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Starting from an initial wiring of connections, we show that the synchronizability of a network can be
significantly improved by evolving the graph along a time dependent connectivity matrix. We consider the case
of connectivity matrices that commute at all times, and compare several approaches to engineer the corre-
sponding commutative graphs. In particular, we show that synchronization in a dynamical network can be
achieved even in the case in which each individual commutative graphs does not give rise to synchronized
behavior.
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Complex networks, i.e., collections of dynamical nodes
connected by a wiring of edges exhibiting complex topologi-
cal properties, are the prominent candidates to describe the
occurrence of collective dynamics in many areas of science
�1�. Of particular interest is the existence of synchronized
states in such networks. These states indeed are at the basis
for the emergence of coherent global behaviors in both nor-
mal and abnormal brain functions �2�, and play a crucial role
in determining the food web dynamics in ecological systems
�3�.

So far, synchronized behaviors �4� have been mostly stud-
ied in the limit of static networks �e.g., networks whose wir-
ing of connections is fixed� with the emphasis focusing on
how the complexity in the overall topology influences the
propensity of the coupled units to synchronize �5,6�. In par-
ticular, it has been established that proper weighting proce-
dures in static complex networks are able to greatly enhance
the appearance of synchronized behavior �7�.

The very opposite limit of blinking networks �8� has also
been considered, where the wiring of connections is rapidly
�i.e., with a characteristic time scale much shorter than that
of the networked system’s dynamics� switching among dif-
ferent configurations. Under these conditions, it has been
found that synchronous motion can be established for suffi-
ciently rapid switching times even in the case in which each
visited wiring configuration would prevent synchronization
under static conditions.

None of these two limits, however, seems an adequate
description of many relevant phenomena occurring in natural
systems. For instance, properly modeling processes such as
mutation in biological systems �9�, synaptic plasticity in neu-
ronal networks �10�, or adaptation in social or financial mar-
ket dynamics �11� would require accounting for time varying
networks whose evolution takes place over characteristic
time scales that are commensurate with those of the nodes’
dynamics.

In this paper, we assess the conditions for the appearance
of synchronized states in dynamical networks, without mak-
ing any explicit hypothesis on the time scale responsible for
the variation of the coupling wiring. We consider a network

of N coupled identical systems, whose evolution is described
by

ẋi = f�xi� − ��
j=1

N

Gij�t�h�x j�, i = 1, . . . ,N . �1�

Here x�Rm is the m-dimensional vector describing the
state of the ith node, f�x� :Rm→Rm governs the local dynam-
ics of the nodes, h�x� :Rm→Rm is a vectorial output func-
tion, � is the coupling strength, dots stand for temporal de-
rivatives, and Gij�t��R are the time varying elements of a
zero row sum �� jGij�t�=0 " i and " t� N�N symmetric
connectivity matrix G�t� with strictly positive diagonal terms
�Gii�t��0" i and " t� and negative off diagonal terms
�Gij�t��0 " i� j and " t�, specifying the evolution in
strength and topology of the underlying connection wiring.
Being symmetric G�t� admits at all times a set �i�t� �vi�t�� of
real eigenvalues �of associated orthonormal eigenvectors�,
such that G�t�vi�t�=�i�t�vi�t� and v j

T ·vi=�ij.
It is worth noticing that the zero row sum condition im-

posed on G�t� can be actually encompassed by a diffusion
process when, for instance, the topology of the connectivity
matrix reduces to that of a unidimensional chain. In general,
a possible way of physically realizing this property is a dif-
fusion process of the output function onto the first neighbor-
hood of a given node �defined as the set of vertices that are
adjacent to the node� in the complex topology imposed by
the connectivity wiring. Such a condition �and Geršgorin’s
circle theorem �12�� ensure that �i� the spectrum is entirely
semipositive, i.e., �i�t��0 " i and " t; �ii� �1�t��0 with
associated eigenvector v1�t�= 1

�N
�1,1 , . . . ,1	T that entirely

defines a synchronization manifold �xi�t�=xs�t� , " i�,
whose stability will be the object of our study; and �iii� all
the other eigenvalues �i�t� �i=2, . . . ,N, �i�t��0 for con-
nected graphs� have associated eigenvectors vi�t� spanning
the transverse manifold of xs�t�in the m�N-dimensional
phase space of Eq. �1�.

Let �xi�t�=xi�t�−xs�t�= ��xi,1�t� , . . . ,�xi,m�t�� be the de-
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viation of the ith vector state from the synchronization mani-
fold, and consider the N�m column vectors X
= �x1 ,x2 , . . . ,xN�T and �X= ��x1 , . . . ,�xN�T. Then, in linear
order of �X, one has

�Ẋ = �1N � Jf�xs� − �G�t� � Jh�xs���X , �2�

where � stands for the direct product, and J denotes the
Jacobian operator. By further considering that the arbitrary
state �X can be written as �X=�i=1

N vi�t� � �i�t�
��i�t�= ��1,i , . . . ,�m,i��, and applying v j

T to the left side of
each term in Eq. �2�, one finally obtains

d� j

dt
= K j� j − �

i=1

N

v j
T�t�

dvi�t�
dt

�i, �3�

where j=1, . . . ,N and K j = �Jf�xs�−�� j�t�Jh�xs��.
The key point is to notice that Eq. �3� transforms into a set

of N variational equations of the form
d� j

dt =K j� j, as soon as

�i=1
N v j

T�t�
dvi�t�

dt �i=0, i.e., when all eigenvectors are constant in
time. This can be realized in two different ways. Namely,
either the coupling matrix G�t� is constant �as originally con-
sidered in Ref. �6��, or when, starting from an initial wiring
condition G0=G�t=0�, the coupling matrix G�t� commutes at
any time with G0 �G0G�t�=G�t�G0 , " t�. In the following,
we will focus on this latter situation, and show that �i� an
evolution along commutative graphs can be constructed by
starting from any initial wiring G0 satisfying the set of above
mentioned properties, �ii� such an evolution provides a con-
dition for the stability of the synchronous state that can also
be fulfilled when the succession of connectivity matrices in-
cludes configurations for which the synchronization mani-
fold is transversally unstable, and �iii� the generality of the
proposed methods can be illustrated by some typical ex-
amples.

Let us now explicitly construct a commutative evolution.
We can notice that the initial symmetric coupling matrix can
be written as G0=V	VT, where V= �v1 , . . . ,vN	 is an or-
thogonal matrix whose columns are the eigenvectors of G0,
and 	0=diag�0,�2�0� , . . . ,�N�0�� is the diagonal matrix
formed by the eigenvalues of G0. At any time t, a zero row
sum symmetric commuting matrix G�t� can be constructed as

G�t� = V	�t�VT, �4�

where 	�t�=diag�0,�2�t� , . . . ,�N�t�� with �i�t��0 " i�1.
The �i�t� are otherwise arbitrary at this point. With this gen-
eral form it is easy to show that G�t� is positive semidefinite
and since the standard orthogonal basis vectors are not col-
linear with the eigenvector v1 we have Gii�0 " i. Equation
�4� therefore gives the formula for generating all possible
matrices that commute with G�0�, are positive semidefinite
with zero row sum, and couple each oscillator in a dissipa-
tive fashion �Gii�0� to the other oscillators. We refer to this
set of matrices as the dissipative commuting set �DCS� of
G�0�. We note that not all members of the DCS of G�0� are
true Lagrangian matrices since it is possible for off-diagonal
components to be positive, but all the commuting Lagrangian
matrices are contained in the DCS.

Notice that, in particular for f�x�=0 and h�x�=x �i.e., in
the absence of local dynamics and for an output function that
is equal to the identity�, Eq. �1� describes a set of coupled
homogeneous linear equations. The physical meaning of se-
lecting as coupling matrices the members of the DCS, in this
special case, is that the response of the system to external
perturbations preserves the same set of eigenmodes.

We could try to constrain the choice of �i�t� in the gener-
ating formula Eq. �4� by, say, writing �i�t�=�i�0�+��i�t�
�i�1� and then determining constraints on ��i�t� which
would yield only commuting, Lagrangian matrices or cou-
pling matrices for which particular strengths are chosen for
particular links. While such constraints can sometimes exist
at other times, they result in noncommuting matrices or do
not retain a positive, semidefinite form and so are only pos-
sible in an approximate way. Generally, this approach is
complicated, inexact, and it is difficult to understand the
properties of the resulting matrix set. For instance, when
��k=�lk��l �l�1�, the elements of G�t� are Gij�t�=Gij�0�
+��lvilv jl, so the constraint on the diagonal term reduces to
Gii�t�=Gii�0�+��l�vil�2�0 �which is always satisfied for
��l�0�. This technique allows one to select ��k=�lk��l in
order to fix a desired strength Gĩj̃�t�=−d �d�0� for the ele-

ment ĩ and j̃ of G�t� ���l=−
d+Gĩj̃�0�

vĩlv j̃l
�. Since selection of ��l

implies a perturbation to all the other elements
Gij�t�=Gij�0�− �d+Gĩj̃�0�� vilv jl

vĩlv j̃l
,one has to select the proper l

by minimizing the quantity 
�l�=�i,j
i�ĩ j� j̃ 
 vilv jl

vĩlv j̃l

 as a function

of l.
In the following we will adopt a more general method

which relies on the fact the DCS is the complete set of dis-
sipative, commuting, coupling matrices. Namely, we start
from a given initial graph G0, and produce a large set of
different realizations of the same graph. This allows one to
calculate the probability distribution p��0� of the non null
eigenvalues of the set. Then we construct 	�t� in Eq. �4� by
randomly drawing a set of N−1 eigenvalues ��1�t� must be
always zero� either within the same distribution or using a
uniform distribution between �2�0� and �N�0�. The former
strategy can be realized by, e.g., using the spectrum of a
different realization of G0 �henceforth called the eigenvalues
surrogate method�, or by randomly drawing the eigenvalues
of G�t� from the distribution p��0� in an ordered
�0��2�t� , . . . ,�N�t�� or unordered way. The latter strategy
can be realized by randomly picking the eigenvalues �in an
ordered or unordered way� from a uniform distribution.

It is relevant to study how such procedures modify the
main topological structures of the underlying network. In
general, G�t� is a dense matrix that can be associated to a
symmetric weighted network, whose weight matrix W�t� has
elements Wii�t�=0, and Wij�t�= 
Gij�t�
 for i� j. The main
properties of a weighted network are characterized by the
average value of the strength distribution, the clustering co-
efficient, and the average shortest path �1,13�. The distance
between two adjacent nodes i and j is given by lij =

1
wij

, and
the distance along a path �n�1� ,n�2� , . . . ,n�m�	 can be ex-
pressed as Ln�1�→n�m�=�k=1

m−1ln�k�n�k+1�. The shortest path con-
necting two nonadjacent nodes is then �ij =minallpathLi→j, and
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the network’s average shortest path length is ���
= 2

N�N−1��i,j
i�j�ij�1,13�.

As for the clustering coefficient, one can define a cluster-
ing of node i as ci=

2
si�N−2�� j,mWijWimWjm, where si=� jWij is

the strength associated to the node i. The average clustering
coefficient �C� is then given by �C�= 1

N�ici, while the
strength distribution P�s� characterizes the heterogeneity of
the network �13�.

Table I reports the results of the mentioned procedures
operated on an initial condition G0 having a power law
�scale-free� strength distribution P�s�
s−�, and taken to be
the Laplacian matrix of a scale-free network grown as origi-
nally introduced by Barabási and Albert in Ref. �14�. The
corresponding strength distributions are plotted in Fig. 1. It is
relevant to notice that the eigenvalue surrogate method, as
well as the method of choosing the eigenvalues from the
initial distribution p��0� in an ordered way do not change the
scale-free behavior of the strength distribution �see the red

thick and blue dashed lines in Fig. 1�a��, and provide values
for �s�=�sP�s�ds, �C� and ��� that only slightly deviate from
those of the original scale-free network �see Table I�. There-
fore, both methods provide a convenient way to construct a
commuting evolution of the graph �from the scale-free subset
of the DCS� that substantially preserves all main topological
features of the initial condition. At variance, the methods of
choosing the eigenvalues from a uniform distribution �either
in an ordered or in an unordered� way �red thick solid and
blue dashed lines in Fig. 1�b�� completely destroy the origi-
nal scale-free strength distribution, and provide far different
values for each one of the measured quantities. An interme-
diate situation occurs when choosing the eigenvalue spec-
trum from the initial p��0� in an unordered way. Here, one
still preserves the scale-free behavior of the tail �see the
black solid line in Fig. 1�b��, but the main topological fea-
tures of the underlying network are substantially changed
from their initial values.

Notice that both the eigenvalue surrogate method and the
method that preserves the distribution p��0� in an ordered
way basically correspond to construct a network from a spec-
trum that is statistically equivalent to that of the initial con-
dition G0. However, any two realizations of a random matrix
preserving the probability distribution and the order in the
spectrum, in general, do not preserve the same eigenvectors,
which is, instead, always the case in our procedure. In other
words, these methods are a practical way of extracting from
the set of all possible realizations of a graph the subset of
commuting matrices.

We now discuss the relevant consequences of such a com-
mutative evolution on the stability of the synchronization
manifold. Because of the commuting properties of G�t�, Eq.

�3� becomes � j
˙ =K j� j �j=2, . . . ,N�. Replacing �� j�t� by 
 in

the kernel K j, the problem of stability of the synchronization
manifold is tantamount to study the m-dimensional paramet-
ric variational equation �̇=K
�, with K
= �Jf�xs�−
Jh�xs��,
allowing for graphing the curve of 	max �the largest of the m
associated conditional Lyapunov exponents� vs 
 �also called
master stability function �6� �MSF��.

When the matrix G�t� is constant, the synchronized state
is transversally stable if all �i �i=2, . . . ,N�, multiplied by the
same coupling strength � fall in the range where 	max�
�
�0. For a large class of systems, the MSF is negative in a
finite parameter interval �6�. This leads to define a key quan-

TABLE I. Statistical properties of the commuting graphs. The table reports average strength �s�
=�sP�s�ds, the average clustering coefficient �C�, and the average shortest path length ��� �see text for
definitions and details on the construction of the commuting graphs�. In all cases �. . . � refers to an ensemble
average over 100 different realizations of networks of size N=500.

�s� �C� ���

Initial condition G0 �scale-free� 9.94 5.5773�10−4 5.5144

Eigenvalue surrogate method 11.6881 8.4730�10−4 5.2758

Choosing from p��0� �ordered� 12.7042 9.1235�10−4 5.2325

Choosing from p��0� �unordered� 142.8746 0.0543 3.7144

Uniform distribution �ordered� 123.6484 0.0634 0.9570

Uniform distribution �unordered� 521.7568 0.6125 1.1098

FIG. 1. �Color online� Strength distributions P�s� of the com-
muting graphs. �a� Initial condition G0 �black solid line�, G�t� con-
structed by the eigenvalue surrogate method �red thick solid line�,
and 	�t� obtained by randomly choosing the eigenvalues from
p��0� in an ordered way �blue dashed line�. �b� Eigenvalues ran-
domly chosen from p��0� in an unordered way �black solid line�,
eigenvalues chosen from a uniform distribution in an ordered way
�red thick solid line�, and in an unordered way �blue dashed line�.
Other stipulations are as in the caption of Table I.
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tity �the eigenratio �N /�2� that measures the propensity to
synchronization of a network and only depends on the topol-
ogy of the connections. The smaller �N /�2 is, the more
packed the eigenvalues of G are, leading to an enhanced �
interval for which stability is obtained for any choice of f�x�
and h�x� �6,7�.

When G�t� is evolving inside DCS, the eigenvectors are
fixed in time, and we can make the hypothesis that at time
T=kdt, the modulus of each eigenmode �i �i�1� be
bounded by the corresponding maximum conditional

Lyapunov exponent � 
�i�T�



�i�0�
 ��n=0
k−1exp�	max���i�ndt��dt	�. It

follows that the condition to be satisfied for transverse sta-
bility of the synchronization manifold is that " i�1,

Si = lim
T→�

1

T
�

0

T

	max„��i�t��…dt� � 0. �5�

Notice that Si in Eq. �5� is the time average of the maxi-
mal transversal �conditional� Lyapunov exponent along the
direction of the ith eigenvector �which is fixed in time as far
as the connectivity matrix belongs to the DCS set�. As so, the
integral converges in all those circumstances where all val-
ues in time of the maximal transversal Lyapunov exponents
in that given direction are finite.

It is worth noticing that Eq. �5� does not necessarily imply
that 	max���i�t���0 at all times. Rather, one can even con-
struct a commutative evolution such that at each time there
exists one eigenvalue �i �i= i�t�� for which 	max���i�t���0,
and yet obtain a transversally stable synchronization mani-
fold. An example is a periodic evolution with period Tp
= �N−1��, during which G�t� is given by

G�t� = �
l=1

N−1

Gl���l−1��,l��, �6�

with ���l−1��,l�� being the characteristic function of the interval
��l−1�� , l��, and the matrices Gl �starting from a given G1

=V1	1V1
−1� are constructed as Gl=V1	lV1

−1 for l=2, . . . ,N
−1 with 	1=diag�0,�2 , . . . ,�N�, 	l=diag�0,�2,l , . . . ,�N,l�,
and � j,l=��mod�N−1��j+l−3��+2. If, for instance, 	max���2��0,

then there will always exist a direction in the phase space,
along which the synchronization manifold is transversally
unstable, but if � j=2

N−1	max��� j��0, then condition �5� will be
satisfied in all directions transverse to the synchronization
manifold, making it transversally stable.

An example of an extreme situation is illustrated in Fig. 2.
Here, an initial scale-free network of N=200 Rössler chaotic
oscillators is considered, each one of them obeying Eq. �1�
with x��x ,y ,z�, f�x�= �−y−z ,x+0.165y ,0.2+z�x−10�� and
h�x�=y, and the evolution of the wiring follows Eq. �6�. For
�=0.03 we have that � j=2

N−1	max��� j��−9.158, but
	max��� j� is positive for the first 80 eigenvalues, i.e. all
networks �if taken as fixed� would make the synchronization
manifold unstable in at least 80 different transverse direc-
tions. Starting from random initial conditions, Fig. 2 reports
the temporal evolution of the synchronization error ����t�
=� j=2

N 
xi−x1
+
yi−y1
+
zi−z1

3�N−1� at different values of the switching

time �, showing that the dynamical networked system is in-
deed able to synchronize, with a transient time Tsync to
achieve synchronization �the time needed for ��t� to become
smaller than 0.1, shown in the inset� that scales with � almost
exponentially. While we used this example to illustrate the
validity of the synchronization condition �5� under extreme
situations, it has to be remarked that neither formula �5� is
limited to periodic �or in some other way constrained� evo-
lutions of the connectivity matrices, nor the application of
our arguments to extract the general stability conditions of
the synchronization manifold is limited to particular choices
of the functions f�x� and h�x� in Eq. �1�.

Furthermore, it must be noticed that different members of
the DCS may have vastly different topologies, suggesting
that our method is very general and can in principle be ap-
plied to a wide set of different situations. Finally, we high-
light that the present case is by far different from the fast
switching procedure described in Ref. �8�. Indeed, while
their case one has to have sufficiently fast switching times
among the different network’s configuration, here the stabil-
ity condition does not impose in principle any limitation on
the switching time �, making it a plausible representation of
the mechanisms at the basis of some natural processes �such
as mutation in biological systems or adaptation in social dy-
namics� that usually involve secular �yet finite� time scales
for the evolution of the wiring, and can be thought of as
processes that take place to enhance the collective function-
ing of the network.

The authors are indebted to V. Latora, R. López-Ruiz, and
Y. Moreno for the many helpful discussion on the subject.
This work was partly supported by projects MIUR-FIRB
No. RBNE01CW3M-001 and No. SFB 555 �DFG�. S. B.
acknowledges the Yeshaya Horowitz Association through the
Center for Complexity Science.

FIG. 2. Time evolution of synchronization error ��� �see text for
definition� for �=0.2 �empty circles�, 0.3 �filled circles�, 0.4 �empty
squares�, 0.5 �filled squares�, 0.6 �empty diamonds�, 0.7 �filled dia-
monds�, 0.9 �open up triangles�, 1.1 �closed up triangles�, and 1.5
�open down triangles�. In all cases, points refer to an ensemble
average over five different random initial conditions for a N=200
dynamical network of identical chaotic Rössler oscillators �param-
eters specified in the text�. The inset reports Tsync �see text for
definition� vs the switching time � �open circles refer to different
initial conditions, solid line graphs the ensemble average�.
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