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We study collective phenomena in nonhomogeneous cardiac cell culture models, including one- and
two-dimensional lattices of oscillatory cells and mixtures of oscillatory and excitable cells. Indi-
vidual cell dynamics is described by a modified Luo-Rudy model with depolarizing current. We
focus on the transition from incoherent behavior to global synchronization via cluster synchroni-
zation regimes as coupling strength is increased. These regimes are characterized qualitatively by
space-time plots and quantitatively by profiles of local frequencies and distributions of cluster sizes
in dependence upon coupling strength. We describe spatio-temporal patterns arising during this
transition, including pacemakers, spiral waves, and complicated irregular activity. © 2007 Ameri-
can Institute of Physics. �DOI: 10.1063/1.2437581�

Processes of generation and propagation of cell excitation
waves in cardiac tissues are a matter of topical interest
because of their importance for understanding normal
and pathological types of heart activity. The dynamics of
heart tissues has been studied quite extensively in recent
years, both experimentally and by means of numerical
modeling. A special class of studies is concerned with car-
diac cell cultures—thin layers of cells grown in Petri
dishes. Characteristic features of such systems are spon-
taneous oscillatory activity, spatial inhomogeneity and
variability of intercellular coupling strength due to an
increasing number of cell junctions. The present paper is
devoted to modeling the dynamics of spatio-temporal pat-
terns of excitation in such inhomogeneous cultures in de-
pendence upon the coupling strength. The model of a cul-
ture is based on the paradigmatic Luo-Rudy model of an
isolated cardiac cell. The results of modeling are inter-
preted in terms of synchronization theory. In particular,
cluster synchronization regimes are studied, in which the
ensemble of cells gets split into several subgroups (clus-
ters), each characterized by its own oscillation frequency.
Several available experimental results (formation of tar-
get and spiral waves in cultures) are reproduced by
modeling.

I. INTRODUCTION

Modeling biological systems such as neuronal en-
sembles, kidney, and cardiac tissues is one of the most rap-
idly developing fields of application of nonlinear dynamics
nowadays. The efficiency of these methods is conditioned by
the complex, though deterministic behavior of individual
cells constituting the tissue.

In particular, cardiac cells exhibit properties of either
excitable or oscillatory systems. The former case is observed
in working myocardium, and the latter is found in natural
cardiac pacemakers �sinoatrial and atrioventricular nodes,
Purkinje fibers�. Normal heart activity is controlled by waves
of excitation generated in the sinoatrial node and propagating
through the conducting system and working myocardium.
Deviations from the normal regime �arrhythmias� are often
associated with pathological types of wave dynamics in the
cardiac tissue. They include spiral waves and spiral chaos
�the latter manifests itself in heart fibrillation�. Significant
scientific efforts have been taken to understand these regimes
and develop a way of controlling them.1–6

In the present paper we report a series of numerical ex-
periments with one- and two-dimensional cardiac cell culture
models, including inhomogeneous ensembles of oscillatory
cells and mixtures of oscillatory and excitable cells. Indi-
vidual cell dynamics is described by a modified Luo-Rudy
model with depolarizing current. We focus mainly on the
transition from incoherent behavior of uncoupled cells to
global synchronization in ensembles of strongly coupled
cells, when the coupling coefficient is increased from zero.
This corresponds to the increase of the number of gap-
junctions in the culture.

We show, that this transition occurs via cluster synchro-
nization regimes. We describe spatio-temporal patterns aris-
ing during this transition, including pacemakers, spiral
waves, and complicated irregular activity. These dynamical
effects emerge due to spatial discreteness and inhomogeneity
of the model.

Similar experiments in vitro were reported in Ref. 7.
According to Ref. 7, after approximately 24 h of culture
time, irregular spontaneous activity arises in the culture, and
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it further organizes itself into several pacemakers emitting
target waves. These pacemakers are subsequently destroyed,
and spiral wave activity sets in; the number of spiral cores is
changing with time.7

II. THE MODEL

A. Excitable cells

As a basis, we use the Luo-Rudy phase I model8 to de-
fine the dynamics of a single cell. This model describes the
dynamics of excitable cardiac cells and is defined by a sys-
tem of eight ordinary differential equations �ODE�. The first
of them is the charge conservation equation

Cmv̇ = − �INa + Isi + IK + IK1
+ IKp + Ib� , �1�

where v is the membrane voltage measured in millivolts,
Cm=1 �F/cm2 is the membrane capacity. The time unit is 1
ms. The ionic transmembrane currents in the right-hand part
are sodium current, slow inward current �carried by calcium
ions�, potassium current, inward-rectifier potassium current,
plateau potassium current, and background Ohmic current,
measured in �A/cm2. They are defined by the following
expressions:

INa = GNa · m3hj · �v − ENa�, Isi = Gsi · df · �v − Esi�v,c��

IK = GK · xxi�v� · �v − EK�, IK1
= GK1

· k1i�v� · �v − EK1
� , �2�

IKp
= GKp

· kp�v� · �v − EK1
�, Ib = Gb · �v − Eb� .

Here Gq and Eq with q� �Na,si ,K ,K1 ,Kp ,b� denote the
maximal conductance and reversal potential of the corre-
sponding ionic current. The gating variables gi

� �m ,h , j ,d , f ,x�, i=1, . . . ,6, are governed each by an ODE
of the type

ġi = �gi
�v��1 − v� − �gi

�v�v . �3�

The 12 nonlinear functions �gi
�v� and �gi

�v� as well as
Esi�v ,c�, xi�v�, k1i�v�, kp�v� are fitted to experimental data.8

The dynamics of the internal calcium ion concentration c is
described by an ODE of the first order

ċ = 10−4Isi�v,d, f ,c� + 0.07�10−4 − c� . �4�

The eight ODEs �1�, �3�, and �4� form a closed system for the
variables of state v ,m ,h , j ,d , f ,x ,c.

The values of the constant parameters are the same as
used in Ref. 2.

This model lacks many details taken into account in
other models, which are much more complicated.9–12 How-
ever, it still demonstrates good qualitative and quantitative
agreement with available experimental data on single-cell
dynamics,8 as opposed to other paradigmatic but more quali-
tative models like the FitzHugh-Nagumo model.

B. Oscillatory cells and cell cultures

To describe the oscillatory activity of a cell, we modify
the model by adding a constant depolarizing current to the
ionic currents in �1�. We model a two-dimensional cell cul-
ture by a square lattice with local diffusive coupling. This

type of coupling represents electrical intercellular conduc-
tance coupling via gap junctions. The charge conservation
equation for a lattice then reads

Cmv̇ij = − �INa + Isi + IK + IK1
+ IKp + Ib� + Iij

d + D�d�vij� , �5�

where i , j are lattice indices, Iij
d �0 is a constant depolarizing

current which is nonidentical in different cells, D is the cou-
pling coefficient, and �d is the second-order central differ-
ence operator �discrete Laplacian�. A one-dimensional modi-
fication of this model is obtained by dropping the second
spatial index.

When the value of Id in an isolated cell is increased
above a bifurcation value approximate equal to 2.21 at the
chosen values of parameters, a limit cycle appears in the
phase space of the model, thus the cell becomes oscillatory.
Though this approach might not account for real physiologi-
cal mechanisms of cell oscillation, the development of a
more adequate model is hindered by the lack of understand-
ing of the mentioned mechanisms in in vitro experiments.
However, in real situations, it is known that the leakage �de-
polarization� current of the nonpacemaker cells can increase
turning them into oscillatory cells when they are dissociated
from the heart tissues.13

The measured dependence of the oscillation frequency
of the cell upon the value of the depolarizing current Id is
presented in Fig. 1.

Note that the spatial scale of one cell in the lattice model
corresponds to the characteristic scale of culture inhomoge-
neity rather than to the size of a single cardiac cell.

III. ONE-DIMENSIONAL MODELS

To get insight into some basic mechanisms, we start with
a one-dimensional �1D� version of the model �5�. We con-
sider two different settings. In the first one the chain consists
purely of oscillatory cells, and in the second one it is a mix-
ture of oscillatory and excitable cells.

FIG. 1. Frequency of oscillations of an isolated Luo-Rudy cell vs the con-
stant depolarizing current Id.
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A. Ensembles of oscillatory cells

First, we study a chain of N=400 oscillatory cells with
different natural oscillation frequencies. For this we use
quenched random depolarizing currents Ii

d, uniformly distrib-
uted in the interval �2.4;3.2� �A/cm2. We simulate the total
of ten chains with different realizations of this random dis-
tribution. The initial conditions are chosen to be identical in
each cell, so that all cells in the chain initially get depolar-
ized simultaneously.

We simulate the system dynamics on the interval of
8�105 time units. Within this interval, we allow for a tran-
sient time of Ttr=4�105 units for the transient processes to
be over and a stationary regime to set in. The duration of Ttr

is chosen in a way that its further increasing does not lead to
changes in the measurement results. In the subsequent obser-
vation time of Tob=4�105 units we measure the individual
average oscillation frequencies of each element. For that we
define the section plane for the ith element as vi=vs, v̇i�0,
vs=−30.0, and register each crossing of the trajectory with
each of these section planes. We estimate the average oscil-

lation frequency of the ith element as f i= �ni−1� /�ti, where
ni is the number of crossings registered for the ith element,
and �ti is the time elapsed between the first and the last
crossing.

In Fig. 2�a� we plot the frequencies f i of all elements in
a chain with one realization of the random distribution of Ii

d

versus D with dots. We see, that global synchronization sets
in with increasing D, and the transition to global synchroni-
zation occurs via cluster regimes. A cluster regime is repre-
sented by a set of separated dots for a given value of D �say,
D=0.006�. Each such dot corresponds to a frequency cluster.

In Figs. 3�a�–3�d� we plot the frequency profiles f i ver-
sus element number i for several values of the coupling co-
efficient D in the same chain. We observe, that the size of
clusters is gradually increasing, leading to a global synchro-
nization regime �Fig. 3�d��, when all observed frequencies
are equal up to the numerical estimation accuracy.

In Figs. 4�a�–4�d� we present the corresponding space-
time color code plots of voltage in the chain, taken after the
waiting time of 8�105 units. We observe a pacemaker �a
local source of waves� in each cluster. A pacemaker is asso-
ciated with a column of local minima of color lines on a
space-time plot. In the global synchronous regime only one
pacemaker remains.

We observe a qualitatively similar behavior for all ten
tested realizations of the random quenched depolarizing
current.

For a more detailed study of cluster synchronization in
the system, we introduce its quantitative measure as the ratio
of the maximal cluster size in the system Nc to the total

FIG. 2. Distribution of measured oscillation frequencies in a chain of N
=400 Luo-Rudy cells vs coupling coefficient D. Quenched random depolar-
izing currents Ii

d are distributed uniformly on the interval �2.4;3.2� �a� and
�0;3.2� �b�.

FIG. 3. Measured oscillation frequencies in the oscillatory chain vs cell
number i at different values of the coupling coefficient D=0.001 �a�, 0.004
�b�, 0.006 �c�, 0.008 �d�.
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system size N. The global synchronization regime thus cor-
responds to Nc /N=1. We define a cluster as a set of adjacent
cells with measured average frequencies falling within the
same error interval of size defined as �f =2/Tob. In this mea-
surement �f =5�10−6. We plot the ratio Nc /N for ten real-
izations of the depolarizing current in Fig. 5�a�. We observe
the ratio generically growing with D, ultimately reaching the
value 1. The points falling out of the bulk are due to the
randomness in the simulations.

B. Mixtures of oscillatory and excitable cells

Next, we consider a chain which consists of a mixture of
excitable and oscillatory Luo-Rudy cells. As heart tissue con-
tains both types of cells, the problem of their interaction was
actively studied.14–17 To obtain a model of a mixture we
change the interval of uniform distribution of the depolariz-
ing currents to �0;3.2�. From the numerically found value of
the bifurcation point in Id we conclude, that about 31% of
cells are oscillatory when uncoupled, and the other cells are
excitable. We perform the same computational analysis of
the model as in the previous setting.

We plot average frequencies of all elements in a chain
with one realization of the random distribution of Ii

d versus D
in Fig. 2�b�. The only visible qualitative difference from the
case of purely oscillatory chain is that the range of observed

frequencies is now starting from zero. Note that the transi-
tion to global synchronization occurs at a higher value of D
than in the oscillatory case.

Next, we plot the frequency profiles f i versus cell num-
ber i for several values of the coupling coefficient D in the
same chain in Figs. 6�a�–6�d�. As expected, at small coupling
the chain contains narrow groups of oscillating cells, sepa-
rated by groups of cells at rest, which may be coined zero-
frequency clusters �this means in fact, that the driving from
neighboring cells is not enough for them to get membrane
voltage above vs�. As coupling is increased, the nonzero fre-
quency clusters are typically growing at the expense of zero-
frequency ones. Note, that adjacent clusters with frequencies
related as small natural numbers �like 1:2 or 2:3� are some-
times observed, see Figs. 6�b� and 6�c�. This means, that the
propagation of a certain fraction of the pulses �each second
or each third in the mentioned examples� from the pace-
maker into these regions is suppressed. Like in the case of
purely oscillatory system, ultimately the regime of global
synchronization sets in �see Fig. 6�d��.

The ratio Nc /N for ten realizations of the depolarizing
current is plotted in Fig. 5�b�. This ratio is generically grow-
ing with increasing D, reaching the value 1 at higher values
of D, than in the case of purely oscillatory chain.

FIG. 4. �Color� Space-time plots of membrane voltage v in the oscillatory chain after waiting time 8�105 units at different values of the coupling coefficient
D=0.001 �a�, 0.004 �b�, 0.006 �c�, 0.008 �d�.
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We also plot the fraction Nz /N of nonexcited �zero-
frequency� cells for ten realizations of Id, see Fig. 7�a�. As
expected, this fraction is falling from about 0.7 down to zero.

We also carried out simulations of a chain with the de-
polarizing currents distributed according to the Gaussian law
with its mean value equal to 2.8 and standard deviation equal
to 0.5. The same qualitative results were reproduced. The
transition to global synchronization occurs around D=0.03.

IV. TWO-DIMENSIONAL MODELS

In this section we show, that the main results obtained
from the 1D models are kept in 2D models as well.

We consider a square lattice of N=M �M, M =100,
Luo-Rudy cells �5� with the same two distributions of
quenched random depolarizing currents as in the 1D case.
We perform simulations with five different realizations for
the case of purely oscillatory system, and with four realiza-
tions for a mixture of oscillatory and excitable cells. The
initial conditions are the same as in the 1D case.

The total simulation time interval is 8�105 time units.
As the transient processes appear to be longer in the 2D case

than in the 1D one, we choose transient time Ttr=6�105

units, and observation time Tob=2�105 units.
Similar to the 1D case, the transition to global synchro-

nization occurs via cluster synchronization regimes. We mea-
sure the maximal cluster size Mc in horizontal and vertical
directions in a way analogous to that taken in the 1D case.
The frequency error interval is taken as �f =2/Tob

=1�10−5. The ratio Mc /M is plotted in Fig. 5�c� and is
qualitatively similar to that obtained in the 1D model. How-
ever, now Mc /M =1 does not imply global synchronization,
because local frequency defects are possible �see below�.

Figure 8 shows the measured average oscillation fre-
quency profiles for one realization of the quenched random
current distribution on the interval �2.4; 3.2� at four different
values of the coupling coefficient D along with correspond-
ing snapshots of membrane voltage vij in the end of 8�105

units time interval. At small coupling D=0.001, frequency
clusters are formed, but consist of no more than a few cells,
and the activity in the lattice looks incoherent �Figs. 8�a� and
8�b��. As coupling D is increased, the clusters get larger
�Figs. 8�c� and 8�d��. After further increasing D, almost the

FIG. 5. Size of the largest cluster of synchronization related to the total system size vs coupling coefficient D: ��a� and �b�� in chains of N=400 cells for ten
different realizations of the uniform random distribution of Ii

d in the intervals �2.4;3.2� �a� and �0;3.2� �b�; ��c� and �d�� in lattices of N=M �M cells, M
=100, for 5 and 4 different realizations of the same two distributions, respectively.
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whole lattice gets covered with one cluster, except for small
“defects” characterized by differing frequencies �Figs. 8�e�
and 8�f��. The corresponding space-time evolution in the lat-
ter case is an almost regular target wave structure, but it
contains defects in the forms of additional pacemakers and
spiral cores, which can coexist �Fig. 8�f��. Such structural
defects and the mentioned defects in the frequency profiles
are typically well associated with each other �compare Figs.
8�e� and 8�f��.

Further increasing the coupling parameter leads to a glo-
bally synchronous regime. We observe, that it can be repre-
sented as well by one pacemaker, two pacemakers and a
spiral wave in different realizations of Id distribution �Figs.
9�a�–9�c�, respectively�. However, it is impossible to deter-
mine with computational methods, whether two pacemakers
indeed do coexist and are frequency-locked, or the finite
transient time is insufficient to observe one of them being
destroyed, and the observation time in not enough to resolve
their frequency difference.

The ratio Mc /M for four realizations of the mixture of
oscillatory and excitable cells is plotted versus D in Fig.
5�d�, the ratio of the number of nonexcited elements to the
total number of elements is presented in Fig. 7�b�. We ob-
serve that with increasing D, frequency clusters are growing
and the fraction of never excited elements is falling to zero.
The space-time evolution is characterized by a transition
from spatially-incoherent behavior to globally synchronous
regimes driven by pacemakers or spirals.

V. DISCUSSIONS

We have studied the dynamics of one- and two-
dimensional inhomogeneous cardiac culture models in two
settings: �i� an ensemble of oscillatory cells with different
natural frequencies and �ii� a mixture of excitable and oscil-
latory cells. In all these kinds of models we observed the
transition from incoherent behavior to global synchroniza-
tion via cluster synchronization regimes when the coupling
strength is increased. We have measured the main quantita-
tive characteristics of these regimes �distributions of local
average frequencies and cluster sizes� in dependence upon
the coupling strength. In two-dimensional models we ob-
served various spatio-temporal patterns of activity, including
target and spiral waves and complicated irregular behavior.

From the consideration above it is clear that the coupling
constant D plays an important role in the collective dynamics
of the cells. In real situations, this D corresponds probably to
the gap-junction connectivity between cells. In an experi-
ment with cardiac cell cultures from chicken embryos, Glass
et al. have recently shown that the control of connectivity of

FIG. 6. Measured oscillation frequencies in the chain with oscillatory and
excitable elements vs cell number i at different values of the coupling co-
efficient D=0.005 �a�, 0.03 �b�, 0.04 �c�, 0.075 �d�.

FIG. 7. Number Nz of nonexcited elements related to the total system size N
vs coupling coefficient D: �a� in chains of N=400 cells for ten different
realizations of the uniform random distribution of quenched depolarizing
currents Ii

d in the interval �0;3.2�; �b� in lattices of N=M �M cells, M
=100, for four different realizations of the same distribution.
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the system through the use of � glycerrhetinic acid and cul-
tures density can indeed produce a transition to synchronized
patterns.18 They have used a heterogeneous cellular automa-
ton model to understand their experiment findings. It seems
that heterogeneity and excitability are essential in their
explanations.

In our case, the system is oscillatory or is a mixture of
excitable and oscillatory cells. Although cells taken from the

ventricle7 are considered to be only excitable when they are
in an intact heart, they will become oscillatory13 after they
have been dissociated from the heart tissue and plated on the
culture dishes. It is known that their oscillation period will be
much longer than that of the pacemakers, but it is not clear
what the oscillation period distribution is and whether this
distribution will depend on the growth conditions. Even
though all the cells might eventually be oscillatory, as a first

FIG. 8. �Color� Measured oscillation frequencies ��a�, �c�, and �e�� and snapshots of membrane voltage after waiting time 8�105 units ��b�, �d�, and �f�� in
a 2D lattice of 100�100 oscillatory Luo-Rudy cells at different values of the coupling coefficient D=0.001 ��a� and �b��, 0.002 ��c� and �d��, D=0.003 ��e�
and �f��. Quenched random depolarizing currents Iij

d are distributed uniformly on the interval �2.4; 3.2�.
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approximation, one can still consider most of the cells as
excitable as they will be driven by a few cells with the short-
est oscillation periods. It is therefore reasonable to assume
that there is a mixture of excitable and oscillatory cells. In
this sense, we also have heterogeneity and excitability built

into our systems. However, the question is open whether this
heterogeneity is the same as that of Glass et al.18

ACKNOWLEDGMENTS

This research was supported by RFBR-NSC �Project No.
05-02-90567�, RFBR-MFC �Project No. 05-02-19815�,
RFBR �Project Nos. 06-02-16596 and 06-02-16499� and
the program “Leading Scientific Schools of Russia” �Grant
No. 7309.2006.2�. O.I.K. also acknowledges support from
the “Dynasty” Foundation, Russia, and J.K. that of the
International Promotionskolleg Cognitive Neuroscience and
BIOSIM.

1V. I. Krinsky, “Spread of excitation in an inhomogeneous medium,” Bio-
physics �Engl. Transl.� 11, 776–784 �1966�.

2A. T. Stamp, G. V. Osipov, and J. J. Collins, “Suppressing arrhythmias in
cardiac models using overdrive pacing and calcium channel blockers,”
Chaos 12, 931–940 �2002�.

3J. N. Weiss, Z. Qu, P. S. Chen, S. F. Lin, H. S. Karagueuzian, H.Hayashi,
A.Garfinkel, and A.Karma, “The dynamics of cardiac fibrillation,”
Circulation 112, 1232–1240 �2005�.

4H. Zhang, Zh.Cao, N.-J. Wu, H.-P. Ying , and G. Hu, “Suppress Winfree
turbulence by local forcing excitable systems,” Phys. Rev. Lett. 94,
188301 �2005�.

5Focus issue: “Fibrillation in normal ventricular myocardium,” Chaos 8,
1–241 �1998�.

6Focus issue: “Mapping and control of complex cardiac arrhythmias,”
Chaos 12, 732–981 �2002�.

7S.-M. Hwang, K.-H. Yea, and K. J. Lee, “Regular and alternate spiral
waves of contractile motion on rat ventricle cell cultures,” Phys. Rev. Lett.
92, 198103 �2004�.

8C.-H. Luo and Y. Rudy, “A model of the ventricular cardiac action poten-
tial: Depolarization, repolarization, and their interaction,” Circ. Res. 68,
1501–1526 �1991�.

9C.-H. Luo and Y. Rudy, “A dynamic model of the cardiac ventricular
action potential. I. Simulations of ionic currents and concentration
changes,” Circ. Res. 74, 1071–1096 �1994�.

10M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic mechanisms un-
derlying human atrial action potential properties: Insights from a math-
ematical model,” Am. J. Physiol. 275, H301–H321 �1998�.

11K. H. Ten Tusscher, D. Noble, P. J. Noble, and A. V. Panfilov, “A model
for human ventricular tissue,” Am. J. Physiol. Heart Circ. Physiol. 286,
H1573–H1589 �2004�.

12K. H. Ten Tusscher and A. V. Panfilov, “Alternans and spiral breakup in a
human ventricular tissue model,” Am. J. Physiol. Heart Circ. Physiol.
291, H1088–H1100 �2006�.

13S. L. Lilly, Pathophysiology of Heart Disease, 3rd ed. �Lippincott, Will-
iams, and Wilkins, New York, 2003�.

14H. A. Fozzard and M. Schoenberg, “Strength—duration curves in cardiac
Purkinje fibres: Effects of laminal length and charge distribution,” J.
Physiol. �London� 226, 593–618 �1972�.

15R. L. Winslow, A. Varghese, D. Noble, C. Adlakha, and A.Hoythya, “Gen-
eration and propagation of ectopic beats induced by spatially localized
Na-K pump inhibition in atrial network models,” Proc. R. Soc. London,
Ser. B 254, 55–61 �1993�.

16R. W. Joyner, Y. G. Wang, R. Wilders, D. A. Golod, M. B. Wagner, R.
Kumar, and W. N. Goolsby, “A spontaneously active focus drives a model
atrial sheet more easily than a model ventricular sheet,” Am. J. Physiol.
279, H752–H763 �2000�.

17R. Wilders, M. B. Wagner, D. A. Golod, R. Kumar, Y. G. Wang, W. N.
Goolsby, R. W. Joyner, and H. J. Jongsma, “Effects of anisotropy on the
development of cardiac arrhythmias associated with focal activity,” Pflue-
gers Arch. 441, 301–302 �2000�.

18G. Bub, A. Shrier, and L. Glass, “Global organization of dynamics in
oscillatory heterogeneous excitable media,” Phys. Rev. Lett. 94, 028105
�2005�.

FIG. 9. �Color� Snapshots of membrane voltage after waiting time 8�105

units in a 2D lattice of 100�100 oscillatory Luo-Rudy cells for four differ-
ent realizations of the uniform random distribution of quenched depolarizing
currents Iij

d at D=0.004. In all cases global synchronization up to numerical
accuracy is observed.

015111-8 Kanakov et al. Chaos 17, 015111 �2007�

Downloaded 22 Nov 2007 to 141.89.176.72. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp


