes negative (Fig. 43A), indicating the onset of PS. For higher coupling strengths,
the second Lyapunov exponent �2 crosses zero, which indicates the establishment of a strong correlation between the
amplitudes (Fig. 43A). This last transition occurs almost simultaneously with the onset of LS [99]. Therefore, �2 and
�4 are considered in order to validate the results obtained with CPR and JPR.

Using the CPR index, the transition to PS is detected when this index becomes of the order of one (Fig. 43B). The
transition to PS occurs at approximately � = 0.037, in accordance with the transition of the fourth Lyapunov exponent
�4 to negative values. The JPR index also exhibits the transition to PS, although it is an index for GS and LS. This index
shows three plateaus in dependence on the coupling strength (Fig. 43C), indicating the onset of PS at the beginning of
the second one. On the other hand, JPR clearly indicates the onset of LS, because it becomes nearly one (third plateau)
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Fig. 43. (A) �2 (solid line) and �4 (dashed line) as well as (B) CPR and (C) JPR indices in dependence of the coupling strength for two mutually
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at approximately �=0.1 (Fig. 43C), after the transition from hyper-chaos to chaos, which takes place at approximately
�=0.08 (Fig. 43A). Between �=0.08 and �=0.1, the values of JPR have large fluctuations. This reflects the intermittent
lag synchronisation [99,159], where LS is interrupted by intermittent bursts of no synchronisation.

3.9. Information contained in RPs

In the preceding sections it has been shown that the recurrence matrix contains relevant information about the
dynamics of the system under consideration. Quantifying the structures in the RP, chaos–period and even chaos–chaos
transitions can be detected. Furthermore, it has been demonstrated that dynamical invariants, such as the correlation
entropy, correlation dimension and mutual information can be estimated by means of RPs. On the one hand, all relevant
dynamical information is fully preserved in the distance matrix Di,j = ‖�xi − �xj‖ [160]. But on the other hand, the
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Fig. 44. The rank order of a time series can be reconstructed from an RP by an algorithm which searches for the minimum Rj \Ri , i.e. the set of
neighbours of xj which are not neighbours of xi . If j = mink{Rk\Ri }, then i = rk and j = rk+1 or vice versa, i.e. i and j are consecutive points in
the rank ordered time series.
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Fig. 45. Embedded Rössler attractor based on the x-component of the original data (A) and from the reconstructed x-component (B) [161].

possibility to estimate dynamical invariants suggests that the RP contains much information about the underlying
system, even though the trajectory is reduced to a matrix of zeros and ones. We next show that under some general
conditions, it is possible to reconstruct the underlying attractor from the binary RP, at least topologically [161]. This
is based on the fundamental property that from the RP of a scalar time series {xi}Ni=1, a new time series {x′

i}Ni=1 can be
obtained, which has the same rank order as the original one. Then, from this {x′

i}Ni=1 we can reconstruct the attractor
by, e.g., time delay embedding, Eq. (9). The so reconstructed manifold is topologically equivalent to the original one,
i.e. there exists a homeomorphism between both attractors. However, ε must be chosen appropriately to make this
reconstruction possible.

The reconstruction algorithm uses the RP as input and yields the rank order {ri}Ni=1 of the underlying time series
{xi}Ni=1, i.e. xr1 �xr2 � · · · �xrN as its output. The algorithm is based on the idea that two consecutive points xri

and xri+1 of this rank ordered time series can be supposed to have rather similar neighbourhoods Rri and Rri+1 (cf.
Eq. (85) and Fig. 44; Ri corresponds to the recurrence points in the column i of the RP). Hence, the algorithm searches
for columns in the RP which are “as similar as possible”, reconstructing iteratively the rank order of the time series.

It is important to note that the reconstruction algorithm assumes that the maximum distance between two consecutive
points in the rank ordered time series is smaller than ε. The reconstruction algorithm consists of three main phases and
a total of nine steps which are described in detail in Appendix B.2.

To illustrate this reconstruction, we consider the Rössler attractor, Eqs. (A.5), for a = 0.15, b = 0.2 and c = 10. We
compute the RP of the x-component and use it as input for the reconstruction algorithm. Then, we obtain the time series
x′, which has the same rank order as x. The both attractors derived from the delay embedded x and x′ are rather similar
(Fig. 45). It is obvious that both attractors are homeomorphic.

The needed number of points for the reconstruction for a given threshold ε can be estimated, assuming that the
values are uniformly distributed. The distance D between two neighbouring points in the interval [xmin, xmax] is then
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exponentially distributed

P(D) = Ne−ND , (115)

where N is the length of the time series. Assuming, without loss of generality, that [xmin, xmax]= [0, 1], there are N +1
intervals, which have to be all smaller than ε. The probability that the maximal distance between two consecutive points
in the interval is smaller than ε is given by

p(ε) = (1 − e−Nε)N+1. (116)

Using relation (116), the minimal length of the time series necessary to reconstruct (with a probability of about 0.999)
the time series (and the attractor) from an RP can be estimated. Using ε = 0.1, only about 90 points are needed to
reconstruct the time series. In general, the larger ε, the less points are needed to reconstruct the time series. However, if ε

is too large, the reconstruction algorithm works but cannot distinguish properly different points and possibly important
fine structures of the system. This problem can be exemplified by choosing ε = 1/2 + � in the case of the time series,
which is uniformly distributed in the unit interval. Then, all points in the band [1/2 − �, 1/2 + �] have the same
neighbourhoods and hence cannot be distinguished.

Note that the reconstruction algorithm is only valid if we have the RP of a scalar time series, i.e. the reconstruction
algorithm does not work for RPs of an m-dimensional trajectory with m > 1. It is still an open question, whether it is
possible to reconstruct the attractor from the RP of a higher-dimensional trajectory. First results indicate that (under
some conditions) it is possible.

3.10. Recurrence-based surrogates to test for synchronisation

In Section 3.8 we have considered the problems concerning the phase synchronisation analysis of complex systems
when there is more than one narrowband time scale, i.e. when their power spectra are rather broad. As it was shown,
RPs help to overcome this problem, allowing to extend the concept of phase synchronisation to rather complex systems.

Another important problem in the framework of synchronisation analysis is that even though the synchronisation
measures may be normalised, experimental time series often yield values of these measures which are neither close to
0 nor to 1 but intermediate, e.g., 0.4 or 0.6 and hence are difficult to interpret. This problem can be overcome if the
coupling strength between the interacting systems can be varied systematically and a rather large change in the measure
can be observed, i.e. if it is an active experiment [133]. However, much more typical are passive experiments, in which
it is not possible to change the coupling strength systematically, e.g., the possible synchronisation of the heart beats
of a mother with those of her foetus [162]. In some cases, this problem has been tackled by interchanging the pairs
of oscillators, i.e. testing the same foetus with a different (surrogate) mother, and using them as natural surrogates.
These surrogates are independent and hence cannot be in PS with the original system. Thus, if the synchronisation
index, as Eq. (112), obtained from the original data is not significantly higher than the index obtained from the
natural surrogates, there is not sufficient evidence to claim synchronisation. But even this natural surrogates approach
via time series has some drawbacks. The natural variability and also the frequency of the natural surrogates are in
general different from the original ones. Furthermore, the data acquisition can be expensive and at least in many cases
problematic or even impossible (e.g. in the climatological interaction between the El Niño/Southern Oscillation and
the North Atlantic Oscillation). In such cases it would be convenient to perform a hypothesis test based on surrogates
generated by a mathematical algorithm. The null hypothesis, which the surrogates must be consistent with, is that they
are independent realisations of the same underlying system, i.e. trajectories of the same underlying system starting
at different initial conditions. In this section, we present a technique for the generation of surrogates, which is based
on RPs. These surrogates mimic the dynamical behaviour of the system and are consistent with the null hypothesis
mentioned above. Then, computing the synchronisation index between one sub-system of the original system and
another sub-system of the surrogate, and comparing it with the synchronisation index obtained for the original system,
we can test if an independent process can give the same index of PS.

As suggested in Section 3.9, it is possible to reconstruct topologically the attractor of the system from its RP. Therefore,
the RP contains all topological information about the underlying attractor. Hence, a first idea for the generation of
surrogates is to change the structures in an RP consistently with the ones produced by the underlying dynamical system
(the structures in the RP are linked to dynamical invariants of the underlying system, such as the correlation entropy
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and the correlation dimension, Section 3.6) and then reconstruct the trajectory from the modified RP. Furthermore, we
use the fact that there are identical columns in an RP, i.e. Ri,k = Rj,k ∀k. Thus, there are points which are not only
neighbours (i.e. ‖�xi − �xj‖ < ε), but which also share the same neighbourhood. These points are called twins. Twins
are special points of the time series as they are indistinguishable considering their neighbourhoods, but in general
different and, hence, have different pasts and—more important—different futures. The key idea of how to introduce the
randomness needed for the generation of surrogates of a deterministic system is that we can jump randomly to one of
the possible futures of the existing twins. The generation of a twin surrogate trajectory {�xs

i }Ni=1 of {�xi}Ni=1 is described
in detail in the Appendix B.3.

This RP-based algorithm creates twin surrogates (TS) which are shadows of a (typical) trajectory of the system
[163]. In the limit of an infinitely long trajectory, its TS are characterised by the same dynamical invariants and
the same attractor. However, if the measure of the attractor can be estimated from the observed finite trajectory
reasonably well, its surrogates share the same statistics. The trajectories of the TS are visually indistinguishable from
the original ones (Fig. 46). Also their power spectra and correlation functions are consistent with the ones of the
original system.

The idea behind TS to test for synchronisation consists in exchanging one original sub-system with one twin surrogate.
Then, if the synchronisation index obtained for the original system is not significantly different from the one computed
for the exchanged sub-systems, we have not sufficient evidence to claim synchronisation.

Suppose that we have two coupled self-sustained oscillators �xi and �yi . Then, we generate M pairs of TS of the joint
system, i.e. {�xsj

i }Mj=1 and {�ysj
i }Mj=1 (for i = 1, . . . , N). These surrogates correspond to independent copies of the joint

system, i.e. trajectories of the whole system beginning at different initial conditions. Note, that the coupling between �xi

and �yi is also mimicked by the surrogates. Next, we compute the differences between the phases of the original system
��i = |�xi

− �yi
| applying, e.g., the analytical signal approach [133] and compare them with ��

sj
i = |�xi

− �
sj
yi

|.
Then, if ��i does not differ significantly from ��

sj
i with respect to some index for PS, the null hypothesis cannot be

rejected and, thus, there is notenough evidence for PS.

Example. Statistical test of the synchronisation analysis of Rössler oscillators.

We illustrate the TS technique to test for PS by considering two non-identical, mutually coupled Rössler oscillators,
Eqs. (A.7) and (A.8), with a = 0.15, b = 0.20, c = 10 and � = 0.015. In this active experiment, the coupling strength �



300 N. Marwan et al. / Physics Reports 438 (2007) 237–329

0 0.02 0.04 0.06 0.08

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R

R
o

ri
g

in
a

lα-
le

v
e
l

0

0.05

0.1

0.15

λ i
0 0.02 0.04 0.06 0.08

0

0.05

-0.05

-0.05

-0.1
PS 

A B

C

μ μ

Fig. 47. (A) Mean resultant length R of the original two mutually coupled Rössler systems, Eqs. (A.7) and (A.8), with a = 0.15, b = 0.20, c = 10,
a frequency mismatch of � = 0.015 (solid), and significance level of 1% (dashed). (B) Difference between R of the original data and significance
level of 1% (solid), 2% (dashed) and 5% (dashed–dotted). (C) The four largest Lyapunov exponents for the considered six-dimensional system. �4
is highlighted (solid) and the arrow indicates the transition to PS.

is varied from 0 to 0.08, and a PS index for the original trajectory is calculated for each value of �. Next, we generate
200 TS and compute the PS index between the measured first oscillator and the surrogates of the second one. As PS
index we use the mean resultant length R of complex phase vectors [164], which is motivated by Kuramoto’s order
parameter [165]

R =
∣∣∣∣∣ 1

N

N∑
i=1

ej��i

∣∣∣∣∣ . (117)

R takes values in the interval from 0 (non PS) to 1 (perfect PS) [164]. Let Rsi denote the PS index between the first
oscillator and the surrogate i of the second one. To reject the null hypothesis at a significance value �, R must be larger
than (1 − �) · 100% of all Rsj . This corresponds to computing the significance level from the cumultative histogram
at the (1 − �) level.

For � < 0.025, R of the original system is, as expected, below the significance level (Fig. 47A) and, hence, the
difference is negative (Fig. 47B). For higher values of �, R exceeds the significance level (the difference becomes
positive). This is in agreement with the criterion for PS via Lyapunov exponents �i [133]: �4 becomes negative at
� ≈ 0.028 (Fig. 47C), which approximately coincides with the intersection of the curve of R for the original system
and the significance level (zero-crossing of the curves in Fig. 47B). Therefore, the PS region can be successfully
recognised by means of the TS.

Note that also the significance limit increases when the transition to PS occurs (Fig. 47A). As the TS mimic both the
linear and nonlinear characteristics of the system, the surrogates of the second oscillator have the same mean frequency
in the PS region as the first original oscillator. Therefore, Rsj is rather high (it can take on values of up to 0.97).
However, �xi

and �
sj
yi

do not adapt to each other as they are independent, thus, the value of R for the original system
is significantly higher than the Rsj and, hence, it indicates PS. We notice that even though the obtained value for a
normalised PS index is higher than 0.97 (right side of Fig. 47A), this still does not provide conclusive evidence for PS.
The knowledge of the PS index alone is not sufficient to infer PS. Especially in passive experiments, the synchronisation
analysis should always be accompanied by a hypothesis test.
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3.11. Localisation of unstable periodic orbits by RPs

The localisation and quantification of unstable periodic orbits (UPOs) in chaotic attractors is very important as an
orbit on a chaotic attractor is the closure of the set of UPOs which build the skeleton of the attractor. Roughly speaking,
a trajectory, therefore, can be regarded as jumping from one UPO to the next one. Furthermore, the set of UPOs in an
attractor is a dynamical invariant of the system [166], as mentioned in Section 2.

RPs can be used to easily localise UPOs in chaotic time series [48,69,167]. The main idea is the following: when the
trajectory of the system comes close to an UPO, it stays in its vicinity for a certain time interval, whose length depends
on how unstable the UPO is. This is reflected in the RP, as the pattern corresponding to periodic movement consists of
uninterrupted equally spaced diagonal lines (if we consider the RP of the original trajectory in phase space and not a
projection). Hence, UPOs present in the underlying system can be localised by identifying such “windows” inside the
RP, where the patterns correspond to a periodic movement.

For example, we can consider the Rössler system, Eq. (A.5), with a = 0.15, b = 0.2 and c = 10. In its RP, many of
such “periodic” windows can be identified (Fig. 48). Moreover, the distance between the diagonal lines can vary from
window to window, indicating a different UPO with a different period. The period can be estimated by the vertical
distances between the recurrence points (e.g. by 〈T (2)〉 or the mean length of the white vertical lines) in the periodic
window multiplied by the sampling time of the integrated trajectory. The UPO, which the trajectory of the Rössler
system is close to, can easily be identified in the magnifications of three different windows of the RP as well as from
the corresponding segments of the trajectory (Fig. 49).

The problem of using this method to localise UPOs is that a finite-length trajectory cannot visit all UPOs embedded in
the attractor. Hence, it is still an open problem how to localise all of them using RPs. However, first results indicate that
there might be ways to overcome this difficulty. Furthermore, the authors in [167] claim that RPs are not appropriate to
find UPOs of high periods or UPOs which are very unstable. Nevertheless, the other existing methods to detect UPOs
based on time series have the same problem [168].

3.12. Influence of noise on RPs

In this section, an estimation of the errors due to observational noise on the quantification of RPs is derived. Based
on this estimation it is possible to give a criterion to choose an optimal threshold ε to minimise these errors [52].
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Assume that we have a given scalar time series xi corrupted by observational independent Gaussian noise �i , i.e. we
have measured yi = xi + �i . Then, in the simplest case of non-embedding, the recurrence matrix, Eq. (10), becomes

R̃i,j = 	(ε − |xi − xj + �i − �j |). (118)

In order to estimate how the observational noise changes the structures in R̃i,j with respect to Ri,j , we consider the
probability Pi,j to find a recurrence point at the coordinates (i, j).

For an ensemble of realisations of the noise W(0, �2), the observation yi is Gaussian distributed with mean xi and
standard deviation �. Furthermore, we assume without loss of generality that xi = 0 and xj = −Di,j (cf. Eq. (26)).
Then the probability to find a recurrence point at the coordinates i, j is given by

Pi,j =
(

1√
2��

)2 ∫ ∞

−∞
e−�2

i /2�2
∫ �i+ε

�i−ε

e−(�j −Di,j )2/2�2
d�j d�i

= 1

8

{
erfc2

(
Di,j − ε

2�

)
− erfc2

(
−Di,j − ε

2�

)
+ erfc2

(
−Di,j + ε

2�

)
−erfc2

(
Di,j + ε

2�

)}
, (119)

where erfc(·) = 1 − erf(·). Eq. (119) maps the distance matrix Di,j to the probability matrix Pi,j to find a recurrence
point in the RP of yi = xi + �i at the coordinates (i, j) for a fixed underlying process and an ensemble of realisations
of the observational noise. The smaller the values of � the closer P comes to a Heaviside function (Fig. 50). In the
presence of noise, recurrence points of the underlying system xi are recognised as such with probability less than one,
and analogously for non-recurrence points.
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Already a small amount of noise reduces the reliability of the quantification of RPs, e.g. for a noise level of 4%
the probability that

∣∣yi − yj

∣∣< ε for |xi − xj | ≈ ε is reduced from one to less than 0.6, i.e. more than 40% of the
recurrence points are not recognised.

If the density � of the differences xi − xj is given, the percentage of recurrence points pb(ε, �) that are properly
recognised in the presence of observational noise can be calculated

pb(ε, �) =
∫ ε

−ε
P(D, ε, �)�(D) dD∫ ε

−ε
�(D) dD

. (120)

Analogously, it is possible to compute the percentage of properly recognised non-recurrence points

pw(ε, �) =
∫ −ε

−∞(1 − P(D, ε, �))�(D) dD + ∫∞
ε

(1 − P(D, ε, �))�(D) dD

1 − ∫ ε

−ε
�(D) dD

. (121)

Hence, as usually, two types of errors can be distinguished:

(1) false negative: a recurrence point is not recognised as such with probability 1 − pb and
(2) false positive: a non-recurrence point is recognised as a recurrence point with probability 1 − pw.

In order to minimise these errors, the threshold ε should be chosen in such a way that pb and pw are maximised
simultaneously. Even though the results depend on the distribution of the time series, numerical simulations show
that the choice of the threshold should be at least five times the standard deviation of the observational noise ε ≈
5�. This minimal choice is appropriate for a vast class of processes (e.g. maps) [52]; higher-dimensional systems
may require even a higher threshold ε > 5�. If ε is smaller, effects of the observational noise will have a domi-
nant influence on the detection of recurrence points. On the other hand, if ε is near the standard deviation of the
underlying process, the density of recurrence points will be too high to detect detailed structures of the underlying
process.

The impact of the proper choice of the threshold can be demonstrated by studying the cumulative distribution of
diagonal lines in the RP, e.g. for the logistic map, Eq. (A.3), contaminated with Gaussian white noise. For the choice
of the threshold as the standard deviation of the observational noise, ε = �, the distribution of the diagonal lines of the
underlying process is biased when observational noise is present (Fig. 51A). In contrast, with the proper choice ε = 5�
the distribution of the diagonal lines in the presence of noise coincides with the distribution of the diagonal lines in the
absence of noise (Fig. 51B).
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Furthermore, noise has an influence on the estimation of the dynamical invariants. Using the knowledge about the
relationship between the dynamical invariants and the noise as well as the threshold ε, the noise level can be estimated.
Such a relationship has been developed for the correlation entropy [169], where a fit of the analytical function K2(ε)

to the obtained entropy computed by RPs is used to estimate the noise-level �.

4. Applications

The search for applications of RP-based methods in the World Wide Web reveals numerous works (at present,
the Scirus search engine finds over 1000 different works). RPs and the RQA are most popular in physiology. How-
ever, various successful applications in other fields of life science, as neuroscience and genomics, but also in ecol-
ogy, physics, chemistry, earth science and astrophysics, engineering and economy have also been published. In
the following, some overview about the potentials of RPs for applications is presented by means of a few selected
examples.

One of the first applications of RPs was the analysis of heart beat intervals [13]. This study has revealed typical
features in RPs for cardiac transplant patients and cardiomyopathy patients who underwent volume loading. Applying
the RPs, it was inferred that the dimensionality and entropy of the heart beat variations decrease during a significant
cardiac event like myocardial infarction or ventricular tachycardia. The investigation of the cardiac system is one of
the classical application fields of RPs and RQA. Numerous studies used, e.g., the RQA in order to monitor disease [15]
or to detect predecessors of cardiac arrhythmia [14].

In further life science research RPs, OPRPs as well as RQA have been applied to, e.g., electromyography data [170],
measurements based on eye movements [171], data of postural fluctuations [172], EEG data [16–18,97,173] or other
neuronal signals [174], in order to study the interacting physiological processes. Characteristic patterns and rather fine
frequency modulations in voice streams can be visualised by the means of RPs [61].

An RQA was applied to a DNA sequence of the genome Caenorhabditis elegans [175], which is a small (∼ 1 mm
long) soil nematode found in temperate regions. This analysis has revealed long-range correlations in the introns
and intergenic regions, which are caused by the frequent recurrence of oligonucleotides (a short sequence of some
hundreds of nucleotides) in these regions. The recurrence of the oligonucleotides has been discovered by computing
the recurrence rate for overlapping windows which cover the DNA sequence. Other studies confirm such long-range
correlations in DNA sequences [176].

An analysis based on RPs has been used to study monopole giant resonance in atomic nuclei [177]. Due to the fact
that a nucleus consists of protons and neutrons, the oscillations can be divided into two modes: (1) the densities of
protons and neutrons oscillates in phase (isoscalar mode) and (2) the two densities have opposite phases (isovector
mode). Both of these modes exhibit significantly different RPs. Where the oscillation of the isoscalar mode has an RP
typical for regular oscillations, the RP for the isovector mode uncovers non-stationary and chaotic dynamics. Other
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applications in physics were performed in order to estimate the signal-to-noise ratio in laser systems [52], or to estimate
dynamical invariants, as the dimensionality, of fluid flow systems [116].

In chemistry the RQA was applied to data from the Belousov–Zhabotinsky reaction especially to study the transitions
during its chemical evolution in an unstirred batch reactor [178]. Using the RQA measures, the transitions between
periodic, quasi-periodic and chaotic states could be observed. By means of JRPs, the synchronisation between elec-
trochemical oscillators were studied [151]. Other applications in chemistry/molecular biology concern the dynamics
of chemical processes, for example in molecular dynamics simulations of poly-peptides [11,12] or to detect chaotic
transitions of Nicotinamide adenine dinucleotide [179]. Applying the RQA to glycoproteins of a virus has uncovered
the interaction between specific glycoprotein partners [180].

Applications in earth science are yet rare. CRPs have been used in order to compare similar dynamical evolutions in
palaeo-climate and modern rainfall data in NW Argentina [7]. The ability of CRPs to align time scales of geophysical
profiles were demonstrated on rock- and palaeo-magnetic data from marine sediments [6]. The estimation of K2 by
means of RPs was used to compare a general circulation model (GCM) with re-analysis data [181]. A recent study
applied RPs on geomagnetic activity data represented by several measurements (proxies for eastward and westward
flowing polar currents) and derived the mutual information from these RPs [8].

An astrophysical application of RPs has used radiocarbon data of the last 7000 years [3]. The atmospheric radiocarbon
is influenced by the variation of solar activity and exhibits century-scale variations of chaotic nature. The main findings
based on the RP analysis and a surrogate test reveal that these variations are indeed different from linear processes and
that there are different types of large events affecting their tendency to recur (e.g. the Maunder minimum seems to be
unique, whereas the Oort and Dalton minima as well as the Medieval maximum tend to recur). Moreover, the authors
have found that the present-day data are similar to the Medieval maximum. Besides, RPs were also used in order to
investigate the synchronisation and phase difference in annual sunspot areas [5,182].

The stability of the orbits of terrestrial planets in the habitable zone of five extra-solar systems were investigated by
computing dynamical invariants derived from RPs [4]. By using the K2 entropy, one full stable system, three systems
with planets whose orbits are stable for a long time and one unstable system were detected.

In engineering, applications of RPs or RQA are yet also rather rare. One of the first has applied RPs to time series
generated by models of the Twin-T, Wien-bridge and other chaos generating electronic oscillator circuits [9]. Through
visual inspection of the RPs, the chaotic behaviour of the model results has been confirmed. RPs have been used to
estimate optimal embedding parameters and vicinity threshold which are used for a noise reduction scheme in human
speech signals [183]. A recent work proposed the method of JRPs as a very effective diagnosis tool in order to detect
damage-induced changes in materials [10].

RPs have been used for research in economics. For example, RPs have been inspected visually in order to find
chaos in economics time series [185,184]. Whereas these visual inspections could not find chaos in the considered
economic time series (e.g. unemployment rate, private domestic investment, foreign exchange rate), a combined “close
returns” and surrogate test seems to reveal nonlinear dependencies among data of exchange rates. Other studies of
foreign exchange data have used the RQA and have also found significant correlations between various currencies,
which were not obvious in the raw exchange data [186]. In contrast to the results in [184], the research of oth-
ers who used the RQA has revealed chaos in exchange data [187,188]. Other applications on stock indices tried to
predict “bubble bursts” on the stock market [189]. Moreover, the attempts to predict lottery numbers by the means
of recurrences should also be mentioned here, even this work seems to be not really serious (numerous sites in
the WWW).

In the following subsections, we show in detail some exemplary applications of RPs, CRPs, JRPs and their quantifi-
cation (RQA and dynamical invariants) to different kinds of experimental data.

4.1. RQA analysis in neuroscience

First, we illustrate the capabilities of the RQA to detect transitions in measured physiological data.
The activity of rather large ensembles of neurons (which act like nonlinear devices) is macroscopically measurable

in the electroencephalogram (EEG) of the human scalp, which results from a spatial integration of post-synaptic
potentials. Applying nonlinear techniques like the estimation of the correlation dimension to EEG has a long tradition
(e.g. [190–194]). However, most techniques are only well-defined for stationary time series generated by a low-
dimensional dynamical system, and, hence, they fail in investigating event-related brain potentials (ERPs) because
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they are non-stationary by definition [195]. Event-related potentials are characteristic changes in the EEG of a subject
during and shortly after a certain (e.g. visual or acoustic) stimulus (surprising moment). The notation for an ERP is,
e.g., N100 or P300, where N means a negative and P a positive potential and the number corresponds to the time of
ERP onset after the stimulus in milliseconds.

Traditionally, ERP waveforms are determined by computing an ensemble average of a large collection of EEG
trials that are stimulus time locked. By averaging the data points, which are time locked to the stimulus presentation,
it is possible to filter out some signal (ERP) of the noise (spontaneous activity). This way, the P300 component
of the ERP (i.e. brain activity 300 ms after the onset of the stimulus) was the first potential discovery to vary in
dependence on subject internal factors, like attention and expectation, instead on physical characteristics [195]. The
amplitude of the P300 component is highly sensitive to the novelty of an event and its relevance (surprising moment).
So this component is assumed to reflect the updating of the environmental model of the information processing
system (context updating) [196,197]. There are two main disadvantages of the averaging method. On the one hand,
the number of trials needed to reduce the signal-to-noise-ratio is rather high. This disadvantage is crucial for example
in clinical studies, studies with children or studies in which repeating a task would influence the performance. On
the other hand, several high-frequency structures reflecting other important brain activities are filtered out by using
the averaging method. It is, therefore, desirable to find new approaches for analysing event-related activity on a
single trial basis. Applying the concepts of the RQA to electro-physiological data could be one way of dealing with
this problem.

For this study, we analyse measurements of an Oddball experiment [17]. It studies brain potentials during a stimulus
presentation; here acoustic stimuli are used. In the analysis of a set of 40 trials of ERP data for an event frequency
of 90% (ERP90) and a second set of 31 trials for an event frequency of 10% (ERP10), the RQA measures DET
and L, and the vertical structures based measures LAM and TT are computed. The ERPs is measured at 25 electrodes
(Fig. 52) with a sampling rate of 4 ms. Our aim is to study single trials in order to find transitions in the brain processes as
a consequence of unexpected stimulation. Due to the N100 and the P300 components in the data, the RPs show varying
structures changing in time (Fig. 53). Diagonal structures and clusters of black points occur. The non-stationarity of the
data around the N100 and P300 causes extended white bands along these times in the RPs. However, the clustered black
points around 300 ms occur in almost all RPs of the ERP10 data set. The application of the measures of complexity to
these ERP data discriminates the single trials with a distinct P300 component resulting from a low surprise moment
(high-frequent events, ERP90 data) in favour of such trials with a high surprise moment (less frequent events, ERP10
data; Fig. 54). The LAM is the most distinct parameter in this analysis. In the ERP data the LAM reveals transitions
from less to more laminar states after the occurrence of the event and a transition from more laminar states to less
laminar ones after ∼ 400 ms. These transitions occur inside bounded brain areas (parietal to frontal along the central
axis). The comparable measures DET and LAM as well as L and TT are quite different in their amplitudes. There are
also differences in time and brain location of the found transitions.

These results show that the measures based on vertical RP structures uncovers transitions, which are not found by the
RQA measures based only on the diagonal RP lines. The RQA indicate transitions in the brain processes into laminar
states due to the surprising moment of observed events.
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4.2. RQA analysis of financial exchange rates

The study of economic systems by time series analysis is a challenging effort. Economic cycles are usually charac-
terised by irregular variations in amplitude and period length, rising the discussion whether the economical dynamics
is, e.g., stochastic or chaotic, and whether it is stationary. Several approaches from nonlinear data analysis have been
applied in order to discern the type of dynamics in economic time series, like the BSD test [198] or the Kaplan’s test
[199]. In the last years, RPs and their quantitative analysis have also become popular for testing for nonlinearity of
economic dynamics [184,187]. In the following example the RQA is applied to financial exchange rates in order to
assess a nonlinearity in them [188].

Many open-economic theoretical models require the fulfilment of the purchasing power parity (PPP). This is an
equilibrium assumption in the market for tradeable goods: a good in a country should sell for the same price as in any
other country. One consequence is that the real exchange rate must be stationary. Using P as the domestic price, P ∗ as
the foreign currency price and S as the exchange rate, a formal description of this assumption is

P = SP ∗. (122)

The real exchange rate, i.e. the ratio of the price of the domestic to foreign goods, is

E = SP ∗

P
, (123)

and measures the price competitiveness. If the PPP assumption holds, this real exchange rate E must be stationary.
Therefore, it is important to test for stationarity of E. Several applied tests for stationarity are based on the assumption
that the process driving the dynamics of the exchange rates is inherently linear. Hence, if the underlying process is
nonlinear, these tests might erroneously reject the null-hypothesis that E is a stationary process, even though it is
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Fig. 54. RQA measures for selected trials for event frequencies of 90% (A–D) and 10% (E–H). The P300 component reflects the surprising moment
and can be detected in single trials by the measures LAM (G) and T T (H), which base on the vertical structures in the RP. The measures based on
diagonal structures, DET and L, are less apparent [17].
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Table 4
Used threshold ε and RQA measures of exchange rates

Country ε RR DET ENT Lmax

Austria 0.086 5.02 (2.77) 53.5 (44.7) 3.39 (2.01) 35 (26)
Belgium 0.048 4.62 (1.59) 60.6 (30.8) 2.98 (1.38) 33 (18)
Canada 0.066 5.10 (4.08) 72.9 (65.7) 3.03 (2.99) 32 (31)
Denmark 0.127 4.98 (5.91) 58.3 (84.1) 2.10 (3.59) 25 (35)
Finland 0.167 5.01 (8.33) 19.5 (79.2) 2.59 (4.25) 20 (38)
France 0.155 4.93 (3.59) 81.3 (68.3) 1.82 (2.63) 23 (25)
Germany 0.089 4.98 (3.22) 85.4 (60.6) 3.28 (2.50) 31 (26)
Greece 0.062 5.02 (4.86) 60.4 (67.6) 3.25 (3.22) 37 (36)
Ireland 0.177 5.02 (8.15) 46.4 (83.5) 1.14 (4.02) 20 (40)
Italy 4.350 4.86 (8.19) 46.0 (36.2) 2.65 (3.02) 35 (32)
Japan 0.079 5.08 (2.62) 56.7 (54.7) 3.52 (2.52) 35 (26)
The Netherlands 0.110 5.08 (3.21) 74.0 (60.8) 3.35 (2.55) 32 (28)
Norway 0.075 5.02 (2.74) 63.6 (50.6) 3.38 (2.32) 37 (25)
Spain 0.182 5.05 (5.60) 20.3 (72.7) 1.92 (3.46) 22 (31)
Switzerland 0.055 5.70 (1.33) 86.6 (24.3) 4.30 (0.05) 40 (17)
United Kingdom 0.166 5.11 (7.88) 42.4 (84.2) 0.62 (4.01) 17 (39)

RQA measures exceeding the 95th percentiles of the empirical distribution based on surrogates (in parenthesis) are shown in bold font. RR and DET
values are given in %.

stationary indeed. In order to assess nonlinearity in exchange rates, RQA in connection with a surrogate test can
be used.

The analysed data are quarterly US Dollar based exchange rates for 16 foreign countries (Austria, Belgium, Canada,
Denmark, Finland, France, Germany, Greece, Ireland, Italy, Japan, The Netherlands, Norway, Spain, Switzerland and
United Kingdom) spanning the time from January 1957 to April 1998 (168 observations). First, the data are transformed
with a stationary-in-mean series and then filtered in order to remove linear stochastic dependencies by fitting an AR
model, Eq. (A.1). For details of the data aquisition and preprocessing, as well as a comprehensive explanation of all
tests applied to these data, see [188].

The RQA measures RR, DET, ENT and Lmax (see Section 3.5) are calculated for each time series. The embedding
parameters used are m = 20 and 
 = 1; the recurrence threshold ε is determined such that it is the smallest value
at which all RQA parameters are non-zero (Table 4). Then, 500 surrogate series for each currency are produced by
simply shuffling the exchange data. This shuffling destroys dependencies in time but preserves the distribution of the
original series. The same RQA measures are then calculated from these surrogates using the same embedding and RP
parameters as for the corresponding original data series. This leads to an empirical distribution of the RQA measures
under the null-hypothesis of independence in time and an identical distribution. The authors claim that if all RQA
measures RR, DET, ENT and Lmax of the original data series exceed the 95th percentile of the empirical distribution,
the assumption of linearity must be rejected. This is indeed the case for the currencies of Austria, Belgium, Canada,
Germany, Greece, Japan, The Netherlands, Norway and Switzerland (Table 4). The assumption of a linear stochastic
process cannot be rejected for the currencies of Denmark, Finland, Ireland, Spain and United Kingdom. These findings
are supported by an application of the Kaplan’s test [188].

In conclusion, the authors of [188] claim that the real exchange rates are probably driven by a nonlinear mechanism.
This can help to sustain the PPP assumption even using data which pretend to be non-stationary, but analysed under
linear assumptions.

4.3. Damage detection using RQA

Early damage detection of mechanical systems is a crucial task for preventing catastrophic failures or minimise
maintenance costs. Vibration based structural health monitoring (SHM) is one approach for damage detection. The
main idea is to look for early signatures in the dynamical response (like frequencies, phase ratios, mode shapes) of
excitations (applied load) before serious problems arise. In a recent work, RQA has been employed for SHM simulation
and proved to perform better than standard frequency based measures [10].
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Fig. 55. Schema of the plate model with sensor, load and damage locations [10].

A thin plate of hot-rolled steel is used in a finite element model in order to simulate dynamic response under different
damage conditions. The model contains 624 elements, representing a plate of size 0.660 × 0.408 × 3.175 × 10−3 m3,
and with clamp-free boundary conditions (Fig. 55). The simulated damage is imposed as a cut in the plate with
increasing length extending to 25% in increments of 5%. The strain is measured by using nine sensors, and the forcing
input is applied at one node near the left corner (Fig. 55), which is excited by a chaotic vibration, obtained from the
Lorenz oscillation, Eq. (A.6). Detailed explanations about the basic assumptions, the model and parameters can be
found in [10].

The phase space vector is constructed by using all nine sensor measurements as components, i.e. the phase space
is nine-dimensional. Next, CRPs between each damage stage and the undamaged case are computed. As the simu-
lated damage increases, the phase space trajectory differs more and more from the trajectory of the undamaged case,
what is reflected by a diminishment of the recurrence points and diagonal lines in the CRP. Therefore, the RQA
measures RR, DET and ENTR are computed within sliding windows of length 10,000 (shift of 1400 points) from
the CRPs.

The measures RR and DET clearly identify and quantify the damage scenarios for damages larger than 10%
(Fig. 56). The ENTR measure is not able to detect the damage clearly (only for 25%). The sensitivity of the RR’s
and DET’s changes with damage can be compared with the plate’s modal frequencies, which are often used in SHM
as benchmarks for comparison to the proposed technique. Both RR and DET exhibit larger changes due to the damage
than the first three modal frequencies f1, f2 and f3 (Fig. 56). The highest changes are 33% for RR and 22% for DET,
where the highest changes for f1, f2 and f3 are less than 10%.

In conclusion, the RQA-based measures appear to be a more effective tool for monitoring subtle changes in mechanical
structures. Their advantage lies in a high sensitivity and simple computation. Moreover, the probabilistic nature of this
method does not require assumptions about the underlying dynamics, like stationarity or linearity.

4.4. Time scale alignment of geophysical borehole data

The problem of adjustment of data series with various time scales occurs in many occasions, e.g., data prepara-
tion of tree rings or geophysical profiles. Often a large set of geophysical data series is gained at various locations
(e.g. sediment cores). Therefore, these data series have different lengths and time scales. The first step in the anal-
ysis of these time series is the synchronisation of both time scales. Usually, this is done visually by comparing
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and correlating each maximum and minimum in both data sets by hand (“wiggle matching”), which includes the
human factor of subjectiveness and is a lengthy process. The use of CRPs can make this process more objective and
automatic.

CRPs contain information about the time transformation which is needed to align the time scales of two data series.
This is revealed by the distorted main diagonal, the LOS (Sections 3.2.3 and 3.3). A non-parametric rescaling function
is provided by isolating this LOS from the CRP, which can be used for the re-alignment of the time scales of the
considered time series.

4.4.1. Time scale alignment of geological profiles
Here we apply this technique to re-adjust two geological profiles (sediment cores) from the Italian lake Lago di

Mezzano [55,200]. The profiles cover approximately the same geological processes but have different time scales due
to variations in the sedimentation rates at the different sites. The first profile (LMZC) has a length of about 5 m and the
second one (LMZG) of about 3.5 m (Fig. 57). From both profiles a huge number of geophysical and chemical parameters
were measured. Here we focus on the rock-magnetic measurements of the normalised remanent magnetisation intensity
(NRM) and the susceptibility �.

We use the time series NRM and � as components for the phase-space vector, resulting in a two-dimensional system.
However, we apply an additional embedding using the time-delay method [201]. A rather small embedding decreases
the amount of line structures representing the progress with negative time [54]. Using the embedding parameters di-
mension m = 3 and delay 
 = 5 (empirically found for these time series), the final dimension of the reconstructed
system is six. The corresponding CRP reveals a partly disrupted, swollen and bowed LOS (Fig. 58). This LOS can
be automatically resolved, e.g. by using the LOS-tracking algorithm as described in Appendix B.1. The application
of this LOS as the time-transfer function to the profile LMZG re-adjusts its time series to the same time scale as
LMZC (Fig. 59). This method offers a helpful tool for an automatic adjustment of different geological profiles,
in contrast to the rather subjective method of “wiggle matching” (adjustment by harmonising maxima and minima
by eye) used so far.

4.4.2. Dating of a geological profile (magneto-stratigraphy)
From a sediment profile (Olguita profile, Patagonia, Argentina; [202]) a measurement of the palaeo-polarity of the

Earth’s magnetic field (along with other measurements) is available. The starting point for any geological investigation of
such a profile is determining the time at which these sediments were deposited. By applying the magneto-stratigraphic
approach and a geomagnetic polarity reference with known time scale, the polarity measurements can be used to
determine a possible time scale for the profile. In [203], such a geomagnetic polarity reference is provided, which covers
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Fig. 57. Rock-magnetic measurements of lake sediments with different time scales. Corresponding sections are marked with different grey
values [55].
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the last 83 Myr. The Olguita profile contains seven reversals. The polarity data consist of values one, for the polarity
direction as today, and zero, for the inverse polarity. Unfortunately, this data series is too short (only 16 measurements)
for a reliable analysis. Nevertheless, for our purpose of demonstration we enlarge this data by interpolation. The Olguita
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Fig. 59. Geological profiles after re-adjustment using the LOS which was found with the CRP shown in Fig. 58. Corresponding sections are marked
with different grey values [55].
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profile is transformed to an equidistant scale of 300 data points and the reference data is transformed to an equidistant
scale of 1200 data points.

A CRP is computed from these two data series by using an embedding dimension m = 4, a delay of 
 = 6 and a
neighbourhood criterion of FAN (30% recurrence rate). Varying degrees of continuous lines between 21 and 16 Myr BP
and between 12 and 8 Myr BP occur in the CRP, which can be interpreted as the desired LOS (Fig. 60). We will analyse
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Fig. 61. Potential LOS of the CRP presented in Fig. 60. They correspond to the potential sedimentation rates of the Olguita profile and mark sequences
in the polarity reference, which match with the Olguita profile [54]. Due to this matching, the Olguita profile can be dated.

Table 5
Possible ages of the Olguita profile, which are based on the found potential LOS (Fig. 61) and characteristics of these potential LOS [54]

Plot Age (Myr) N• N◦ Q (%) 〈�2
t 〉

A 19.4–21.4 345 23 93.8 5.5
B 16.7–20.3 407 43 90.4 12.5
C 16.5–18.9 351 15 95.9 5.0
D 14.4–17.8 392 16 96.1 20
E 8.1–12.6 482 16 96.8 23
F 7.9–11.1 399 13 96.8 18

six of these possibilities for the LOS. The search for the potential LOS is conducted using the algorithm described in
Appendix B.1. Moreover, we can evaluate the quality of these potential LOS by introducing a quality factor that takes
into consideration the amount of gaps N◦ and black dots N• on this line

Q = N•
N• + N◦

100%. (124)

The larger Q is, the better the LOS is; Q = 100% stands for an absolute continuous line. Moreover, the obtained LOS
can be interpreted as the sedimentation rate (Fig. 61). Abrupt changes in the sedimentation rate are not expected, thus,
the potential LOS should not change abruptly. As a criterion we can use hence the averaged second derivative with
respect to the time 〈�2

t 〉.
The potential LOS differ slightly in the Q factor, but strongly in the occurrence of abrupt changes in their slope

(Fig. 61 and Table 5). The LOS in Fig. 61C has the smallest 〈�2
t 〉 and could be, therefore, a good LOS for the dating

of the Olguita profile. Regarding this result, the Olguita profile would have an age between 16.5 and 18.9 Myr and an
age-depth relation as it is represented by the LOS in Fig. 61C. Warkus’ investigation reveals the same result [202],
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although he also mentioned that the dating based on the polarity data is ambiguous. The alternative profile A has a
similar good Q value, but reveals an abrupt change in its slope around 20 Myr.

The stated results are only potential sequences and do not lay claim to absolute correctness. The example was
presented just to illustrate the potentials of CRPs. In general, for such geological tasks as presented in the two previous
applications, the distance matrix, Eq. (26), might be more appropriate.

4.5. Finding of nonlinear interrelations in palaeo-climate archives

Now we apply CRPs to geology and palaeo-climatology, where, as we have already seen, data are characterised by
short length and non-stationarity. Such kind of data is rather typical in earth science, because of the unique character
of, e.g., outcrops or drilling cores, which does not usually allow to repeat or refine a measurement.

A higher variability in rainfall and river discharge was discussed to be a reason for a sudden increase of the amount
of landslides in NW Argentina 30,000 14C years ago. A potential cause of the higher variability in rainfall is the El
Niño/Southern Oscillation, represented by the Southern Oscillation Index (SOI). In order to support this hypothesis,
annual layered lake sediments from the Santa Maria Basin (Province Salta, NW Argentina) with an age of 30,000 14C
years were compared with the El Niño dynamics from today. The colour variation of the lake sediments comes from
reworked older sediments which are eroded and deposited only during extreme rainfall events, and, therefore, provides
an archive of the precipitation variability [204,205].

We compare the present-day SOI data with the palaeo-rainfall data in two steps. At first, the similarity between the
SOI and modern rainfall is studied by using CRPs. Then, the similarity structure derived from the CRP of the SOI and
the palaeo-rainfall is computed and compared with the similarity structure between the present-day data [7].

For the assessment of the modern El Niño/Southern Oscillation influence on local rainfall in NW Argentina, the
monthly precipitation data from the station San Salvador de Jujuy (JUY) is used. The CRP analysis of JUY and SOI
reveals clear positive values for the measures RRc


 and Lc

 around a lag of zero and negative values after 8–12 months,

which suggests a significant link between Jujuy rainfall and the El Niño/Southern Oscillation (Fig. 62A and C). The
comparison between SOI and the 30,000 14C year old precipitation data yields one maximum and two minimum values
for RRc


 and Lc

 for delays of about zero and ten months, similar to those found for JUY (Fig. 62B and D).

The similarity between the time series of the modern rainfall data and the palaeo-precipitation record from the lake
sediments suggests that an El Niño-like oscillation was active around 30,000 14C years ago (roughly corresponding to
34,000 cal. years BP), which corresponds with the results of the investigation of Coccolithophores production [206]. In
the semiarid basins of the NW Argentine Andes, the El Niño-like variation could have caused significant fluctuations
in local rainfall around 30,000 14C years ago similar to modern conditions, and, hence, could help to explain more
frequent landsliding approximately 34,000 years ago in the semiarid basins of the Central Andes.

4.6. Automatised computation of K2 applied to the stability of extra-solar planetary systems

The stability of extra-solar planetary systems is a central question of astrobiology. This kind of studies are important
for future space missions dedicated to find habitable terrestrial planets in other stellar systems. The
extra-solar planetary systems Gl 777 A, HD 72659, Gl 614, 47 Uma and HD 4208 are examined using extensive
numerical experiments, concerning the question of whether they could host terrestrial-like planets in their habitable
zones (HZ) [4].

Besides the study of the mean motion resonance between fictitious terrestrial planets and the existing gas giants
in these five extra-solar systems, the stability of their orbits are investigated. A fine grid of initial conditions for a
potential terrestrial planet within the HZ is chosen for each system, from which the stability of orbits is then assessed
by direct integration over a time interval of one million years. For each of the five systems the two-dimensional grid
of initial conditions contains 80 eccentricity points for the Jovian planet and up to 160 semimajor axis points for
the fictitious planet. The equations of motion are integrated using a Lie-series integration method with an adaptive
step size control.

The stability of orbits is examined by means of two different methods: K2 estimated from RPs (Section 3.6.1) and
the maximum eccentricity achieved by the planet over the million year integration. The eccentricity is an indication of
the habitability of a terrestrial planet in the HZ; any value of e > 0.2 produces a significant temperature difference on
a planet’s surface between apoapse and periapse. Here we summarise the results obtained for the extra-solar planetary
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A B

DC

Fig. 62. RRc

 and Lc


 measures of the CRPs between SOI and precipitation in Jujuy (A, C) and palaeo-precipitation (B, D). Extreme values reveal
high similarity between the dynamics of the rainfall and the ENSO [7].

system Gl 777 A, which is a wide binary with a very large separation (3000AU). Hence, there is no need to take the
perturbations of the very far companion into account.

Considering the maximum eccentricity, high order resonance can be found (Fig. 63). Furthermore, unstable orbits
due to high eccentricity and high semimajor axes values can be determined (red or yellow colours in Fig. 63). The latter
feature is due to the larger perturbations near to the existing planet. The maximum eccentricity indicates the variable
distance to the central star and consequently it is an indirect measure of the differential energy flux (insolation) on the
planet. Therefore, it is possible to determine where the variation of this distance does not exceed 50%, corresponding
to an eccentricity of e = 0.2.

On the other hand, the correlation entropy K2 is a more sensitive measure for the predictability of the orbit (Fig. 64).
In particular, high-order resonance is clearly indicated using this method, even in the case that the resonance is acting
when the eccentricity of the planet is as low as e = 0.4 (bottom of Fig. 64). K2 was estimated using the automated
algorithm described in Appendix B.4.

Hence, we can conclude that both methods for the quantification of the stability of the orbits complement each other.
From this analysis it can be inferred, that the planets in the system Gl 777 A will last long enough in the HZ to acquire
the necessary conditions for life in the region with a < 1 AU [4].

4.7. Synchronisation analysis of experimental data by means of RPs

As mentioned in Section 3.8, many natural and laboratory systems are ill-phase defined or non-phase-coherent, i.e.
they posses multiple time scales. In such cases, the RP-based method for the synchronisation analysis is appropriate.
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Fig. 63. Initial condition diagram for fictitious planets in the system Gl 777 A: initial semimajor axes of the planet versus the eccentricity of the
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Jovian planet. The value of the K2 of an orbit is colour-coded.

To illustrate the application of this method to experimental data, we first show the results of the synchronisation
analysis of two coupled electrochemical oscillators which exhibit non-phase coherent dynamics [151,207,208]. In this
experiment the coupling strength between the electrochemical oscillators can be systematically varied. Hence, it is an
active experiment.

Second, we apply the recurrence based synchronisation analysis to a passive experiment. We consider the synchroni-
sation between the left and right fixational eye movements. The coupling strength between both eyes cannot be changed
systematically, and hence, a hypothesis test has to be performed to get statistical significant results.
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Fig. 65. Current of two non-phase-coherent electrochemical oscillators over time for coupling strength �= 0 (solid: first, dashed: second electrode).

4.7.1. Synchronisation of electrochemical oscillators
We consider a laboratory experiment in which the synchronisation between electrochemical oscillators can be studied

[209]. In this experiment, the electro-dissolution of iron in sulphuric acid cause non-phase coherent, chaotic current
oscillations (Fig. 65). A standard three-compartment electrochemical cell consisting of two iron working electrodes,
a Hg/Hg2 SO4/K2SO4 reference electrode, and a Pt mesh counter-electrode is used (the detailed experimental setup
can be found in [210,211]). The experiment is carried out in H2SO4. The applied potential of both electrodes is held
at the same value using a potentiostat. Zero restiance ammeters are used to measure the currents of the electrodes. The
coupling strength � between the electrochemical oscillators can be varied by changing the connected resistors between
the electrodes and the potentiostat [207]. We compute the two indices CPR and JPR for PS, respectively, GS for six
different values of the coupling strength � = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}.

The transition to PS and GS is detected simultaneously at the coupling strength � = 0.6 (Fig. 66A and B). This is in
accordance with theoretical results, which confirm that the transition to PS and GS occurs almost simultaneously for
non-phase coherent oscillators [150].

In contrast, the method of MFNN [135,137,153] does not yield plausible results in this case. The index 〈P −1〉 is the
inverse of the mean value of the MFNN parameter. This index is zero for systems that are not in GS, and approximately
one for systems in GS [135,137,153]. The index P̄ −1 indicates GS for no coupling, � = 0 (Fig. 66C), but for coupling
strength �= 0.6, where the other two indices CPR and JPR indicate synchronisation (Fig. 66A and B), 〈P −1〉 does not.
Hence, in the case of non-coherent oscillators the method of MFNN does not yield reliable results. (We used a total of
25,000 data points, Tr = Td = 0.035s, i.e. a sampling rate of 2 kHz, dr = 5 and dd = 12. The measure P(n, dr , dd) was
computed at 10,000 different locations on the attractor and was used to evaluate the average values 〈P̄ (dr , dd)〉.)

4.7.2. Synchronisation analysis of cognitive data
Now we present the application of the RP-based synchronisation analysis to a passive experiment, namely, the

synchronisation between right and left eye movements during the fixation on one point. In this cognitive experiment,
the coupling strength between both eyes cannot be varied systematically. Hence, a hypothesis test based on twin
surrogates (Section 3.10) is performed to get the statistical significance of the obtained results.

During fixation of a stationary target, our eyes perform small involuntary and allegedly erratic movements to coun-
teract retinal adaptation. If these eye movements are experimentally suppressed, retinal adaptation to the constant input
induces very rapid perceptual fading [212]. The fixational movements of the left and right eye are correlated very poorly
at best [213]. Therefore, it is highly desirable to examine these processes from a perspective of PS.

The analysis of several trials and subjects has been presented in [214]; here we concentrate on the results for one
subject and one trial. In each trial the subject fixates a small stimulus (black square on a white background, 3×3 pixels
on a computer display) with a spatial extent of 0.12◦. Eye movements are achieved using an EyeLink-II system (SR
Research, Osgoode, Ontario, Canada) with a sampling rate of 500 Hz and an instrumental spatial resolution less than
0.005◦. The horizontal and vertical component of the eye movements are recorded (Fig. 67).
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Fig. 67. Simultaneous recording of left (solid) and right (dashed) fixational eye movements: (A) horizontal component (B) vertical component.

The data are first high-pass filtered applying a difference filter x̃(t) = x(t) − x(t − 
) with 
 = 40 ms in order to
eliminate the slow drift of the data. After this filtering, the trajectory is oscillating with maximum spectral power in the
frequency range between 3 and 8 Hz (Fig. 68A and B). However, the trajectories of the eye movements are rather noisy
and non-phase coherent. Therefore, it is cumbersome to estimate the phase of these data and, hence, the application of
the recurrence based measure CPR is appropriate.

For one trial of one participant, we obtain CPR = 0.911. Even though this value is high (the maximal value that
CPR can take is 1), a hypothesis test should be performed in order to get statistically significant results. The hypothesis
test is carried out by computing 200 twin surrogates of the left eye’s trajectory (cf. Section 3.10). At a first glance,
the characteristics of the original time series are well reproduced by the twin surrogate (Fig. 68C). The structure of
the corresponding periodogram is also qualitatively reproduced (Fig. 68D). Note that the periodogram of the twin
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Fig. 68. Filtered horizontal component of the left eye of one participant (A) and its corresponding periodogram (B). (C) Horizontal component of
one surrogate of the left eye and (D) its corresponding periodogram.
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Fig. 69. Histogram of the PS index CPR of 200 twin surrogates (for one trial of one participant). The CPR index for the original data (arrow) is
significantly different from the one of the surrogates (dashed: 99% significance border of the rank order statistics).

surrogate is not identical with the one of the original time series. This is because the twin surrogates correspond to
another realisation of the same underlying process (respectively, another trajectory starting at different initial conditions
of the same underlying dynamical system) and the periodiograms of different realisation of a process differ slightly.

Then, the synchronisation index CPR between each twin surrogate of the left eye and the measured right eye’s
trajectory is computed. The PS index of the original data is significantly different (p < 0.01) from those of the surrogates
(Fig. 69), which strongly indicates that the concept of PS can be successfully applied to study the interaction between
the trajectories of the left and right eye during fixation. This result also suggests that the physiological mechanism in
the brain that produces the fixational eye movements controls both eyes simultaneously, i.e. there might be only one
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centre in the brain that produces the fixational movements in both eyes or a close link between two centres. This finding
of PS between left and right eyes is in good agreement with current knowledge of the physiology of the oculomotor
circuitry.
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Appendix A. Mathematical models

Here we list the mathematical models used in the examples of this paper:

• Auto-regressive process first order

xi = axi−1 + �i , (A.1)

where �i is white noise.
• 2D auto-regressive process second order

xi,j =
2∑

k,l=1

ak,lxi−k,j−l + �, (A.2)

where � is white noise.
• The logistic map

xi = axi−1(1 − xi−1). (A.3)

• The Bernoulli map

xi = 2xi−1 mod(1). (A.4)

• The Rössler system [215]

ẋ = − y − z,

ẏ = x + ay,

ż = b + z(x − c). (A.5)

• The Lorenz system [78]

ẋ = − �(x − y),

ẏ = − xz + rx − y,

ż = xy − bz. (A.6)

http://tocsy.agnld.uni-potsdam.de
http://www.recurrence-plot.tk
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• Two Rössler systems mutually coupled by the first component

ẋ1 = − (1 + �)x2 − x3 + �(y1 − x1),

ẋ2 = (1 + �)x1 + ax2,

ẋ3 = b + x3(x1 − c), (A.7)

ẏ1 = − (1 − �)y2 − y3 + �(x1 − y1),

ẏ2 = (1 − �)y1 + ay2,

ẏ3 = b + y3(y1 − c). (A.8)

• Two Rössler systems mutually coupled by the second component

ẋ1 = − (1 + �)x2 − x3,

ẋ2 = (1 + �)x1 + ax2 + �(y2 − x2),

ẋ3 = b + x3(x1 − c), (A.9)

ẏ1 = − (1 − �)y2 − y3,

ẏ2 = (1 − �)y1 + ay2 + �(x2 − y2),

ẏ3 = b + y3(y1 − c). (A.10)

• The Lorenz system driven by a Rössler system

ẋ1 = b + x1(x2 − c),

ẋ2 = − x1 − x3,

ẋ3 = x2 + ax3, (A.11)

ẏ1 = − �(y1 − y2),

ẏ2 = ru − y2 − uy3,

ẏ3 = uy2 − by3, (A.12)

where u = x1 + x2 + x3.

Appendix B. Algorithms

B.1. Algorithm to fit the LOS

The extraction of the LOS from the CRP in Sections 3.3 and 4.4 was performed by using the following simple
two-step algorithm. The set of indices of recurrence points Ri�,j = 1 is denoted by {(i�, j)}�,∈N. Those recurrence
points Ri�̃,j̃

belonging to the LOS are denoted by {(i�̃, j̃)}�̃,̃∈N
.

(1) Find the recurrence point (i1, j1) next to the axes origin. This is the first point of the LOS.
(2) Find the next recurrence point at (i�, j) after a previous determined LOS point (i�̃, j̃) by looking for recurrence

points in a squared window of size w = 2, located at (i�̃, j̃). If the edge of the window meets a recurrence point
(i�, j), we follow we step (3), else we iteratively increase the size of the window.

(3) If there are subsequent recurrence points in y-direction (x-direction), the size w of the window is iteratively increased
in y-direction (x-direction) until a predefined size (w + �w) × (w + �w) (�w < dx, �w < dy) or until no new
recurrence points are met. Using �w we compute the next LOS point (i�̃+1, j̃+1) by determination of the centre
of mass of the cluster of recurrence points with i�̃+1 = i�̃ + (w + �w)/2 and j̃+1 = j̃ + (w + �w)/2. This
avoids that the algorithm places the LOS around widespread areas of recurrence points, but locates the LOS within
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these areas. This can be controlled by the two additional parameter dx and dy. The next step is to set the LOS point
(i�̃+1, j̃+1) to the new starting point and to return to step (2). These steps are repeated until the end of the RP is
reached.

This algorithm is merely one of many possibilities. Its application should be carefully performed. The following criteria
should be met in order to obtain a good LOS. The amount of targeted recurrence points by the LOS N• should converge
to the maximum and the amount of gaps in the LOS N◦ should converge to the minimum. An analysis with various
estimated LOS confirms this requirement. The correlation between two LOS-synchronised data series arises with N•
and with 1/N◦ (the correlation coefficient correlates best with the ratio N•/N◦).

This algorithm for the reconstruction of the LOS is implemented in the CRP toolbox for Matlab� (provided by
TOCSY: http://tocsy.agnld.uni-potsdam.de).

B.2. Algorithm for the reconstruction of a time series from its RP

The reconstruction algorithm (cf. Section 3.9) consists of three main phases and a total of nine steps:
I. Determine the set difference Rj\Ri

(1) If n columns of the matrix Ri,j are identical, store their indices and remove n−1 of them, so that every column
is unique.

(2) Determine for each recurrence point at (i, j) the number of neighbours of xj which are not neighbours of xi ,
i.e. the number of elements in the set difference Rj\Ri . This number is denoted as Ni,j and can be calculated
by
∑

k (1 − Ri,k)Rj,k .
(3) There exist exactly two points at j1 and j2, such that Ni,j1/2 = 0 ∀i. These two points correspond to the

maximum and the minimum of the time series. Choose one of these two indices as starting point k and assign
the first element of the rank order series rord

1 = k.
II. Iteration

(4) Look for the position of the minimum in the set {Ni,k}i .
A: If the minimum is unique, i.e. there is one j such that Nj,k < Ni,k ∀i �= j , the next point is then k = j .
B: If the minimum is not unique, i.e. there is a set of m indices {j1, . . . , jm}, so that Nj1,k = · · · =

Njm,k �Ni,k ∀i, look for the position of the minimum in the set {Nk,ji
}i . This position will be the next

point k.
(5) Add k to the rank order series rord

i .
(6) Go to step (4) until all indices are ranked.

III. Final reconstruction
(7) Generate random numbers so that for each entry in the ordered series rord

i is one random number, and rank
order these numbers to the series yi .

(8) Generate the time series xi by assigning xrord
i

= yi .
(9) Reintroduce at the position of the “identical columns” obtained in step (1) the values of the points at the

corresponding indices which remained in the RP.

B.3. Twin surrogates algorithm

A twin surrogate (cf. Section 3.10) trajectory �xs
i of {�xi}Ni=1 is generated in the following way:

(1) Identify all pairs of twins.
(2) Choose an arbitrary starting point, e.g. �xs

1 = �xj . Set index i = 2.

(3) A: If �xj has no twin, the next point of the surrogate trajectory is �xs
i = �xj+1.

B: If �xj has a twin at �xk , either proceed with �xs
i = �xj+1 or �xs

i = �xk+1 with equal probability (if triplets occur
proceed analogously).

(4) Increase i = i + 1 and go back to step (3) until the surrogate time series has the same length as the original one.

http://tocsy.agnld.uni-potsdam.de
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B.4. Automatisation of the K2 estimation by RPs

For many applications, e.g., if spatio-temporal data has to be analysed, it is desirable to automate the algorithm to
estimate K2 based on RPs (Section 3.6.1). Such an automated algorithm is also more objective, as otherwise the choice
of the proper scaling regions of pc(ε, l) (Eq. 72) depends to some extent on the choice of the data analyst.

For the practical application, at first, the cumulative distribution of diagonals pc(ε, l) (the probability to find a
diagonal of at least length l in the RP) has to be calculated for different thresholds ε. The question arises, which values
of ε should be considered. As each system has its proper amplitude, which may differ from one system to another one,
the choice will be different for each case and it is subjected to some arbitrariness. To overcome this problem, the value
of the recurrence rate RR, Eq. (41), should be fixed, because it is normalised, and then calculate the corresponding ε

(cf. Section 3.2.2). Using this choice of ε, the arbitrariness of choosing appropriate values for ε is avoided and the same
procedure of the estimation of pc(ε, l) can be applied for all systems.

The next step is crucial for the automatisation: the scaling region of ln pc(RR, l) vs. l and the plateau in K2(RR) vs. RR
must be estimated automatically. In both cases it is possible to apply a cluster dissection algorithm [216], which divides
the set of points into distinct clusters. In each cluster a linear regression is performed. The algorithm minimises the
sum of all square residuals in order to determine the scaling region and the plateau. To find both regions automatically,
the following settings have been found to be appropriate [4]:

• Only diagonal lines up to a fixed length lmax are considered. Longer lines are excluded because of finite size effects.
Reasonable values of lmax are at about 10% of the length of the time series.

• Only values of pc(RR, l) with N2pc(RR, l) > 500 are regarded to obtain a reliable statistic.
• About 100 different values for ε might be considered, corresponding to 100 equally spaced recurrence rates RR

between 1% and 99%, to have a good defined plateau in K2(RR) vs. RR.
• Furthermore, the number of clusters have to be specified when applying the cluster dissection algorithm: for the

detection of the scaling region in ln pc(RR, l) vs. l, two different clusters seem to be a rather good choice. Then, the
slope of the largest cluster should be used. For the detection of the plateau in K2(RR) vs. RR, three clusters should
be chosen and the value of the cluster with the minimum absolute slope is then used.
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