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Phase synchronization in time-delay systems
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Though the notion of phase synchronization has been well studied in chaotic dynamical systems without
delay, it has not been realized yet in chaotic time-delay systems exhibiting non-phase-coherent hyperchaotic
attractors. In this paper we report identification of phase synchronization in coupled time-delay systems ex-
hibiting hyperchaotic attractor. We show that there is a transition from nonsynchronized behavior to phase and
then to generalized synchronization as a function of coupling strength. These transitions are characterized by
recurrence quantification analysis, by phase differences based on a transformation of the attractors, and also by
the changes in the Lyapunov exponents. We have found these transitions in coupled piecewise linear and in

Mackey-Glass time-delay systems.
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Synchronization is a natural phenomenon that one en-
counters in daily life. Since the identification of chaotic syn-
chronization [1-3], several papers have appeared identifying
and demonstrating basic kinds of synchronization both theo-
retically and experimentally (cf. [4,5]). Among them, chaotic
phase synchronization (CPS) refers to the coincidence of
characteristic time scales of the coupled systems, while their
amplitudes of oscillations remain chaotic and often uncorre-
lated. Phase synchronization (PS) plays a crucial role in un-
derstanding the behavior of a large class of weakly interact-
ing dynamical systems in diverse natural systems. Examples
include circadian rhythm, cardiorespiratory systems, neural
oscillators, population dynamics, electrical circuits, etc.
[4-6].

The notion of CPS has been investigated so far in oscil-
lators driven by external periodic force [7,8], chaotic oscil-
lators with different natural frequencies and/or with param-
eter mismatches [9-12], arrays of coupled chaotic oscillators
[13,14], and also in essentially different chaotic systems
[15,16]. On the other hand PS in nonlinear time-delay sys-
tems, which form an important class of dynamical systems,
have not yet been identified and addressed. A main problem
here is to define even the notion of phase in time-delay sys-
tems due to the intrinsic multiple characteristic time scales in
these systems. Studying PS in such chaotic time-delay sys-
tems is of considerable importance in many fields, as in un-
derstanding the behavior of nerve cells (neuroscience), where
memory effects play a prominent role, in pathological and
physiological studies, in ecology, in lasers, etc. [4-6,17-21].

In this paper, we report identification of phase synchroni-
zation in nonidentical time-delay systems in the hyperchaotic
regime with non-phase-coherent attractors with unidirec-
tional nonlinear coupling. We will show the entrainment of
phases of a coupled piecewise linear time-delay system for
weak coupling from the nonsynchronized state. Phase is cal-
culated using the Poincaré method [4,5] after a transforma-
tion of attractors of the time-delay system, which looks then
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like a smeared limit cycle. The existence of PS and general-
ized synchronization (GS) in coupled time-delay systems is
characterized by recently proposed methods based on recur-
rence quantification analysis and also in terms of Lyapunov
exponents of the coupled time-delay systems.

We first consider the following unidirectionally coupled
drive x;(r) and response x,(f) systems, which we have re-
cently studied in detail in [22-24],

X1 (1) = = ax (1) + by f(x,(t = 7)), (1a)

Xo(1) = = axy(t) + bof (xo(t = 7)) + baf(x,(t = 7)), (1b)

where by, b,, and b5 are constants, a >0, 7is the delay time,
and f(x) is a piecewise linear equation of the form
4

0, x < -4/3,
-1.5x-2, -4/3<x=-038,
flx)=9 x, -0.8<x=0.3, (2)
- 1.5x+2, 0.8 <x=4/3,
L0, x> 4/3.

We have chosen the values of parameters as a=1.0, b;=1.2,
b,=1.1, and 7=15, which are outside the region of complete,
lag and anticipatory synchronizations discussed in [22,23].
For this parametric choice, in the absence of coupling, the
drive x;(¢) and the response x,(f) systems evolve indepen-
dently. Further, in this case the drive x;(¢) exhibits a hyper-
chaotic attractor [Fig. 1(a)] with five positive Lyapunov ex-
ponents (see [22] for the spectrum of Lyapunov exponents)
and the response x,(7) has four positive Lyapunov exponents,
i.e., both subsystems are qualitatively different (because
b, # b,). The parameter b; is the coupling strength of the
unidirectional nonlinear coupling (1b), while the parameters
b, and b, play the role of parameter mismatch resulting in
nonidentical coupled time-delay systems.

Now the important questions we encounter are whether
PS exists in the time-delay system (1) when the coupling is
included (b3>0) and, if so, how to characterize the possible
transition to PS in such systems which possess in general
highly non-phase-coherent attractors having a broadband
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FIG. 1. Phase synchronization between the systems (la) and
(Ib). (a) The non-phase-coherent hyperchaotic attractor of the un-
coupled drive (la). (b) Transformed attractor in the x;(z+7) and
z(t+7) space along with the Poincaré points represented as open
circles. (c) The phases of the drive system (¢7), the response system
(¢5) calculated from the new state variable z(r+7), and their differ-
ence (A¢) for by=1.5.

power spectrum. In low-dimensional systems, a few methods
[4,5] have been developed to define phase in phase-coherent
chaotic attractors, which have a dominant peak in the power
spectrum. The definition of phase is not so clear in nonco-
herent chaotic attractors, in particular in high-dimensional
systems having broadband power spectra, such as time-delay
systems. Methods to calculate the phase of noncoherent at-
tractors of a time-delay systems are not readily available.
One approach to calculate the phase of system (1) is based
on the concept of curvature [25], which is often used in
low-dimensional systems. However, we find that this proce-
dure does not work in the case of time-delay systems in
general, and in particular for Egs. (1). We present here three
other approaches to study PS in systems like as (1).

(i) We introduce a transformation to successfully capture
the phase in the present problem. It transforms the non-
phase-coherent attractor [Fig. 1(a)] into a smeared limit-
cycle-like form with well-defined rotations around one center
[Fig. 1(b)]. This transformation is performed by introducing
the new state variable

2(t+ 1) =x,()x,(t + Dix (1 + 7), (3)

where 7 is the optimal value of delay time to be chosen (so as
to rescale the original non-phase-coherent attractor into a
smeared limit-cycle-like form). We plot the above attractor
[Fig. 1(a)] in the (x;(t+7),z(t+7)) phase space. The func-
tional form of this transformation has been identified by gen-
eralizing the transformation used in the case of chaotic atrac-
tors in the Lorenz system [4]. We find the optimal value of 7
to be 1.65. The above transformation is obtained through a
suitable functional form (along with a delay time 7), so as to
unfold the original attractor [Fig. 1(a)] into a phase-coherent
attractor. Now the attractor [Fig. 1(b)] looks indeed like a
smeared limit cycle with nearly well-defined rotations
around a fixed center. Hence, we can calculate the phase
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using the Poincaré method [4,5] from the rescaled attractor.
The Poincaré points are shown as open circles in Fig. 1(b).
The phases of both the drive ¢j(¢) and the response ¢5(7)
systems calculated from the state variable z(r+7) are
shown in Fig. 1(c) along with their phase difference
Ap=¢i(t)— p5(t) for the value of the coupling strength
b;=1.5, showing a high-quality PS. This strong boundedness
of the phase difference obtains for b3=1.382. Note that the
transformed attractor [Fig. 1(b)] does not have any closed
loops as in the case of the original attractor [Fig. 1(a)]. If
closed loops exist, they will lead to phase mismatch, and one
cannot obtain exact matching of phases of both the drive and
response systems as shown in Fig. 1(c).

(2) Next, we analyze the complex synchronization phe-
nomena in the coupled time-delay systems (1) by means of
very recently proposed methods based on recurrence plots
[26]. These methods help to identify and quantify PS (par-
ticularly in non-phase-coherent attractors) and GS. For this
purpose, the generalized autocorrelation function P(r) [26]
was introduced:

N—-t

1
2 O(e- ”Xz = Xins
i=1

-1

P(t) =

), (4)

where O is the Heaviside function, X; is the ith data point of
the system X, € is a predefined threshold, ||| is the Euclidean
norm, and N is the number of data points. Looking at the
coincidence of the positions of the maxima of P(¢) for both
systems, one can qualitatively identify PS.

A criterion to quantify PS is the cross-correlation coeffi-
cient between the drive, P,(¢), and the response, P,(z), which
can be defined as the correlation of probability of recurrence
(CPR)

Cepr = (P1(D)Py(1))/ 0y 05, (5)

where 131,2 means that the mean value has been subtracted
and oy, are the standard deviations of P(r) and P,(r) re-
spectively. Ccpr=1 indicates that the systems are in com-
plete PS, whereas for non-PS one obtains low values of CPR.

To characterize GS, the authors of [26] proposed the first
index as the joint probability of recurrences (JPR),

N
1
]?E O(e, - ”Xi —Xj”)@(fy - ”Yi - Yj”) - Rpr

Jipp =
JPR 1- RRR

(6)

where Rgp is the rate of recurrence, and €, and €, are thresh-
olds corresponding to the drive and response systems, re-
spectively. The Ryr measures the density of recurrence
points and it is fixed as 0.02 [26]. The JPR is close to 1 for
systems in GS and is small when they are not in GS. The
second index depends on the coincidence of probability of
recurrence, which is defined as the similarity of probability
of recurrence (SPR),
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FIG. 2. Generalized autocorrelation functions of both the drive
P(t) and the response P,(f) systems. (a) Non-phase-
synchronization for b3=0.6, (b) phase synchronization for b3=1.5,
and (c) generalized synchronization for b3=2.3.

Sspr=1-((Py(t) - Pz(l))2>/010'2' (7)

The SPR is of order 1 if both the systems are in GS and
approximately zero if they evolve independently.

Now, we will apply this concept to the original (nontrans-
formed) attractor [Fig. 1(a)]. We estimate these recurrence-
based measures from 5000 data points after sufficient tran-
sients with the integration step h=0.01 and sampling rate
Ar=100. The generalized autocorrelation functions P;(#) and
P,(t) [Fig. 2(a)] for the coupling b;=0.6 show that the
maxima of both systems do not occur simultaneously and
there exists a drift between them, so there is no synchroni-
zation at all. This is also reflected in the rather low value of
the CPR of 0.381. For b5 € (0.91,1.381), we observe the first
substantial increase of recurrence reaching Ccpr=0.5-0.6.
Looking at the details of the generalized correlation func-
tions P(f), we find that now the main oscillatory dynamics
becomes locked, i.e., the main maxima of P; and P, coin-
cide. For b; e (1.382,2.2) the CPR reaches almost 1, i.e.,
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FIG. 3. (a) Spectrum of first nine largest Lyapunov exponents of
the coupled systems (1) as a function of coupling strength bs
€ (0,3); (b) spectrum of CPR and JPR as a function of coupling
strength b5 € (0,3).

now all maxima of P; and P, are in agreement and this is in
accordance with strongly bounded phase differences. This is
a strong indication for PS. Note, however, that the heights of
the peaks are clearly different [Fig. 2(b)]. The differences in
the peak heights exhibit that there is no strong interrelation
in the amplitudes. Further increase of the coupling (here
b3=2.3) leads to the coincidence of both the positions and
the heights of the peaks [Fig. 2(c)] referring to GS in systems
(1). This is also confirmed from the maximal values of the
indices Jypr=1 and Sgpg=1, which is due to the strong cor-
relation in the amplitudes of both systems. The transition
from nonsynchronized to PS and then to GS is characterized
by the maximal values of CPR, SPR, and JPR [Fig. 3(b)]. As
expected from the construction of these functions, CPR re-
fers mainly to the onset of PS, whereas JPR quantifies clearly
the onset of GS. The existence of GS is also confirmed using
the auxiliary system approach [27].

(3) The transition from nonsynchronization to PS is also
characterized by changes in the Lyapunov exponents of the
coupled time-delay systems (1). The spectrum of the nine
largest Lyapunov exponents of the coupled systems is shown
in Fig. 3(a), from which one can find that the Lyapunov
exponents corresponding to the response system become
negative from the value of the coupling strength b;>0.9,
where the transition to PS occurs, except for the largest
Lyapunov exponent )\fi)lx which continues to remain positive.
This is a strong indication that in this rather complex attrac-
tor the amplitudes become somewhat interrelated already at
the transition to PS (as in the funnel attractor [25]). It is
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interesting to note that the Lyapunov exponents of the re-
sponse system \; (other than )\ijzx) are changing already at
the early stage of PS (b;=~0.91), where the complete PS is
not yet reached. This has been also observed for the onset of
PS in phase-coherent oscillators [9].

We have obtained the same results for different sampling
intervals At and for various values of delay time 7. We have
also identified this transition to PS and to GS in the coupled
Mackey-Glass systems [17,28], and also in (1) for linear cou-
pling (unidirectional) using the above three approaches
(these results will be presented elsewhere).

In conclusion, we have identified the existence of PS in
coupled time-delay systems in the hyperchaotic regime with
highly non-phase-coherent attractors. We have shown that
there is a typical transition from a nonsynchronized state to
PS for weak coupling and in the range of strong coupling
there is a transition to GS from PS. We have also identified a
suitable transformation, which works equally well for a
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Mackey-Glass system (having a more complex hyperchaotic
attractor), to capture the phase of the underling attractor. We
have also characterized the existence of PS and GS in terms
of recurrence-based indices like the generalized autocorrela-
tion function P(f), CPR, JPR, and SPR and quantified the
different synchronization regimes in terms of them. The
above transition is also confirmed by the changes in the
Lyapunov exponents. We have pointed out the existence of
PS in coupled Mackey-Glass systems as well. The
recurrence-based technique as well as the transformation
used are also appropriate for the analysis of experimental
data, i.e., we expect experimental verification of these find-
ings.
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