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Abstract

In the present paper, two kinds of dynamical complex networks are considered. The first is

that elements of every node have different time delays but all nodes in such networks have the

same time-delay vector. The second is that different nodes have different time-delay vectors,

and the elements of each node also have different time delays. Corresponding synchronization

theorems are established. Numerical examples show the efficiency of the derived theorems.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

It has been shown that complex networks exist in various fields of real world, such
as in the Internet, the World Wide Web, telephone call graphs, food webs, neural
networks, electrical power grids, cellular and metabolic networks, scientific citation
web, living organisms, etc. The nature of complex networks is their complexity,
see front matter r 2005 Elsevier B.V. All rights reserved.
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including topological structure, dynamical evolution, node diversity and meta-
complication, etc. ([1] and many references cited therein).

Among all kinds of complex networks, the random networks, small-world
networks and scale-free networks are most noticeable. The random networks were
first introduced by Erdös and Rényi [2]. Their random model has dominated the
mathematical research of complex networks for nearly half a century, mainly due to
the absence of super-computational power and detailed topological information
about various large-scale real-world networks. The small-world networks were
introduced by Watts and Strogatz [3,4] in the process of investigating the transition
from regular networks to random ones. Such networks behave a high degree of
clustering as in the regular networks and a small average distance among nodes as
the random distribution of the network peaks at an average value and decays
exponentially (e.g., Refs. [5,6] and references therein). The latter ones were
introduced by Barabási and Albert [7], which exhibit power-law distribution.
Generally speaking, power law is regarded to be equivalent to the scale free property,
see Ref. [1]. However, as far as we know, there is no rigorous mathematical proof for
this equivalence. There are many interesting works on such networks [8,9].

Time delays commonly exist in the world, some of them are trivial so can be
ignorant whilst some of them can not be ignored, such as in long-distance
communication and traffic congestions, etc. Recently, Masoller and her cooperators
have considered the coupled map lattice with time delay [10–12]. More recently, Li
and Chen have discussed continuous complex dynamical networks with (same) time
delays in the whole networks [13], where the stability theorem of synchronization is
established by constructing a Lyapunov–Krasovskii functional [14] which is often
difficult to be found.

In the present paper, we study the complex dynamical networks which have
different time delays. We show that the stability theorems of synchronization are
easily derived just by using the definition of matrix measure [15,16]. The layout of the
paper is organized as follows. In Section 2, two kinds of complex dynamical
networks with time delays are considered and some new theorems of synchronization
for networks with time delays are established. Numerical examples are given in
Section 3, and some remarks are included in Section 4.
2. Synchronization stability for networks with time delays

In Ref. [13], Li and Chen studied the following networks:

_xi ¼ f ðxiÞ þ �
XN

j¼1

cijAxjðt� tÞ; i ¼ 1; 2; . . . ;N , (1)

where f : Rn
! Rn is a continuously differentiable function, xi ¼

ðxi1;xi2; . . . ;xinÞ
T
2 Rn are the state variables of node i, �40 represents the coupling

strength, A ¼ ðaijÞn�n 2 Rn�n indicates inner-coupling between the elements of the
node itself, while C ¼ ðcijÞN�N denotes the outer-coupling between the nodes of the
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whole network (it is often assumed that there is at most one connection between
node i and another node j, and that there are no isolated clusters, i.e., C is an
irreducible matrix). The entries cij are defined as follows: if there is a connection
between node i and node j ðjaiÞ, then we set cij ¼ 1; otherwise cij ¼ 0 ðjaiÞ, and the
diagonal elements of C are defined by cii ¼ �

PN
j¼1;jaicij ; i ¼ 1; 2; . . . ;N ; t is the time

delay. Obviously all time delays in the network are the same. And the outer coupling
configuration matrix C is a real symmetric and irreducible one. The following lemma
can be found in Refs. [8,17]:

Lemma 1. Suppose that C ¼ ðcijÞN�N is a real symmetric and irreducible matrix,
where cijX0 ðiajÞ; cii ¼ �

PN
j¼1;jaicij, then
(1)
 0 is an eigenvalue of C with multiplicity 1, associated with the eigenvector

ð1; 1; . . . ; 1ÞT;

(2)
 all the other eigenvalues of C are less than 0;

(3)
 there exists a unitary matrix, F ¼ ðf1;f2; . . . ;fN Þ such that

CTfk ¼ lkfk; k ¼ 1; 2; . . . ;N ,

where 0 ¼ l14l2Xl3X � � �XlN are the eigenvalues of C.
At present, the following more general complex networks are analyzed,

_xi ¼ f ðxiÞ þ �
XN

j¼1

cijAðxj1ðt� t1Þ;xj2ðt� t2Þ; . . . ; xjnðt� tnÞÞ
T9f ðxiÞ

þ �
XN

j¼1

cijA � xjðt� tÞ ð2Þ

in which f, �, xi ði ¼ 1; 2; . . . ;NÞ, C and A have the same meanings as those in (1).
The only difference is that in Eq. (2) every node has the same retardation time vector
ðt1; t2; . . . ; tnÞ.

Hereafter, the network (2) with delays is said to achieve (asymptotical)
synchronization if

xiðtÞ ¼ sðtÞ as t!þ1; i ¼ 1; 2; . . . ;N , (3)

in which sðtÞ 2 Rn satisfies

_sðtÞ ¼ f ðsðtÞÞ ,

where sðtÞ can be either an equilibrium point, or a (quasi-)periodic orbit, or an orbit
of a chaotic attractor.

Before the establishment of the synchronization theorem, the definition of the
‘‘matrix measure’’ [15,16] is introduced below.

Definition 1. Suppose that k � ki is an induced matrix norm in Cn�n, then the
corresponding matrix measure of a given matrix A is a function Mi : C

n�n ! R,
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defined by

MiðAÞ ¼ lim
d!0þ

kI þ dAki � 1

d
,

in which I is the identity matrix.
In general, the matrix measure is difficult to calculate. But for some special norms,

it is easy to find the associate matrix measures. For example, M2ðAÞ is half of the
maximum eigenvalue of Ā0 þ A. Here kAk2 is the spectral norm of A, and Ā0 is the
transpose and complex conjugate of A.

Theorem 1. Consider the delayed dynamical network (2), let 0 ¼ l14l2X � � �XlN be

the eigenvalues of the coupling configuration matrix C. If the following ðN � 1Þ systems

of n-dimensional linear time-varying delayed differential equations are asymptotically

stable about their zero solutions:

_ZðtÞ ¼ Df ðsðtÞÞZðtÞ þ �liA � Zðt� tÞ; i ¼ 2; . . . ;N , (4)

where Df ðsðtÞÞ 2 Rn�n is the Jacobian of f ðxðtÞÞ at sðtÞ, ZðtÞ 2 Rn, Zðt� tÞ ¼
ðZ1ðt� t1Þ; . . . ; Znðt� tnÞÞ

T
2 Rn, then the synchronized states of (3) are asymptoti-

cally stable.

Proof. To investigate the stability of the synchronized states (3), let

xiðtÞ ¼ sðtÞ þ eiðtÞ . (5)

Substituting in (2) gives

_eiðtÞ ¼ f ðsðtÞ þ eiðtÞÞ � f ðsðtÞÞ þ �
XN

j¼1

cijA � ejðt� tÞ; 1pipN (6)

in which ejðt� tÞ ¼ ðej1ðt� t1Þ; . . . ; ejnðt� tnÞÞ
T
2 Rn. Its linearized system reads as

_eiðtÞ ¼ Df ðsðtÞÞeiðtÞ þ �A � ðe1ðt� tÞ; e2ðt� tÞ; . . . ; eNðt� tÞÞðci1; . . . ; ciN Þ
T . (7)

Let eðtÞ ¼ ðe1ðtÞ; e2ðtÞ; . . . ; eNðtÞÞ 2 Rn�N , one gets

_eðtÞ ¼ Df ðsðtÞÞeðtÞ þ �A � eðt� tÞCT , (8)

where eðt� tÞ ¼ ðe1ðt� tÞ; e2ðt� tÞ; . . . ; eN ðt� tÞÞ 2 Rn�N .
By Lemma 1, there exists a nonsingular matrix F, such that

CTF ¼ FG;G ¼ diagðl1; . . . ; lNÞ. If one sets eðtÞF ¼ vðtÞ ¼ ðv1ðtÞ; v2ðtÞ; . . . ; vN ðtÞÞ 2

Rn�N , then (8) can be transformed into the following matrix equation

_vðtÞ ¼ Df ðsðtÞÞvðtÞ þ �Avðt� tÞG , (9)

that is,

_viðtÞ ¼ Df ðsðtÞÞviðtÞ þ �liA � viðt� tÞ; i ¼ 1; . . . ;N , (10)

in which viðt� tÞ ¼ ðvi1ðt� t1Þ; . . . ; vinðt� tnÞÞ
T
2 Rn.

Note that l1 ¼ 0 corresponds to the synchronization of the system (3). If
the following ðN � 1Þ pieces of the n-dimensional linear time-varying delayed
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differential equations

_viðtÞ ¼ Df ðsðtÞÞviðtÞ þ �liA � viðt� tÞ; i ¼ 2; . . . ;N

are asymptotically stable, then eðtÞ will tend to zero asymptotically, which shows that
the synchronized states (3) are asymptotically stable. This completes the proof. &

Theorem 2. Assume that all eigenvalues of the matrix C in (2) are listed in order,

0 ¼ l14l2X � � �XlN . If there exist an i and a j such that
�ljðAþ ATÞ liA

liA
T 0

 !
p0,

M2½Df ðsðtÞÞ þ ljA�pao0 for all tXt0, where i ¼ 2; 3; . . . ; n, j ¼ 1; 2; . . . ; n, then the

synchronous states (3) of the dynamical network (2) are exponentially stable for any

fixed delay tk40 ðk ¼ 1; 2; . . . ; nÞ.

Proof. Consider the linear time-varying system

_xðtÞ ¼ Df ðsðtÞÞxðtÞ þ �liA � xðt� tÞ; i ¼ 2; 3; . . . ,

where xðt� tÞ ¼ ðx1ðt� t1Þ;x2ðt� t2Þ; . . . ;xnðt� tnÞÞ
T
2 Rn. Since

dkxðtÞk2=dt

¼ ½ðxðtÞTDf ðsðtÞÞxðtÞ þ �lixðtÞ
TA � xðt� tÞ þ xðtÞTðDf ðsðtÞÞÞTxðtÞ

þ�lixðt� tÞ
T

ATxðtÞ�

¼ xðtÞTf½Df ðsðtÞÞ þ ljA�
T þ ½Df ðsðtÞÞ þ ljA�gxðtÞ

þ�
xðtÞ

xðt� tÞ

 !T
�ljðAþ ATÞ liA

liA
T 0

 !
xðtÞ

xðt� tÞ

 !

pxðtÞTf½Df ðsðtÞÞ þ ljA�
T þ ½Df ðsðtÞÞ þ ljA�gxðtÞ

p2xðtÞTM2½Df ðsðtÞÞ þ ljA�xðtÞp2akxðtÞk2 ;

one has kxðtÞkpkxðt0Þke2at. That is, all the linear time-varying systems (4) are
exponentially stable around their zero solutions. From Theorem 1, the synchronous
states of dynamical network (2) are exponentially stable. The proof is thus
complete. &

In network (2), the elements of any node have different time delays, but all nodes
in the whole network have the same time-delay vector, i.e., the time-delay vector is
ðt1; t2; . . . ; tnÞ. In the following, a somewhat more general network can be similarly
studied. Consider

_xi ¼ f ðxiÞ þ �
XN

j¼1

cijAðxj1ðt� tj1Þ;xj2ðt� tj2Þ; . . . ;xjnðt� tjnÞÞ
T9f ðxiÞ

þ �
XN

j¼1

cijA � xjðt� tjÞ , ð11Þ
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where f, �, xi ði ¼ 1; 2; . . . ;NÞ, C and A have the same meanings as those in (2), the
unique difference is that in (11) a different node j has the different time-delay vector,
ðtj1; tj2; . . . ; tjnÞ. The synchronous states of (11) are also defined as (3). Similar to
Theorems 1 and 2, one gets

Theorem 3. Consider the delayed dynamical network (11). Let 0 ¼ l14l2X � � �XlN

be the eigenvalues of the coupling configuration matrix C. If the following ðN � 1Þ
systems of n-dimensional linear time-varying delayed differential equations are

asymptotically stable about their zero solutions

_ZðtÞ ¼ Df ðsðtÞÞZðtÞ þ �liA � Zðt� tiÞ; i ¼ 2; . . . ;N , (12)

where Df ðsðtÞÞ 2 Rn�n is the Jacobian of f ðxðtÞÞ at sðtÞ, ZðtÞ 2 Rn, Zðt� tiÞ ¼

ðZ1ðt� ti1Þ; . . . ; Znðt� tinÞÞ
T
2 Rn, then the synchronized states of the equilibria

to (11) are asymptotically stable.

Theorem 4. Assume that all eigenvalues of the matrix C in (11) are listed in order,
0 ¼ l14l2X � � �XlN . If there exist an i and a j such that

�ljðAþ ATÞ liA

liA
T 0

 !
p0;M2½Df ðsðtÞÞ þ ljA�pao0

for all tXt0, where i ¼ 2; 3; . . . ;N, j ¼ 1; 2; . . . ;N, then the synchronous states of (3)
the equilibria to the dynamical network (11) are exponentially stable for any fixed delay

tkl40 ðk; l ¼ 1; 2; . . . ; nÞ.

The proofs of Theorems 3 and 4 are almost the same as those of Theorems 1 and 2,
so are omitted here. Some notes on network models (1) and (2) are presented in
Ref. [18]. And some other related results are studied in Refs. [19,20].
3. Several illustrative examples

The following simulations illustrate the theoretical results derived in Section 2. For
simplicity, we consider a four-node network, in which each node is a simple 3-
dimensional stable linear system described in Ref. [13] ð _xi1; _xi2; _xi3Þ

T
¼

ð�xi1;�2xi2;�3xi3Þ
T, and its Jacobian matrix is Df ðsðtÞÞ ¼ diagð�1;�2;�3Þ9J.

Assume that the coupled configuration matrix ðcijÞN�N is

C ¼

�2 1 1 0

1 �3 1 1

1 1 �3 1

0 1 1 �2

0
BBB@

1
CCCA ,

the coupling strength � ¼ 0:2 and the inner-coupling matrix A ¼ diagð1; 1; 1Þ.
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At first, the time-delay vector ð1; 2; 3Þ is considered. So the corresponding network
reads below

_x1

_x2

_x3

_x4

0
BBB@

1
CCCA ¼ diagðJ; J; J; JÞ

x1

x2

x3

x4

0
BBB@

1
CCCAþ �

y1

y2

y3

y4

0
BBBB@

1
CCCCA , (13)

in which xi ¼ ðxi1;xi2;xi3Þ
T
2 R3; i ¼ 1; 2; 3; 4, and

y1 ¼

�2x11ðt� 1Þ þ x21ðt� 1Þ þ x31ðt� 1Þ

�2x12ðt� 2Þ þ x22ðt� 2Þ þ x32ðt� 2Þ

�2x13ðt� 3Þ þ x23ðt� 3Þ þ x33ðt� 3Þ

0
B@

1
CA ,

y2 ¼

x11ðt� 1Þ � 3x21ðt� 1Þ þ x31ðt� 1Þ þ x41ðt� 1Þ

x12ðt� 2Þ � 3x22ðt� 2Þ þ x32ðt� 2Þ þ x42ðt� 2Þ

x13ðt� 3Þ � 3x23ðt� 3Þ þ x33ðt� 3Þ þ x43ðt� 3Þ

0
B@

1
CA ,

y3 ¼

x11ðt� 1Þ þ x21ðt� 1Þ � 3x31ðt� 1Þ þ x41ðt� 1Þ

x12ðt� 2Þ þ x22ðt� 2Þ � 3x32ðt� 2Þ þ x42ðt� 2Þ

x13ðt� 3Þ þ x23ðt� 3Þ � 3x33ðt� 3Þ þ x43ðt� 3Þ

0
B@

1
CA ,

y4 ¼

x21ðt� 1Þ þ x31ðt� 1Þ � 2x41ðt� 1Þ

x22ðt� 2Þ þ x32ðt� 2Þ � 2x42ðt� 2Þ

x23ðt� 3Þ þ x33ðt� 3Þ � 2x43ðt� 3Þ

0
B@

1
CA .

In the following, we show its synchronous states R3 3 xi ¼ ðxi1;xi2; xi3Þ
T
¼ sðtÞ ¼

0 is asymptotically stable by numerical simulations. Set ei1 ¼ xiþ1;1 � xi1;
ei2 ¼ xiþ1;2 � xi2; ei3 ¼ xiþ1;3 � xi3. The curves of the synchronous states for (13)
are plotted in Fig. 1.

Next, we only use Theorem 1 to verify it. Consider the following system in R3,

_Z1
_Z2
_Z3

0
B@

1
CA ¼

�Z1
�2Z2
�3Z3

0
B@

1
CAþ li

Z1ðt� 1Þ

Z2ðt� 2Þ

Z3ðt� 3Þ

0
B@

1
CA; i ¼ 2; 3; 4 , (14)

where l2 ¼ �2; l3 ¼ l4 ¼ �4 are three nonzero eigenvalues of C (the first one is
zero).

The characteristic matrix [21] of (14) is diagðl� lie
�l þ 1; l� lie

�2l þ 2; l�
lie
�3l þ 3Þ, all its eigenvalues are negative, so the trivial solution to (14) is

asymptotically stable for l2; l3; l4. So by Theorem 1, the synchronous states (3) for
(13) are asymptotically stable, which coincides with the above numerical results.
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Fig. 1. Synchronization errors for the delayed networks (13): (a) ei1ðtÞ vs t, (b) ei2ðtÞ vs t, (c) ei3ðtÞ vs t.
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In the following, a more general case is considered. The time-delay matrix is read
as,

1:1 1:2 1:3

2:1 2:2 2:3

3:1 3:2 3:3

4:1 4:2 4:3

0
BBB@

1
CCCA
 1st node ;

 2nd node ;

 3rd node ;

 4th node :

The network is explicitly expressed as follows,

_x1

_x2

_x3

_x4

0
BBB@

1
CCCA ¼ diagðJ; J; J; JÞ

x1

x2

x3

x4

0
BBB@

1
CCCAþ �

y1

y2

y3

y4

0
BBBB@

1
CCCCA , (15)
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in which xi ¼ ðxi1;xi2;xi3Þ
T
2 R3; i ¼ 1; 2; 3; 4; � ¼ 0:2, and

y1 ¼

�2x11ðt� 1:1Þ þ x21ðt� 2:1Þ þ x31ðt� 3:1Þ

�2x12ðt� 1:2Þ þ x22ðt� 2:2Þ þ x32ðt� 3:2Þ

�2x13ðt� 1:3Þ þ x23ðt� 2:3Þ þ x33ðt� 3:3Þ

0
B@

1
CA ,

y2 ¼

x11ðt� 1:1Þ � 3x21ðt� 2:1Þ þ x31ðt� 3:1Þ þ x41ðt� 4:1Þ

x12ðt� 1:2Þ � 3x22ðt� 2:2Þ þ x32ðt� 3:2Þ þ x42ðt� 4:2Þ

x13ðt� 1:3Þ � 3x23ðt� 2:3Þ þ x33ðt� 3:3Þ þ x43ðt� 4:3Þ

0
B@

1
CA ,

y3 ¼

x11ðt� 1:1Þ þ x21ðt� 2:1Þ � 3x31ðt� 3:1Þ þ x41ðt� 4:1Þ

x12ðt� 1:2Þ þ x22ðt� 2:2Þ � 3x32ðt� 3:2Þ þ x42ðt� 4:2Þ

x13ðt� 1:3Þ þ x23ðt� 2:3Þ � 3x33ðt� 3:3Þ þ x43ðt� 4:3Þ

0
B@

1
CA ,
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Fig. 2. Synchronization errors of networks (15): (a) ei1ðtÞ vs t, (b) ei2ðtÞ vs t, (c) ei3ðtÞ vs t.
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y4 ¼

x21ðt� 2:1Þ þ x31ðt� 3:1Þ � 2x41ðt� 4:1Þ

x22ðt� 2:2Þ þ x32ðt� 3:2Þ � 2x42ðt� 4:2Þ

x23ðt� 2:3Þ þ x33ðt� 3:3Þ � 2x43ðt� 4:3Þ

0
B@

1
CA .

Set again ei1 ¼ xiþ1;1 � xi1; ei2 ¼ xiþ1;2 � xi2; ei3 ¼ xiþ1;3 � xi3.
From the simulations of this network (Fig. 2), one can see that the synchronous

states (3) for (15) are asymptotically stable. Next, we use Theorem 4 to verify it.

�l1ðAþ ATÞ l2A

l2AT 0

 !
6�6

p0

holds, since all its eigenvalues are less than or equal to zero. And
M2½Df ðsðtÞÞ þ l1A�p� 1o0. So by Theorem 4, the synchronous states (3) for
(15) are shown to be asymptotically stable, which is in line with the above numerical
calculations.

With the increase of the node number N, it is difficult even impossible to directly
judge the synchronous states (3) for networks (2) and (11), but by the aid of the
theorems derived here, it becomes easier.
4. Conclusion

In the present paper, general dynamical networks with different time delays are
considered. Several theorems on the synchronization properties are established. Two
illustrative examples are presented, which show the efficiency of the derived results.
Generally speaking, the number N of the coupled scale of a complex dynamical
network is often very large (e.g., the metabolic system), so the considered network is
fairly high dimensional with nN dimensions if the dimension of the identical node is
n. To directly investigate the synchronous states of such a high dimensional system
with/without time delay is quite difficult even impossible. From our theorems, we
only consider the stability of the attractor of an n dimensional system, which makes
the consideration of the synchronous state much easier. Further research will be
contributed to directed networks (where C is not symmetric) and time-varying outer
coupling networks (where C depends upon the time t).
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