
Nonlinear Dynamics (2006) 44: 135–149

DOI: 10.1007/s11071-006-1957-x c© Springer 2006

Synchronization Analysis of Coupled Noncoherent Oscillators
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Abstract. We present two different approaches to detect and quantify phase synchronization in the case of coupled non-phase

coherent oscillators. The first one is based on the general idea of curvature of an arbitrary curve. The second one is based on

recurrences of the trajectory in phase space. We illustrate both methods in the paradigmatic example of the Rössler system in the

funnel regime. We show that the second method is applicable even in the case of noisy data. Furthermore, we extend the second

approach to the application of chains of coupled systems, which allows us to detect easily clusters of synchronized oscillators.

In order to illustrate the applicability of this approach, we show the results of the algorithm applied to experimental data from a

population of 64 electrochemical oscillators.
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1. Introduction

Phase synchronization has been studied extensively during the last years [1–4], as this phenomenon has

found numerous applications in natural [5–10] and engineering systems [11–13]. Two systems are said to

be phase synchronized when their respective frequencies and phases are locked. Till now chaotic phase

synchronization (CPS) has been mainly observed for chaotic attractors with rather coherent phase

dynamics. These attractors have a relatively simple topology of oscillations and a well-pronounced

peak in the power spectrum, which allows us to introduce the phase and the characteristic frequency of

motions. However, some difficulties appear dealing with non-coherent attractors with a rather broad band

power spectra. Then it might not be straightforward to define a phase of the oscillations, and in general

no single characteristic time scale exists. In contrast to phase coherent attractors, it is quite unclear

whether some phase synchronized state can be achieved. To treat this problem, we propose in this paper

two different approaches: (i) we present a method that defines the phase more generally and allows us

to study CPS in systems of coupled chaotic oscillators with even strongly noncoherent phase properties

and (ii) we propose a method based on recurrences in phase space, that allows us to quantify indirectly

CPS, which even works in the case of noisy noncoherent oscillators. We demonstrate the applicability

of both methods for the paradigmatic system of two coupled nonidentical Rössler oscillators:

ẋ1,2 = −ω1,2 y1,2 − z1,2,

ẏ1,2 = ω1,2x1,2 + ay1,2 + μ(y2,1 − y1,2), (1)

ż1,2 = 0.1 + z1,2(x1,2 − 8.5),
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Figure 1. Upper panel (a),(b): projections of the attractors of the Rössler systems (1) onto the plane (x, y); lower panel (c),(d):

projections onto (ẋ, ẏ). The parameters are ω = 1.02 and a = 0.16 (a),(c), resp. a = 0.2925 (b), (d)

where μ is the coupling strength. ω1,2 determine the mean frequency of the oscillators in the case

of phase coherent attractors. In our simulations we take ω1 = 0.98 and ω2 = 1.02. The parameter

a ∈ [0.15 : 0.3] governs the topology of the chaotic attractor. When a is below a critical value ac

(ac ≈ 0.186 for ω1 = 0.98 and ac ≈ 0.195 for ω2 = 1.02), the chaotic trajectories always cycle around

the unstable fixed point (x0, y0) ≈ (0, 0) in the (x, y) subspace, i.e., max(y) > y0 (Figure 1a). In this

case, the rotation angle

φ = arctan
y

x
(2)

can be defined as the phase, which increases almost uniformly, i.e., the oscillator has a coherent phase

dynamics. Beyond the critical value ac, the trajectories no longer always completely cycle around

(x0, y0), and some max(y) < y0 occur, which are associated with faster returns of the orbits; the

attractor becomes a funnel one. Such earlier returns in the funnel attractor happen more frequently with

increasing a (Figure 1b). It is clear that for the funnel attractors, usual (and rather simple) definitions

of phase, such as Equation (2) [1–4], are no longer applicable.

2. Phase calculation basing on curvature

In order to overcome the problem of the definition of the phase in the case of noncoherent oscillators,

we firstly propose another approach which is based on the general idea of the curvature of an arbitrary

curve [14]. For any two-dimensional curve �r1 = (u, v) the angle velocity at each point is ν = ds
dt /R,

where ds/dt = √
u̇2 + v̇2 is the speed along the curve and R = (u̇2 + v̇2)3/2/[v̇ü − v̈u̇] is the radius

of the curvature. If R > 0 at each point, then ν = dφ

dt = v̇ü−v̈u̇
u̇2+v̇2 is always positive and therefore the

variable φ defined as φ = ∫
νdt = arctan v̇

u̇ , is a monotonically growing angle function of time and can

be considered as a phase of the oscillations. Geometrically it means that the projection �r2 = (u̇, v̇) is a

curve cycling monotonically around a certain point.

These definitions of φ and ν hold in general for any dynamical system if the projection of the phase

trajectory on some plane is a curve with a positive curvature. We find that it is applicable to a large

variety of chaotic oscillators, such as Lorenz system [15], Chua circuit [16], the model of an ideal

four-level laser with periodic pump modulation [17] or a chemical system [18].
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Figure 2. (a) Time evolution of phase difference of the system of EQ. (1). (b) Variables ẏ1,2 in system (1) for a = 0.2925 and

μ = 0.179. Solid and dotted lines correspond to the first and the second oscillator, respectively. In the time interval between

dashed lines the first oscillator produces four rotations in the (ẋ1, ẏ1)-plane around the origin, but the second one generates only

three rotations, which leads to a phase slip in (a)

This is clear for phase-coherent as well as funnel attractors in the Rössler oscillator. Here projections

of chaotic trajectories on the plane (ẋ, ẏ) always rotate around the origin (Figs. 1c and d) and the phase

can be defined as

φ = arctan
ẏ

ẋ
. (3)

We have to note that for the funnel chaotic attractors the coupling may change their topology. As a

consequence the strong cyclic structure of orbits projection in the (ẋ, ẏ)-plane may be destroyed and the

phase measurement Equation (3) fails occasionally for intermediate values of coupling. But for small

coupling and for coupling near the transition to CPS, the phase is well-defined by Equation (3) [19].

We use two criteria to detect the existence of CPS: locking of the mean frequencies �1 = 〈ν1〉 =
�2 = 〈ν2〉, and locking of the phase |φ2(t)−φ1(t)| ≤ const ( we consider here only 1:1 synchronization).

Applying the new definition of the phase Equation (3) to the system of Equation (1) for a = 0.2925

(strongly noncoherent) and μ = 0.179, we obtain the phase difference represented in Figure 2.

We find two large plateaus in the evolution of the difference of the phases with time, i.e., we detect

CPS, but we also find a phase slip associated to a different number of oscillations in the two oscillators

in the represented period of time. This means, we observe the seldom occurrence of phase slips. It is

interesting to note that in this system CPS occurs after one of the positive Lyapunov exponents passes

to negative values, i.e., it is also a transition to generalized chaotic synchronization (GCS).

Although this approach works well in noncoherent model systems, we have to consider that one

is often confronted with the computation of the phase in experimental time series, which are usually

corrupted by noise. In this case, some difficulties may appear in computing the phase by Equation (3),

because derivatives are involved in its definition. We will address this problem in the next section.

3. Phase synchronization by means of recurrences

Here, we propose a rather different approach based on recurrences in phase space to detect and quantify

CPS. The concept of recurrence in dynamical systems goes back to Poincaré [20], when he proved
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that after a sufficiently long time interval, the trajectory of an isolated mechanical system will return

arbitrarily close to each former point of its route.

We define a recurrence of the trajectory of a dynamical system {�xi }N
i=1 in the following way: we say

that the trajectory has returned at t = jδt to the former state at t = iδt if

R(ε)
i, j = �(ε − ||�xi − �x j ||) = 1, (4)

where ε is a pre-defined threshold, �(.) is the Heaviside function and δt is the sampling rate [21]. Based

on this definition of recurrence, it is straightforward to estimate the probability P (ε)(τ ) that the system

returns to the neighborhood of a former point �xi of the trajectory (the neighborhood is defined as a box

of size ε centered at �xi , as we use the maximum norm) after τ time steps

P̂ (ε)(τ ) = 1

N − τ

N−τ∑
i=1

�(ε − ||�xi − �xi+τ ||) = 1

N − τ

N−τ∑
i=1

R(ε)
i,i+τ . (5)

This function can be considered as a generalized autocorrelation function, as it also describes higher

order correlations between the points of the trajectory in dependence on the time delay τ . A further

advantage with respect to the linear autocorrelation function is that P̂ (ε)(τ ) is determined for a trajectory

in phase space and not only for a single observable of the system’s trajectory. Further, we have recently

shown that it is possible to reconstruct the attractor by only considering the recurrences of single

components of the system [22]. Because of this, it is also possible to estimate dynamical invariants

of the system (e.g., entropies and dimensions) by means of recurrences in phase space even without

embedding [23], i.e. the recurrences of the system in phase space contain information about higher

order dependencies within the components of the system. This method has been successfully applied

to experimental flow [23] and geophysical data [24].

For a periodic system in phase space, it can be easily shown that P(τ ) = limε→0 P (ε)(τ ) is equal

to 1 if τ is equal to a multiple of the period T of the system, and 0 otherwise. For coherent chaotic

oscillators , such as Equation (1) for a = 0.16, P̂ (ε)(τ ) has local maxima at multiples of the mean

period, but the probability of recurrence after one or more rotations around the fixed point is less than

one.

Analyzing the probability of recurrence, it is possible to detect CPS for noncoherent oscillators. This

approach is based on the following idea: Originally, a phase φ is assigned to a periodic trajectory �x
in phase space, by projecting the trajectory onto a plane and choosing an origin, around which the

whole trajectory oscillates. Then an increment of 2π is assigned to φ, when the point of the trajectory

has returned to its starting position, i.e., when �y(t + T ) − �y(t) = �0. Analogously to the case of a

periodic system, we can refer an increment of 2π to φ to a complex non-periodic trajectory �x(t), when

|�x(t + T ) − �x(t)| ∼ 0, or equivalently when |�x(t + T ) − �x(t)| < ε, where ε is a predefined threshold.

That means, a recurrence R(ε)
t,t+τ = 1 can be interpreted as an increment of 2π of the phase in the time

interval τ .

P̂ (ε)(τ ) can be viewed as a statistical measure on how often φ in the original phase space has increased

by 2π or multiples of 2π within the time interval τ . If two systems are in PS, in the mean, the phases of

both systems increase by k ·2π , with k a natural number, within the same time interval τ . Hence, looking

at the coincidence of the positions of the maxima of P̂ (ε)(τ ) for both systems, we can quantitatively

identify PS (from now on, we omit (ε) and ·̂ in P̂ (ε)(τ ) to simplify the notation). The proposed algorithm

consists of two steps:



Synchronization of Noncoherent Oscillators 139

• Compute P1,2(τ ) of both systems based on Equation (5).
• Compute the cross-correlation coefficient between P1(τ ) and P2(τ ) (Correlation between Probabili-

ties of Recurrence)

CPR1,2 = 〈P̄1(τ )P̄2(τ )〉
σ1σ2

, (6)

where P̄1,2 means that the mean value has been subtracted and σ1 and σ2 are the standard deviations

of P1(τ ) resp. P2(τ ).

If both systems are in PS, the probability of recurrence is maximal at the same time and CPR1,2 ∼ 1.

In contrast, if the systems are not in PS, the maxima of the probability of recurrence do not occur

simultaneously. Then we observe a drift (Figure 5b) and expect low values of CPR1,2.

3.1. EXAMPLES

In this section we exemplify the application of the index CPR for PS to four prototypical examples. The

number of data points used for the analysis presented here is 5, 000.
• We start with the periodically driven Rössler system [3]:

ẋ = −y − z + μ cos(ωt)

ẏ = x + 0.15y (7)

ż = 0.4 + z(x − 8.5)

For the driving frequency ω = 1.04 and amplitude μ = 0.16, the periodic forcing locks the frequency

of the Rössler system. This can be clearly seen in Figure 3a: the position of the maxima coincide.

The value of the recurrence based PS index is CPR = 0.862.

For the parameters ω = 1.1 and μ = 0.16, the periodic forcing does not synchronize the Rössler

system. Hence, the joint probability of recurrence is very low, which is reflected in the drift of the

corresponding P(τ ) (Figure 3b). In this case, CPR = −0.00241.
• We continue our considerations with the periodically driven Lorenz system:

ẋ = 10(y − x)

ẏ = 28x − y − xz (8)

ż = −8/3z + xy + μ cos(ωt)

Figure 3. P(τ ) for a periodically driven Rössler (Equations (7)) in PS (a) and in non-PS (b). Solid line: P(τ ) of the driven Rössler,

dashed line: P(τ ) of the periodic forcing
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Figure 4. P(τ ) for a periodically driven Lorenz in PS (a) and in non-PS (b). Solid line: P(τ ) of the driven Lorenz, dashed line:

P(τ ) of the periodic forcing

In Figure 4a the probabilities of recurrence P(τ ) in the PS case (μ = 10, ω = 8.35) are represented:

we see, that the position of the local maxima of the Lorenz oscillator coincide with the ones of the

periodic forcing. However, the local maxima are not as high as in the case of the Rössler system, and

they are broader. This reflects the effective noise intrinsic in the Lorenz system [4]. Because of this,

the phase synchronization is not perfect: an exact frequency locking between the periodic forcing

and the driven Lorenz cannot be observed [25]. In this case, we obtain CPR = 0.667. In the non-PS

case (μ = 10, ω = 7.5), we get CPR = 0.147 (Figure 4b).
• Now we consider the case of two mutually coupled Rössler systems in the phase coherent regime,

i.e., we consider Equation (1) with a = 0.16. According to [26], for ω1 = 0.98, ω2 = 1.02 and

μ = 0.05 both systems are in PS. We observe that the local maxima of P1 and P2 occur at τ = n · T ,

where T is the mean period of both Rössler systems (Figure 5a). The heights of the local maxima

are in general different for both systems if they are only in PS and not in GS, as we will see later.

But the positions of the local maxima of P(τ ) coincide. In this case, we obtain CPR = 0.998.

Figure 5. P(τ ) for two mutually coupled Rössler systems (Equations (1)) in phase coherent regime (a = 0.16) for μ = 0.05 (a)

and for μ = 0.02 (b)
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Figure 6. P(τ ) for two mutually coupled Rössler systems (Equations (1)) in funnel regime (a = 0.2925) for μ = 0.2 (a) and for

μ = 0.05 (b). Bold line: P1(τ ), solid line: P2(τ ),

For μ = 0.02 the systems are not in PS and the positions of the maxima of P(τ ) do not coincide

anymore (Figure 5b), clearly indicating that the frequencies are not locked. In this case, we obtain

CPR = 0.115.
• As the last example with simulated data, we analyze the challenging case of two mutually coupled

Rössler systems in the funnel regime, i.e., we consider Equation (1) with a = 0.2925, ω1 = 0.98

and ω2 = 1.02. We analyze two different coupling strengths: μ = 0.2 and μ = 0.05. We observe

that the structure of P(τ ) in the funnel regime (Figure 6) is rather different from the one in the

phase coherent Rössler system (Figure 5). The peaks in P(τ ) are not as well pronounced as in the

coherent regime, reflecting the different time scales that play a relevant role and the broad-band

power spectrum of this system. However, we see that for μ = 0.2 the locations of the local maxima

coincide for both oscillators (Figure 6a), indicating PS, whereas for μ = 0.05 the positions of the local

maxima do not coincide anymore (Figure 6b), indicating non-PS. These results are in accordance with

[26].

In the PS case, we obtain CPR = 0.988, and in the non-PS case, CPR = 0.145. Note, that the

position of the first peak in Figure 6b coincides, although the oscillators are not in PS. This is due

to the small frequency mismatch (|ω1 − ω2| = 0.04). However, by means of the index CPR we can

distinguish rather well between both regimes.

3.2. INFLUENCE OF NOISE

Dealing with experimental time series, one is always confronted with measurement errors. Hence, it is

necessary to analyze the influence of noise on the index CPR for PS.

We consider here additive or observational noise. We use Equation (1) as an example for two different

coupling strengths, so that we can compute the deviation which is caused by noise in the nonsynchronized

and in the synchronized case.

We add independent Gaussian noise with standard deviation σnoise = ασ j to each coordinate j of

the system, where σ j is the standard deviation of the component j and α is the noise level. In Figure

7, the “corrupted” x-component of the first Rössler subsystem x̃1(t) = x1(t) + ασ1η(t), where η(t) is a

realization of Gaussian noise and α = 0.8, is represented. From this figure it is clearly to see, that it is
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Figure 7. First component x1 of Equations (1) with 80% independent Gaussian noise (for μ = 0.05). From the figure it is clearly

recognizable, that it is difficult to compute the phase by means of, e.g., the Hilbert transformation

difficult to compute the phase by means of, e.g., the Hilbert transformation for such a high noise level

without filtering.

The choice of ε for the computation of P1(τ ) and P2(τ ) in the presence of noise is automatically taken

by fixing a determined recurrence rate RR, i.e., the percentage of recurrence points in the recurrence

matrix Equation (4) (see appendix). The results presented below were computed for RR = 0.1, but the

results are rather independent of the choice of RR. However, RR should not be chosen too small if the

level of noise is very high [27].

In order to compute the index CPR for the noisy oscillators, we calculate first the probabilities of

recurrence P1(τ ) and P2(τ ) for coupling strengths μ = 0.05 (PS, Figure 8) and μ = 0.02 (non-PS,

Figure 9).

We note, that the peaks in P1(τ ) and P2(τ ) become lower and broader (Figs. 8b and 9b) com-

pared with the noise free case (Figs. 8a and 9a), as expected. However, despite of the large level of

noise, the positions of the local maxima coincide in the PS case, and they drift away in the non-PS

Figure 8. Probabilities of recurrence for two coupled Rössler systems (Equations (1)) in PS (μ = 0.05) without noise (a) and

with 80% Gaussian observational noise (b). Bold line: subsystem 1, solid line: subsystem 2. Note that the position of the peaks

of P1(τ ) and P2(τ ) coincide in both cases, and hence the solid line is hidden by the bold one
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Figure 9. Probabilities of recurrence for two coupled Rössler systems (Equations (1)) in non-PS (μ = 0.02) without noise (a)

and with 80% Gaussian observational noise (b). Bold line: subsystem 1, solid line: subsystem 2

Table 1. Index CPR index for PS calculated for two cou-

pled Rössler systems (Equations (1)) with observational

noise and without noise, for comparison.

μ CPR (80% noise) CPR (0% noise)

0.02 (non-PS) 0.149 0.115

0.05 (PS) 0.998 0.998

case. This a convenient result, because we can still decide whether the oscillators are synchronized

or not. This is reflected in the obtained values for the CPR index: with 80% noise, in the PS case

the obtained value for CPR is exactly the same with and without noise, and in the non-PS case is

nearly the same (see Table 1). This shows that the index CPR for PS is very robust against obser-

vational noise. Also in the case of dynamical noise we can expect this method to work, due to its

averaging.

3.3. TRANSITION TO PS

We have seen in the previous sections, that the index CPR clearly distinguishes between oscillators in

PS and oscillators which are not in PS. On the other hand, a synchronization index should not only

distinguish between synchronized and nonsynchronized regimes, but also indicate clearly the onset of

PS.

In order to demonstrate that the recurrence based index fulfills this condition, we exemplify its

application in two cases: two mutually coupled Rössler systems in a phase coherent and in a non-phase

coherent funnel regime (Equation (1) with a = 0.16 respectively a = 0.2925). We increase in both cases

the coupling strength μ in small steps and compute for each value of μ the index CPR.

On the other hand, in the phase coherent case for a not too large but fixed frequency mismatch between

both oscillators and increasing coupling strength, the transition to PS is reflected in the Lyapunov

spectrum (3, 4)1. If both oscillators are not in PS, there are two zero Lyapunov exponents, that correspond

1 For other cases, e.g., for a fixed coupling strength and decreasing frequency mismatch, or for a large frequency mismatch
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Figure 10. CPR index for PS (a) and λ4 (b) in dependence on the coupling strength for two mutually coupled Rössler systems

in the phase coherent regime. The dotted zero line in (b) is plotted to guide the eye. The arrow indicates the transition of λ4 to

negative values

to the (almost) independent phases. Increasing the coupling strength, the fourth Lyapunov exponent

λ4 becomes negative (see Figure 10b), indicating the onset of PS. Therefore, we compute for our two

examples also λ4 in order to validate the results obtained with CPR.

In Figure 10a, the index CPR is represented for increasing coupling strength μ for the phase coherent

case. In Figure 10b, λ4 is also shown in dependence on μ. By means of CPR, the transition to PS is

detected when CPR becomes of the order of 1. We see from Figure 10a, that the transition to PS occurs

at approximately μ = 0.037, in accordance with the transition of the fourth Lyapunov exponent λ4 to

negative values (Figure 10b).

Now we regard the more complex case of two coupled Rössler systems in the noncoherent funnel

regime, where the direct application of the Hilbert transformation is not appropriate [26]. In Figure

11, the coefficient CPR is represented for this case in dependence on the coupling strength μ. Again,

λ4 is also shown (Figure 11b). First, we note that for μ > 0.02, λ4 has already passed to negative

values (Figure 11b). However, CPR is still rather low, indicating that both oscillators are not in PS

yet. CPR does not reveal the transition to PS until μ = 0.18 (Figure 11a), as found with the modified

definition (Equation (3)) of the phase [26]. Furthermore, λ2 vanishes at μ ∼ 0.17 [26], indicating that

the amplitudes of both oscillators become highly correlated. Then, according to the index CPR and to the

definition (Equation (3)) of the phase, the transition to PS occurs after the onset of GS. This is a general

result that holds for systems with a strong phase diffusion. For highly non-phase coherent systems, there

exists more than one characteristic time scale. Hence, a high coupling strength is necessary in order to

maintain the phase locking of both oscillators. Hence, PS is in this case not possible without having a

strong correlation in the amplitudes.

3.4. DETECTION OF CLUSTERS OF PS

Next, we show that our algorithm is also valid for the detection of PS in chains of weakly coupled

oscillators. This extension to N oscillators is straightforward: we compute Pj (τ ) for each oscillator j

and increasing coupling strength, the transition to PS is not always reflected in the Lyapunov spectrum [28]
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Figure 11. (a) CPR coefficient, (b) λ4 in dependence on the coupling strength for two mutually coupled Rössler systems in the

funnel regime. The dotted zero line in (b) is plotted to guide the eye. The arrow indicates the transition of λ4 to negative values

(Equation (5)) and their respectively local maxima τ i
j according to

d Pj (τ
i )

dτ i
� 0.

Then we choose the set of times of local maxima τ i
r of an arbitrarily chosen (but then fixed) oscillator

r as reference and compute �τ i
j = τ i

j − τ i
r for each oscillator j .

Now even clusters of oscillators in PS are easily recognized by means of the mean slope of �τ i
j

versus i is equal for all oscillators j belonging to the same cluster.

We apply this algorithm to a chain of coupled nonidentical Rössler oscillators with a nearest-neighbor

diffusive coupling

ẋ j = −ω j y j − z j ,

ẏ j = ω j x j + ay j + μ(y j+1 − 2y j + y j−1), (9)

ż j = 0.4 + z j (x j − 8.5),

where the index j = 1, . . . , N denotes the position of an oscillator in the chain, μ is the coupling

coefficient and ω j corresponds to the natural frequency of each individual oscillator [29]. First, we

consider a linear distribution of natural frequencies ω j = ω1 + δ( j − 1), where δ is the frequency

mismatch between neighboring systems. For the coupling strength μ = 0.18 and δ = 9 × 10−3 we

compute Pj (τ ) for j = 1, . . . , 50 and the positions of the local maxima τ i
j for each oscillator. We choose

the oscillator j = 1 as reference and compute �τ i
j for j = 1, . . . , 50 (Figure 12a). Furthermore, we

represent the slope of �τ i
j versus i given by a linear regression for j = 1, . . . , 50 in Figure 12b. We

detect 9 clusters of oscillators in PS, in accordance with [29]. We have also analyzed this chain of

Rössler oscillators with other values of the coupling strength and we obtain the same results as in [29].

Also the computation of the matrix CPRi, j of the cross-correlation coefficients between (Pi (τ ), Pj (τ ))

yields the same results as in [29].

Furthermore, we consider a uniformly distribution of the natural frequencies in the interval 1 < ω j <

1.05. The essential difference with respect to former case, is that for the same mismatch between the
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Figure 12. (a) Difference between the local maxima of the probability of recurrence for a chain of 50 Rössler oscillators diffusively

coupled for μ = 0.18 and δ = 9 × 10−3. (b) Slope of �τ i
j versus i for j = 1, . . . , 50 with μ = 0.18 and δ = 9 × 10−3.

Figure 13. (a) Difference between the local maxima of the probability of recurrence for a chain of 50 Rössler oscillators diffusively

coupled for μ = 0.02 and natural frequencies uniformly random distributed. (b) Slope of �τ i
j versus i for j = 1, . . . , 50 with

μ = 0.02.

largest and the smallest of ω j , clusters of synchronization appear for considerably lower values of the

coupling μ. We detect about 10 clusters for μ = 0.02 (Figure 13).

3.5. APPLICATION TO A POPULATION OF CHAOTIC ELECTROCHEMICAL OSCILLATORS

In order to show the applicability of the method to an experimental system, we analyze data from

a population of 64 nonidentical chaotic electrochemical oscillators with weak global coupling. The

electrochemical system is the electrodissolution of Ni in 4.5 mol/l sulfuric acid solution (see [30] for the

details of the experiment). The electrochemical oscillators are electrically coupled with a combination

of one series (Rs) and 64 parallel (Rp) resistors; a global coupling parameter can be defined as μ =
Rs/(Rp N ), where N = 64 is the number of elements.

We present here the results for three different coupling strengths: without (μ = 0.0), with small

(μ = 0.05), and with relatively strong (μ = 0.1) coupling. Without coupling the oscillators have an

approximately unimodal frequency distribution with a mean frequency of 1.219 Hz and a standard

deviation of 18 mHz.
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Figure 14. (a) Difference between the local maxima of the probability of recurrence �τ i
j versus i for a population of 64 chaotic

electrochemical oscillators and slope of �τ i
j versus j for j = 1, . . . , 64 ( j denotes the oscillator and i the time). (a) and (b) for

coupling strength μ = 0, (c) and (d) for μ = 0.05, (e) and (f) for μ = 0.1.

After computing Pj (τ ) for j = 1, . . . , 64 we calculate �τ i
j , where the oscillator r = 1 was chosen

as reference (Figure 14). We note that in the absence of coupling the slope of �τ i
j versus i is different

for each oscillator (Figs. 14a and b). Increasing the coupling strength to μ = 0.05 we observe a main

group of oscillators that have almost slope 0, but still many of them are spread out (Figs. 14c and d).

If we increase further the coupling strength to μ = 0.1, we observe that all 64 oscillators have an

approximately vanishing slope, and therefore they are in PS (Figs. 14e and f), as reported in [30].

4. Conclusions

In this paper we have presented two different approaches to overcome the problem of defining the phase

in the case of noncoherent oscillators. The first one is based on the general idea of curvature of an

arbitrary curve, and yields a new definition of the phase, that is applicable to a broad class of oscillators,

not only to coherent ones. The second approach that we have presented, is an indirect one. It does not

compute the phase explicitely, but it detects CPS by means of the joint probability of recurrence in phase

space. This method can be also applied to detect CPS in noncoherent oscillators and it is additionally

very robust against noise and can be easily implemented. Further, it also allows the detection of clusters

of phase synchronized oscillators in distributed systems.
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Appedix A: The choice of ε

A.1.

By computing the recurrence matrix (Equation (4)) or measures based on it, the question arises,

which values of ε one should consider. As each system has its own amplitude, which may dif-

fer from one system to another one, the choice will be different for each case and it is sub-

jected to some arbitrariness. In order to overcome this problem, we can fix the value of the

recurrence rate RR, i.e., the percentage of recurrence or black points in the matrix, defined

as

R R = 1

N 2

N∑
i, j=1

�(ε − ||�xi − �x j ||) (A.1)

As the RR is normalized, it is convenient to fix its value and then calculate the corresponding ε. This

can be done by the following algorithm:

1. Compute the distances between each pair of vectors i = 1, . . . , N and j = 1, . . . , i . Then we obtain

the series dl with l = 1, . . . , N 2/2 (because of the symmetry of the recurrence matrix, we consider

only the half of the it. Actually the length of the series of the distances is equal to N 2/2 − N , but

for large N , we can write N 2/2.).

2. Sort the distances dl in ascending order and denote the rank ordered distances by d̃l , with l =
1, . . . , N 2/2.

3. For a fixed RR the corresponding ε is then given by d̃m , with m = R R N 2

2
. For example, if R R = 0.01,

then ε = d̃0.01N 2/2. We then know that 1% of the distances are less or equal than ε, and hence

R R = 0.01.

Like this, we avoid the arbitrariness of choosing appropriate values for ε and we can apply the same

procedure to all systems. Simulations show that choosing values of RR approximately between 1 and

10% do not change the results of the synchronization analysis with the recurrence based method.
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