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We present new methods to detect the transitions from quasiperiodic to chaotic motion via strange
nonchaotic attractors (SNAs). These procedures are based on the time needed by the system to recur
to a previously visited state, and on a measure of the predictability in the system. The applicability
of these techniques is demonstrated by detecting the transition to SNAs or the transition from
SNAs to chaos in representative quasiperiodically forced discrete maps. The fractalization transition
to SNAs—for which most existing diagnostics are inadequate—is clearly detected by recurrence
analysis. These methods are robust to additive noise, and thus can be used in analyzing experimental
time–series.
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I. INTRODUCTION

Starting with the seminal works of Landau [1] and Ruelle and Takens [2], the transition from regular to chaotic
dynamics via quasiperiodicity has attracted great interest. Different aspects of this transition have been studied both
theoretically and experimentally over the past several decades. About two decades ago, however, it was found that
in quasiperiodically forced systems the transition to chaos is generally mediated by strange nonchaotic attractors
(SNAs). SNAs were first described by Grebogi et al. in 1984 [3] and since then have been investigated in a number
of numerical [4–14], experimental [15, 16] and mathematical [17–20] studies. These unusual attractors are thought to
be important for biological systems [10, 21] and for nonlinear dynamics based communication [22, 23].

SNAs are geometrically strange (or fractal) while they are nonchaotic in the dynamical sense. These attractors
can be regarded as structures intermediate between regularity and chaos, since they possess properties which can
be related either to regular or to chaotic processes. Typical trajectories experience arbitrarily long time intervals of
expansion while on the average, contraction dominates. This behaviour yields a strange geometric structure in the
phase space similar to those for chaotic attractors. Different routes to SNAs have been reported: (i) collision between
a period-doubled torus and its unstable parent [7], (ii) fractalization of a torus [12], (iii) blowout bifurcation [24], and
(iv) intermittency [13]. Most studies on SNAs have focused on their characterization using tools such as Lyapunov
exponents and their variance, spectral properties [4, 5], geometrical properties [6, 10], local divergence of trajectory
[25], phase sensitivity and rational approximations [8], functional maps and invariant curves [12, 26], as well as a
renormalization-group analysis [27].

In the present work, we propose measures of complexity which are based on the recurrences of states in the phase
space to detect transitions from regular to chaotic motion via SNAs. Moreover, they enable us to identify the strange
nonchaotic behavior for the fractalization route to SNAs, which is not always apparent in measures based on the
Lyapunov exponents. We further show that recurrence based measures are robust to additive noise, and are therefore
highly suitable for the analysis of experiments [28] where the data may be both noisy and sparse.

The paper is organised as follows. In Section II, the recurrence measures that we use here are defined, and applied
in Section III to the detection of some routes to SNAs in discrete 1–dimensional nonlinear mappings. Section IV
examines the fractalization of a torus to an SNA, and Section V the transition from SNAs to chaos. The final section
summarizes our results.

II. MEASURES OF COMPLEXITY

The concept of recurrences in dynamical systems goes back to Poincaré [29], who showed that under certain
conditions, the orbit of a bounded dynamical system must return arbitrarily close to each former point of its route
with probability one. The time of return can, however, be arbitrarily long. A visual representation of such recurrences
is provided by recurrence plots (RPs), which were introduced in 1987 [30]. RPs are defined for a given trajectory
{xi}

N
i=1, of a dynamical system, where xi ∈ R

n. They are based on the matrix

R
(δ)
i,j = Θ(δ − ||xi − xj ||), i, j = 1, . . . , N (1)
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where δ is a predefined threshold, Θ(·) the Heaviside function and ‖ . ‖ a norm (here the maximum norm). Close or
δ-recurrent points give “1” and separate points “0”. Then the values 1 and 0 are depicted as black and white dot in
a two–dimensional plot, providing a visual representation of the system dynamics.

Special attention has to be payed to the choice of the threshold δ. It is desirable that the smallest threshold possible
is chosen. However the influence of noise can need a larger threshold, because noise would distort any existing structure
in the RP. It has been suggested that this threshold should range from a few per cent of the maximum phase space
diameter [31] and should not exceed 10% of the mean [32]. In the presence of observational noise, the choice δ = 5σ,
with σ being the standard deviation of the observational noise, has been shown to be more appropriate [33]. We use
this latter choice.

Several measures have been proposed to quantify the structures in RPs, and have found applications in the analysis
of physiological or geophysical time series [34–36]. It has been shown that all topological information about the
underlying system is contained in the RP [37]. Gao [38] has introduced a recurrence time statistics that corresponds
to vertical structures in the RPs. These statistics seem to be of special importance in the present study, since they
are able to extract the information dimension of chaotic attractors, to detect nonstationarity of time series and to
locate bifurcations and others types of changes in the dynamics. Marwan et al. [39] have proposed further measures
of complexity to quantify vertical black structures in RPs: this permits the identification of chaos-chaos transitions.

In order to detect transitions from quasiperiodic motion to SNAs, we extend this approach to the “white vertical
lines” in RPs. Note that these lines represent the time needed by the system to recur to a previously visited state.
Here we propose two types of recurrence analysis in order to identify transitions to or from SNAs.

1. Transition from quasiperiodic motion to SNAs: From the RP, we evaluate the frequency distribution P δ(w) of
the lengths w of the white vertical lines. We compute the mean recurrence time (TMRT ) from this distribution,

TMRT =

N∑

w=1

wP (w)/

N∑

w=1

P (w). (2)

Furthermore, we determine the number of recurrence of the most probable recurrence time (NMPRT ). It indicates
how many times the system has recurred using the most probable recurrence time and is given by

NMPRT = Max( {P (w)} ; w = 1, . . . , N ). (3)

We also consider the variance σMRT of TMRT and σMPRT of NMPRT . For a given sufficiently long trajectory,
the variance is evaluated by dividing the trajectory into k segments and computing TMRT and NMPRT for each
segment separately. Thus

σMRT =
1

k

k∑

l=1

(TMRT (l) − TMRT )2, (4)

σMPRT =
1

k

k∑

l=1

(NMPRT (l) − NMPRT )2, (5)

where the overbar indicates the mean value.

2. Transition from SNAs to chaos: The identification of this transition [40] is based on the determinism (DET )
[32] a measure of complexity defined as the ratio of the sum of all diagonal lines in the RP to the total number of
recurrent points. DET was originally introduced to quantify the predictability of a system: purely deterministic
systems are characterized by uninterrupted diagonal lines in the RP. In contrast, the RPs of pure stochastic
systems consist mainly of isolated black dots [37]. Since SNAs and chaotic attractors are both fractal, this
transition cannot be observed by simply computing the standard DET ; instead we compute the cross–recurrence
plot (CRP) [41] of two time series from two identical systems starting at different initial conditions but driven
by the same quasiperiodic force with identical phase. It is now straightforward to detect the transition from
SNAs to chaos. If both trajectories synchronize, we obtain an uninterrupted main diagonal line in the CRP.
Otherwise, the main diagonal is interrupted. Since trajectories synchronize on SNAs and do not synchronize on
chaotic attractors, DET of the cross–recurrence matrix (CRM)

CRm,δ
i,j = (δ − ||xi − yj ||), (6)

proves to be a useful quantity. In standard notation, xi and yi, i = 1, . . . , Nx and j = 1, . . . , Ny, denote the
two separate trajectories and the embedding dimension is m. As in other computations, we set the delay to 1,
and the threshold δ is taken in units of the average standard deviation σ of the two time series. From DET for
the main diagonal in the CRP, one can detect the transition from SNAs to chaos.
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FIG. 1: Phase diagram of the quasiperiodically forced cubic map (Eq.8), obtained using NMPRT (Eq.3). 1T and 2T correspond
to tori of period 1 and 2, respectively. GF correspond to region where the gradual fractalization of the torus occurs. HH
represents the region where the SNA is created through the Heagy Hammel route. S1 and S3 denote regions where the SNA
appears through Type-I and Type-III intermittencies, respectively. IC denotes the region where SNAs are created through
crisis-induced intermittency. C1 and C2 correspond to chaotic regions. For the parameter values in region marked D, the
trajectories escape to infinity.
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FIG. 2: Phase diagram of the quasiperiodically forced logistic map (Eq.7), obtained using NMPRT (Eq.3).

III. THE TRANSITION FROM QUASIPERIODIC DYNAMICS TO SNAS

We study the transition from quasiperiodic dynamics to SNAs in the quasiperiodically forced logistic map

xn+1 = α[1 + ε cos(2πθn)]xn(1 − xn),

θi+1 = θi + ω mod 1. (7)
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and the quasiperiodically forced cubic map,

xi+1 = Q + f cos(2πθi) − Axi + x3
i ,

θi+1 = θi + ω mod 1. (8)

These systems have been already investigated and various transitions to SNAs have been identified using tools such
as Lyapunov exponents and their variance, as well as finite-time Lyapunov exponents, dimensions, power spectral
measures and phase sensitivity exponents [42, 43]. Using NMPRT (Eq. 3), we obtain first for the logistic and cubic

maps two-parameter ((ε
′

,α) and (A,f), respectively) phase diagrams which clearly show changes in the dynamics,
that are in strong agreement with those reported in [42, 43]. These phase diagrams were computed using δ = 0.06
and N = 10, 000 normalized data points. The parameter ε′ = ε/(4/α− 1) is a rescaled driving parameter.

The phase diagram of the cubic map is given in Fig. 1 . It can be observed that the dynamics is symmetric about
f = 0, with two chaotic regions C1 and C2. Bordering these chaotic areas, one finds SNAs which are created through
different mechanisms such as Heagy Hammel (HH), gradual fractalization (GF), intermittencies of type-I and type-III
(S1, S3) and interior crisis (IC). There are also regions where the dynamics is on quasiperiodic attractors of period 1
and 2 which are marked respectively by 1T and 2T. The phase diagram for the quasiperiodically forced logistic map
[43] obtained by using NMPRT , shown in Fig. 2, exhibits very interesting patterns. Almost all the dynamics found in
the phase diagram of the cubic map [42] are also present here.

In order to exemplify the performance of TMRT and NMPRT , we analyze in detail two typical transitions to SNAs.
i) The Heagy Hammel route in the cubic map (Eq.8). In this route to SNAs, the birth of a SNA is due to the
collision between a period-doubled torus with its unstable parent [7]. We fix the bifurcation parameter f = 0.7 and
vary A in the range 1.8865 ≤ A ≤ 1.8875. At the starting value of A, we have a period-doubled torus of period
2. As A increases to the value 1.8868, the torus begins to wrinkle and comes closer and closer to its parent, with
which it collides and ultimately gives birth to a fractal attractor when A is increased up to the value 1.88697. It has
been shown that at this value of A, the attractor possesses a geometrically strange structure and is nonchaotic [42].
Using the threshold δ = 0.001 and N = 10, 000 normalized data points for the computation of the RP, we are able
to detect the critical value A = 1.88697 at which both tori collide (Figs. 3a,b). The variances σMRT and σMPRT ,
computed using N = 300, 000 data points for the whole trajectory and N = 2, 000 data points for each segment, show
this transition even more clearly (Figs. 3c,d). One can see that the recurrence time measures vary slightly before the
collision and at the critical value there is a drastic jump, after which, some oscillations start indicating an irregular
behavior.

ii) The Intermittency route wherein a strange attractor disappears and is replaced by a one-frequency torus
through an analog of the saddle-node bifurcation. In the vicinity of this phenomenon the attractor is strange and
nonchaotic. It has been shown that the dynamics at this transition is intermittent, and the scaling behavior is
characteristic of Type-I intermittency [13, 44]. In the logistic map, this intermittency route to SNAs (denoted S1)
occurs along the right edge of the chaotic region C2 in Fig. 2. For ε′ = 1 and varying α, we see in Fig. 4 that the
measures fluctuate rather strongly in the SNA regime and smoothly in the quasiperiodic one. There is an abrupt
change at the critical value αc ≈ 3.4058088 where the intermittent transition takes place. The threshold is set to
δ = 0.03. For the computation we have used N = 10, 000 normalized data points for NMPRT and TMRT , N = 300, 000
for the variances and N = 2, 000 as length of each segment.

We have also identified other routes to SNAs by these measures. Indeed, all four measures based on RPs are able to
detect these transitions. Since the mechanism for the creation of SNAs is different for each route, it was not easy to
find a satisfactory threshold for the computation of the RP which holds for all the different routes to SNAs. However,
for each route to SNAs, we are able to find a threshold which lead to a good detection of the transition to SNAs by
the recurrence time measures.

The robustness of the measures against noise has also been investigated. It is known that noise generally decreases
the threshold for chaos since transitions and bifurcations get blurred in the presence of fluctuations. For added noise
in the case of the HH route in the cubic map (Eq.8), our results are shownin Figs. 5a,c show TMRT and NMPRT .
Uniformly distributed noise of amplitude 10−4 has been added to the variable x (in order to keep the quasiperiodicity of
the forcing). Figs. 5b,d represent the case of uniformly distributed noise of amplitude 0.01. The transition from torus
to SNAs globally survives. In the case of dynamical noise and especially for TMRT (Fig. 5a), noise has considerably
reduced the value of the bifurcation parameter at which the transition to SNAs appears, but the recurrence time
measures are still able to detect the transition.
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FIG. 3: Transition from doubled torus to SNA through HH mechanism in the cubic map (Eq.8). (a): Behavior of TMRT ; (b):
Behavior of NMPRT ; (c): Variance of TMRT ; (d): Variance of NMPRT . The critical value is A ≈ 1.88697.

IV. FRACTALIZATION ROUTE TO SNA

The fractalization of a torus is both the most common and the most intriguing transition to SNAs. In this
mechanism, a torus becomes more and more wrinkled as the forcing increases until it breaks up to form a strange
set. The fractalization appears as a gradual change in the structure of the attractor which is difficult to relate to a
precise bifurcation point, where a sudden change in the dynamics occurs due to the crossing of a well-defined critical
threshold. In some particular cases, namely for forced noninvertible maps, it is possible to define a critical threshold
for the fractalization transition. In contrast to other mechanisms for the emergence of SNAs, there is no obvious
unstable set involved in the fractalization route. Datta et al. [46] have however recently used techniques introduced
by Kim et al. [47] to find unstable sets for the fractalization process using a sequence of rational approximations of the
irrational forcing. They found that these unstable sets are created through a cascade of period-doubling bifurcations,
and collision of chaotic bands with them causing a cascade of interior merging crises whereby the fractalization process
takes place.

The first example we study is the fractalization route in the forced logistic map as described by Nishikawa and
Kaneko [12]:

xn+1 = axn(1 − xn) + ε sin(2πθn),

θn+1 = θn + ω mod 1. (9)

We fix a = 3 and vary ε. At ε = 0, the attractor of the system is a straight-line torus. As ε is increased, oscillations
of the torus start to appear and it becomes fractal at ε ≈ 0.1553. The variances σMRT and σMPRT vary slightly but
at the critical value εc ≈ 0.1553, they suddenly increase and their fluctuations become larger for the following values
of the bifurcation parameter (Fig. 6). As ε is increased further, a transition from the fractal torus to chaos takes place
at ε ≈ 0.1573.
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FIG. 4: Type-I intermittency route in the logistic map (Eq.7). (a): Behavior of TMRT ; (b): Behavior of NMPRT ; (c): Variance
of TMRT ; (d): Variance of NMPRT . The critical value is αc ≈ 3.4058088.

A second example that we consider is the fractalization route in the Hénon map [45], given by the equations

un+1 = 1 + vn − bu2
n + Acos(2πθn),

un+1 = cun, (10)

θn+1 = θn + ω mod 1,

with c = 0.1 and A = 0.7. The bifurcation parameter is b. Sosnovtseva et al. [45] have found that the transition
to SNAs happens at b = 0.7; strange nonchaotic behavior is then replaced by a chaotic behavior as b is increased to
the value b = 0.77. We find the transition closer to 0.69 when there is an abrupt increase in σMRT and σMPRT ; see
Fig. (7).

V. THE TRANSITION FROM SNAS TO CHAOTIC ATTRACTORS

The transition from SNAs to chaotic attractors is a purely dynamical one: the structure of the attractor remains
essentially unchanged, while the largest Lyapunov exponent becomes positive. This is a consequence of the manner
in which the invariant measure is redistributed on the attractor [48]. Since the largest Lyapunov exponent of SNAs is
negative, two such systems are able to undergo complete synchronization. It has been shown in [22] that regardless
of the initial conditions of two identical SNAs, they eventually converge to the same dynamics if the phase of the
quasiperiodic driving coincides for both of them. In contrast, in the chaotic regime, both systems have positive
Lyapunov exponents, and therefore, they cannot synchronize. A recurrence measure, which can easily identify the
synchronization, and hence the transition from SNAs to chaos, is based on the DET of the CRM defined in Eq. (6)
for two different time series generated by the same initial phase θ0. If both trajectories synchronize, we obtain an



7

1.8865 1.887 1.8875
3

3.5

4

4.5

A

T
M

R
T

1.8865 1.887 1.8875
1

2

3

4

5

A

N
M

P
R

T

1.8865 1.887 1.8875
3.8

4

4.2

4.4

4.6

A

T
M

R
T

1.8865 1.887 1.8875
0.5

1

1.5

2

2.5

A

N
M

P
R

T

x103 x103

x103 x103

(a)

(d)(b)

(c)

FIG. 5: Robustness of the recurrence time measures against noise for HH route in the cubic map(Eq.8). (a) and (c): TMRT
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FIG. 6: Fractalization route in the logistic map(Eq.9). (a): Variance of TMRT ; (b): Variance of NMPRT ; Variances computed
using δ = 0.05, N = 750, 000 data points as the whole trajectory and N = 3, 000 as length of each segment. The critical value
of bifurcation parameter is εc ≈ 0.1553.
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FIG. 7: Fractalization route in the Hénon map (Eq.10). (a): Variance of TMRT ; (b): Variance of NMPRT . Variances computed
using δ = 0.05, 750,000 data points and 2,500 as length of each segment. The variances increase suddenly at bifurcation
parameter b ≈ 0.69.

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

0 200 400 600 800 1000
0

200

400

600

800

1000

(a)

i i

ii

j j

jj

(b)

(d)(c)

FIG. 8: CRP of the forced logistic map (Eq.7): (a) in the SNA regime with α = 3.32, ε
′

= 0.595, and (c) in the chaotic regime

with α = 3.33, ε
′

= 0.595. Due to synchronization, the CRP and the ordinary RP are identical in the SNA regime, whereas
this is not so in the chaotic one. In (b) and (d) only the main diagonals for the SNAs and chaotic attractors are shown. The
threshold for the computation of the CRP is δ = 0.2σ and the embedding dimension is m = 3.

uninterrupted main diagonal in the CRP. Otherwise, the main diagonal is interrupted indicating that we are in the
chaotic regime. This can be clearly seen in Fig. 8 where the CRPs are illustrated for both cases. Thus, by computing
the DET of the CRP only on the main diagonal, the transition from SNAs to chaos can be detected very clearly. In
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ε
′

= 0.595, (b) the corresponding DET , (c) λ for Eq. 7 with ε
′

= 1, (d) the corresponding DET , (e) ΛT , Λx and λx for Eq. 11
and (f) the corresponding DET . A DET value of unity corresponds to SNAs dynamics, and a drop in the value of DET to
lower values indicates the SNAs to chaos transition. In all cases studied here, we use δ = 0.2σ and embedding dimension is
m = 3.

the SNAs regime DET = 1, while in the chaotic regime DET < 1.
The specific characteristics of SNAs depend on the mechanisms through which they were created, and it appears

that this feature carries over into the corresponding chaotic attractors. Accordingly, we have numerically examined
the SNAs to chaos transition for SNAs created via the HH [7] and intermittency [13] routes in the quasiperiodically
forced logistic map (Eq. 7). We have also studied the mapping

xn+1 = (a cos 2πθn + b) sin 2πxn,

θn+1 = θn + ω mod 1. (11)

where the blowout bifurcation [24] route to SNAs has been observed.
These results are shown in Fig. 9. For the HH route we use ε′ = 0.595 (see Fig.2) in the logistic map. Figs. 9(a,b)

show the Lyapunov exponent and the DET respectively. As it can be clearly seen, when the Lyapunov exponent
changes from negative to positive, this is accompanied by a sharp drop in the value of DET . Analogously, for the
intermittency route to chaos at ε′ = 1, the behaviour of the Lyapunov exponent and DET are shown in Figs. 9(c,d).

For the transition along the blowout bifurcation route, the nontrivial Lyapunov exponent Λx is compared to DET
and shows the SNAs to chaos transition; see Figs. 9(e,f). Λx is deduced from the transverse Lyapunov exponent ΛT

via [24]

Λx = ΛT − |λx|, (12)

where λx is the nonzero Lyapunov exponent of Eq. (11).
The measure showing the transition from SNAs to chaos is found to be robust to added external noise. This is very

important in context to analysis of experimental data. In Fig. 10, we show the effect of uniform additive noise, in
Eq. 7 for the HH and the intermittency routes.
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VI. SUMMARY

Our main objective in this work has been to use recurrence time statistics in order to detect transitions to or
from SNAs. To detect the transition from quasiperiodic motion to SNAs, we have introduced four measures, namely
TMRT , NMPRT and their variances, which are based on the time needed by the system to recur to a neighborhood
of a previous point of the trajectory. These measures have been able to detect the onset of the strange nonchaotic
dynamic in the Heagy–Hammel and intermittency routes respectively in the cubic and logistic maps. Moreover, they
also detect the fractalization of a torus to SNAs. We have seen for example in the Heagy–Hammel route that these
four measures vary slightly in the quasiperiodic regime. At the critical value of the bifurcation parameter, there is a
drastic jump followed by irregular fluctuations of the recurrence time measures indicating the SNA regime.

The transition from SNAs to chaos has also been identified by computing the determinism for a cross–recurrence
plot of two different time-series generated by the same initial phase. At the critical value, we have noticed a sharp
change in the value of the determinism from its maximum value 1.

These measures—which are robust against noise— can detect these transitions even when the orbits are not very
long, in contrast to Lyapunov exponent based measures. The present measures are also advantageous in the sense that
they do not require the knowledge of the equations governing the system under study. Therefore, they are suitable
for the analysis of experimental data. Illustrations of the applicability of these measures for continuous systems and
experimental data will be provided in a separate paper.
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