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Abstract In this contribution we test the hypothesis that
nonlinear additive autoregressive model-based data
analysis improves the diagnostic ability based on short-
term heart rate variability. For this purpose, a nonlinear
regression approach, namely, the maximal correlation
method is applied to the data of 37 patients with dilated
cardiomyopathy as well as of 37 age- and sex-matched
healthy subjects. We find that this approach is a pow-
erful tool in discriminating both groups and promising
for further model-based analyses.

Keywords Nonlinear regression Æ Heart rate
variability Æ Modeling Æ Time series analysis

1 Introduction

Most cardiovascular diseases are characterized by a slow
progression leading to possibly abrupt qualitative chan-
ges [24, 49]. This pathogenesis is a dynamic process and
the associated cardiovascular parameters, such as heart
rate variability (HRV), exhibit complex dynamics [3, 7,
25, 30]. Accordingly, the central requirement of nonlinear
dynamics aims exactly at such physiological phenomena.
First applications of nonlinear dynamics tools in medical

diagnostics met with success in the last 10 years [11, 20].
So far, however, either only data were analyzed [8, 13, 19,
28, 31, 42, 47, 48] or models developed [12, 14, 32, 45, 46].
The purpose of this paper therefore is, to take a qualita-
tively new step for HRV data: the combination of data
analysis and modeling. Model-based nonlinear-dynamic
data analysis of non-invasivelymeasured biosignals could
lead to an improved diagnostic ability and to a better
understanding of the cardiovascular regulation. Appli-
cations of the research results are manifold: Monitoring-,
diagnosis-, course- and mortality prognoses as well as the
early detection of heart diseases. As regards clinical
applications, there is an extraordinary demand for new
computer-controlled diagnostic methods to obtain a
more exact and differentiated picture of the possibly
damaged heart.

The analysis of HRV has become a powerful tool for
the assessment of autonomic control. HRV measure-
ments have proven to be independent predictors of
sudden cardiac death after acute myocardial infarction,
chronic heart failure or dilated cardiomyopathy [17, 21,
27, 33, 34, 38]. Moreover, it has been shown that short-
term HRV analysis already has an independent prog-
nostic value in risk stratification apart from that of
clinical and functional variables [23]. However, the
underlying regulatory mechanisms are still poorly
understood. Short-term heart rate (HR) regulation is
accomplished mainly by neural sympathetic- and para-
sympathetic-mediated cardiac baroreflexes and periph-
eral vessel resistance, whereas long-term regulation is
achieved by hormonal pathways as well as other systems
like the renin-angiotensin-system [4]. To gain more in-
sight into cardiovascular regulation, in this paper a
nonlinear additive autoregressive (NAAR) model is
estimated nonparametrically. The nonlinear regression
method we are using was introduced by Breiman and
Friedman [6] in 1985 and already successfully applied to
NAAR modeling of riverflow data in 1993 [9].

The paper is organized as follows. In Sect. 2 we
shortly describe the data, HRV parameters as well as
the nonlinear regression approach used. In Sect. 3 the
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results of standard HRV analysis, nonlinear modeling
and simulating shall be presented. Finally, in Sect. 4 the
results shall be discussed.

2 Methods

This study is aimed at investigating short-term HR
recordings of 37 patients with dilated cardiomyopathy
(DCM, age: 50.2±9.1 years) in comparison to 37 heal-
thy subjects (52.1±6.7 years). The diagnosis of DCM
was established in according to the recommendations for
medical testing of patients with cardiomyopathy. The
DCM patients had a left ventricular ejection fraction of
22.3±5.7%, a New York Heart Association class of
II–III and were getting the present standard therapy
[ACE-inhibitor (31), beta-blocker (16), diuretics (27)].
All patients were in sinus rhythm and had no concom-
itant diseases. To minimize the probability for cardiac
diseases in the healthy volunteers group we recruited
them from an occupational health center. They had
normal findings in echocardiography, bicycle ergometry,
and Holter ECG for many years. No control subject had
a history of cardiac diseases or symptoms. Patient
characteristics are summarized in Table 1. All mea-
surements were performed under comparable ambient
conditions (before noon, after having a small breakfast,
same place, temperature) with a standard ambulatory
ECG (100 Hz) for 30 min under supine position. The
consumption of alcohol and tobacco was forbidden 24 h
before the measurement.

Ventricular premature beats as well as artifacts were
filtered out using a special adaptive filtering procedure
described in [39]. Figure 1a and b give examples of these
data sets. To demonstrate later on where the nonlinear
regression approach is adequate, a time series of a patient
with atrial fibrillation from another study is given in
Fig. 1c.

2.1 Heart rate variability analysis

Heart rate variability is calculated in the time and
frequency domain regarding the Task Force HRV [17]
and by methods of nonlinear dynamics. Analyzing
HRV, the following standard parameters are calcu-
lated from the time series: MeanNN (mean value of
normal beat-to-beat intervals): Inversely related to
mean HR. sdNN (SD of intervals between two normal
R-peaks): Gives an impression of the overall circula-
tory variability. sdaNN (the SD of successive 5 min’
NN-interval mean values): quantifies long-range vari-
abilities. rmssd (root mean square of successive
RR-intervals) and pNN50 (percentage of RR-interval-
differences greater than 50 ms): quantifying short-
range variabilities. Shannon (the Shannon entropy
of the histogram): quantification of RR-interval dis-
tribution. Apart from the time-domain parameters
mentioned above, the HRV analysis focused on high-
frequency (HF), low-frequency (LF) and very-low-
frequency (VLF) components expressed by the
normalized values LF/P, HF/P, VLP/P, and the ratio
LF/HF (where P is the total power). The number of
ventricular ectopic beats is automatically counted and
denoted by noNNtime (cumulative time of not normal
beat-to-beat intervals). Finally, HRV is analyzed by
methods of nonlinear dynamics, especially symbolic
dynamics [22, 36, 40, 41]: In this analysis the time
series are transformed into symbol sequences with
symbols from a given alphabet. Some details are lost
in this process; however, the advantage is that the
coarse dynamic behavior can be analyzed. The used
parameter ‘Polvar20’ (Probability of low variability,
20 ms difference) characterizes short phases of low
variability from successive symbols of a simple
alphabet, consisting of only the symbols 0 and 1,
where 0 stands for a small difference of less than
20 ms between two successive beat-to-beat intervals,
and where 1 represent cases when the difference
between two successive beat-to-beat intervals exceeds
this limit, specifically given the time series x1,x2,...,xN
one obtains the symbol series sn

sn ¼
1 : jxn � xn�1j � 20ms
0 : jxn � xn�1j\20ms

�
ð1Þ

Words consisting of the unique symbols all 0 or all 1 are
counted. To obtain a statistically robust estimate of the
word distribution, we restrict ourselves to the 64 words
defined by six consecutive symbols. ‘Polvar20’ represents
the probability of the word 000000 occurring and thus
detects even intermittently decreased HRV.

2.2 Model-based data analysis

We generally assume that there are HR time series Xi,
i=1,...,n (series of beat-to-beat-intervals as in Fig. 1). In
this paper the following class of NAAR-models shall be
considered

Table 1 Patient characteristics

Group Control, n=37 DCM, n=37

Age (years) 50.2±9.1 52.1±6.7
Sex
Male 26 27
Female 11 10
SBP (mmHg) 119.0± 18.6 110.6±12.4*
DBP (mmHg) 73.2± 7.8 70.5±9.9
HR (bpm) 69.5± 9.4 75.4±7.6*
Echo
LVEF (%) – 22.3±5.7
LVDD (mm) – 67.8±8.6
Pharmacotherapy
ACEI – 31
b-blocker – 16
Diuretic – 27

SBP systolic blood pressure, DBP diastolic blood pressure, HR
heart rate, LVEF left ventricular ejection fraction, LVDD left
ventricular diastolic diameter, ACEI angiotensin-converting en-
zyme inhibitor
*P<0.05 versus control group
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hðXjÞ ¼
Xk

i¼1
/iðXj�iÞ; j ¼ k þ 1; . . . ; n: ð2Þ

where k denotes the history length. The alternating
conditional expectations (ACE) algorithm [6] described
below is applied as a nonparametric approach to esti-
mate the possibly nonlinear transformations /i and h in
Eq. 2. The easiest model of this class is the linear
autoregressive model

Xj ¼
Xk

i¼1
ai � Xj�i; j ¼ k þ 1; . . . ; n: ð3Þ

The concept of maximal correlation is a very powerful
criterion to measure the dependence in particular of
nonlinear related variables [29]. The main idea of this
approach is to measure the maximized correlation of
properly transformed variables.

Given a real variable Xj and a ni-dimensional vector
X ¼ ðX1; . . . ;XniÞ in the additive model 2. Then, the
maximal correlation is defined by

WðXj;X Þ :¼jqðh�ðXjÞ;/�ðX ÞÞj
¼max

h;/
jqðhðXjÞ;/ðX ÞÞj ð4Þ

where q denotes the correlation coefficient. The functions
h* and /*, which fulfil the maximal condition (4), are
called optimal transformation and represent an estima-
tion of the model 2. To estimate them nonparametrically,
we use the ACE-algorithm [6]. Afterwards, to enable a
classification of these transformations, a polynomial fit-
ting was performed to parametrize the model functions.
For more details to the ACE-algorithm see the Appendix.

The maximal correlation and optimal transformation
approach were applied recently to nonlinear dynamic

systems to identify delay in lasers [35] and partial dif-
ferential equations in fluid dynamics [37]. The ACE
algorithm turned out to be a very efficient tool for
nonlinear data analysis [16, 35, 39, 43, 44].

3 Results

3.1 Heart rate variability

The DCM group was characterized by a increased HR
(consequently, by a lower meanNN) and a decreased
HRV as reflected by the parameters sdNN and sdaNN5
(see Table 2). Interestingly, both groups hardly differed
in the respiration-induced very short variability range
(rmssd). Both, the increased HR and the decreased HRV
lead to significantly different Shannon entropies of the
RR-interval distribution of the groups. In frequency
analysis, an increased VLF band is observed for the
DCM group, whereas the LF band is decreased. Again,
no significant differences result in the respiration-
induced and vagally mediated HF band. The significant
differences of LF/HF between both groups is due to the
lower LF band in the DCM group exclusively. Surpris-
ingly, parameters from symbolic dynamics did not show
any significant difference between both groups (only as a
trend ‘Polvar20’: p=0.057). Finally, the DCM patients
show a higher level of ventricular ectopy (NoNNtime).

3.2 Model-based data analysis

For simplicity reasons, we started with a linear autore-
gressive model given in Eq. 3. For different model orders
up to 10, linear autoregressive modeling was performed
and the model coefficients themselves were considered to
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Fig. 1 Thirty minutes
tachograms from a healthy
volunteer (a), a patient with
dilated cardiomyopathy (b) and
a patient with atrial fibrillation
(c) [beat-to-beat-interval (BBI)]
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be parameters for discrimination between DCM and
controls. The model coefficients however, were signifi-
cant only up to the order 2 (cf. Table 3). The residual
variance g was significantly lower in the DCM group,
certainly caused by the lower HRV in this group. The
absolute values of the coefficients a1 and a2 were higher
for the controls, indicating a higher dependence from the
two predecessors for healthy subjects.

Based on the findings from linear autoregressive
modeling, a NAAR-model of order 2 given in Eq. 5 was
investigated.

Xj ¼ /1ðXj�1Þ þ /2ðXj�2Þ; j ¼ 3; . . . ; n: ð5Þ

The left hand side of Eq. 5 is the identity and we are
interested in estimating the functional dependence of Xj

on its two predecessors. Figure 2 gives this functional
relationship that was estimated from the time series gi-
ven in Fig. 1. We see a nonlinear functional relation for
both the healthy and the DCM subject in Fig. 2a and b.
For the subject with atrial fibrillation in Fig. 2c, how-
ever, no real functional relationship could be estimated.
In this case, the random influence is too strong, the RR-
intervals are nearly uncorrelated. This example shows
that there has to be a minimal relation between the data
at least for applying this nonlinear regression approach.

The concept of maximal correlation and optimal
transformations is a nonparametric approach which al-
lows to estimate in particular nonlinear dependencies
between two variables. However, in this paper the aim
was to quantify these relations. Therefore, polynomial

fitting of third order was performed. The fitting coeffi-
cients themselves were considered to be parameters in
cardiac diagnostics.

Xj ¼ a1 � X 3
j�1 þ a2 � X 2

j�1 þ a3 � Xj�1 þ a4

þ b1 � X 3
j�2 þ b2 � X 2

j�2 þ b3 � Xj�2 þ b4 j ¼ 3; . . . ; n:

ð6Þ

Using higher orders for polynomial fitting turned out
not to be useful in this study. Figure 2 gives the fitted
polynomials in addition to the optimal transformation.
These fitting parameters did not differ statistically be-
tween DCM and control for /1. Table 4 gives the fitting
parameters for /1 and /2 and we see that parameter b3
has the smallest p-value of all considered parameters in
this study.

To compare these fitting parameters directly with
standard HRV parameters we performed a tenfold
bootstrap approach. We repeatedly analyzed subsam-
ples of the data based on discriminant function analyses.
Each subsample was a random sample with 70%
replacement from the full sample (resampling). We used
ten different permutation of the data as training sets and
the best three parameters to separate the groups were
chosen. The parameter b3 was automatically selected in
nine of ten validation runs which demontrates the
reliability of our results. The best combination of
parameters to separate controls from DCM were the
fitting parameter b3, the normalized very low frequency
‘VLP/P’ as well as the number of ventricular premature
beats, quantified by the preprocessing parameter
‘noNNtime’. The averaged classification rates of this
tenfold bootstrap validation were 82.1% for the training
set (optimistic estimation) and 73.2% for the 30% test
set (realistic estimation).

Figure 3 visualizes the polynomial fitting of /1 and
/2 from Eq. 5 based on group averages. While the
optimal transformations /1 are similar for the DCM and
the control group (except the small difference at larger
beat-to-beat-intervals—leading a4 close to be signifi-
cant), the behavior of /2 is totally different in both
groups. The coefficients b1 and b2, representing the
quadratic and the cubic part of the fitting and therefore
lower than b3 and b4, both are higher in absolute values
for the DCM subjects and lead to a more oscillating
behavior of this fitting for this group. The coefficient b3,
representing the linear part of the fitting, is b3=0.045 for
the control subjects and, hence, higher than b3=�0.61
for the DCM group. This means that we have a linear
tendency for a slight increase of /2 with increasing beat-
to-beat-interval, whereas, the DCM group exhibits a
clear decrease. The dominant part for the discrimination
of both groups however, is the quadratic term b2 which
is extremely higher in the DCM group. Thus, for the
interpretation of these results all fitting coefficients have
to be considered together.

To investigate the stability of our approach we per-
formed Monte-Carlo simulations based on the group

Table 2 Results of heart rate variability (HRV) analysis

Control DCM p

meanNN 903.48±129.90 810.07±106.16 0.0013*
sdNN 50.70±19.86 41.04±20.76 0.0099
sdaNN5 25.10±12.60 17.34±11.53 0.0008*
rmssd 29.84±15.17 24.25±8.95 NS
pNN50 0.085±0.109 0.039±0.039 NS
Shannon 2.21±0.38 1.99±0.40 0.0123
LF/HF 2.89±2.15 1.97±1.44 0.0270
LF/P 0.24±0.10 0.18±0.09 0.0038*
HF/P 0.12±0.07 0.13±0.08 NS
VLF/P 0.40±0.12 0.50±0.19 0.0416
NoNNtime 17.0±23.3 38.3±38.2 0.0064
Polvar20 0.07±0.15 0.11±0.14 NS

Mean value ± SD, two-sided Mann–Whitney U test
*Significant after Holm correction [18])

Table 3 Results of linear autoregressive model analysis

Control DCM p

a1 0.96±0.08 0.90±0.08 0.0011*
a2 �0.05±0.12 0.02±0.10 0.0068*
g 1,766±1159 1,111±539 0.0026*

Mean value ± SD, two-sided Mann–Whitney U test. g represents
the residual variance
*Significant after Holm correction
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averaged polynomials given in Fig. 3. Two examples are
given in Fig. 4. Initial values X1 and X2 for both simu-
lations were 1,000 as one can expect from this figure.
Then all simulated values were calculated as follows

Xj ¼ a1 � X 3
j�1 þ a2 � X 2

j�1 þ a3 � Xj�1 þ a4

þ b1 � X 3
j�2 þ b2 � X 2

j�2 þ b3 � Xj�2

þ b4 þ g j ¼ 3; . . . ; n: ð7Þ

were g is a normally distributed random number with
mean zero and SD 15 ms. Interestingly, the different
mean HRs in both groups are achieved already after a
few iterations. Due to the strong relationship each HR
value to its two predecessors, we get a more homoge-
neous behavior in the control group, whereas the DCM
simulation is characterized by some drops (e.g. around

sample 1,100). From these simulations again the poly-
nomial coefficients were estimated using the approach
described. Figure 5 shows these functions which are very
similar to the polynomials in Fig. 3. There is only a
small horizontal shift of /1 in the DCM and of /2 in the
control group, the qualitative behavior is remained.
Thus, our method is able to consistently obtain impor-
tant information from the time series, which indicates a
possible use for surrogate data analysis.

Finally, we investigated whether our developed
models are useful for the forecasting of HR data. For
this reason, one-step predictions based on two prede-
cessors Xj-1 and Xj-2 and the optimal transformations
estimated from Eq. 5 were performed. Figure 6 gives the
results of these simulations from the tachograms intro-
duced in Fig. 1. We see adequate estimations for the
control as well as for the DCM series, the time series are
very similar to the ones given in Fig. 1. For the patient
with atrial fibrillation, however, no comparable results
were obtained. The one-step predictions fail due to the
fact that the optimal transformations do not represent a
real functional relationship.

4 Discussion

The main purpose of this paper was to test whether
model-based data analysis improves the results of diag-
nostic ability based on short-term HRV. Hence, firstly
standard HRV analysis was performed: The DCM pa-
tients are mainly characterized by a increased HR, a
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Fig. 2 Optimal transformations
as well as estimated
polynomials for the tachograms
(a), (b) and (c) from Fig. 1
(BBI)

Table 4 Results of NAAR-model-based HRV analysis

Control DCM p

W 0.844±0.082 0.841±0.084 NS
a1 �1.3E�06±7.4E�07 �1.3E�06±1.2E�06 NS
a2 3.1E�03±1.4E�03 2.8E�03±1.8E�03 NS
a3 �1.621±0.749 �1.356±0.701 NS
a4 800.7±118.8 745.1±98.2 0.061
b1 �5.9E�08±8.8E�07 �7.8E�07±1.2E�06 0.0019*
b2 1.9E�05±1.6E�03 1.4E�03±1.9E�03 0.0011*
b3 0.045±0.744 �0.606±0.758 0.0006*
b4 �4.92±27.59 �13.72±17.69 NS

Mean value ± SD, two-sided Mann–Whitney U test
*Significant after Holm correction
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decreased LF-component as well as a higher level of
ventricular ectopy compared to controls. In a next step a
linear autoregressive model was fitted to the data, a
model order of 2 turned out to be most effective in
discriminating both groups. HR variability reflects the
complex interactions of many different control loops of
the cardiovascular system. In relation to the complexity
of the sinus node activity modulation system, a more
predominantly nonlinear behavior has to be assumed.
To this effect, a nonlinear regression approach, namely,
the maximal correlation method was applied for non-
parametric data-driven NAAR-modeling. Using this
approach, no a priori assumptions about the dynamic
system that regulates HR have to be made. To enable

model-based data analysis, however, the estimated
functional relationships have to be quantified. For this
reason, polynomial fitting was performed and the fitting
coefficients themselves were considered to be parameters
in cardiac diagnostics. We found that this NAAR-
model-approach is a powerful tool in discriminating
cardiac patients from healthy controls. A tenfold boot-
strap validation analysis revealed that one fitting
parameter discriminates best in comparison to all
parameters in this study. It must be mentioned here that
these parameters, of course, are correlated with HR
variability parameters. The highest correlation was
found between a4 and the mean HR with r=0.91. The
coefficient a4 represents the offset of the polynomial
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fitting, and thus, the minimum beat-to-beat-interval,
which obviously is correlated with the mean heart rate.
The most significant coefficient b3, however, did not
show such high correlations with HRV parameters, the
highest was found for LF/P with r=0.50. The highest
correlation for the coefficients b1 and b2 were r=�0.46
(to LF/P) and r=0.41 (to meanNN), respectively. In this
regard, the decrease of low frequency together with the
apparently less effective baroreflex regulation in DCM
patients may explain the differences in /2 between both
groups. For the controls, we got a strong relationship
between one beat-to-beat-interval and its pre-predeces-

sor, whereas this clear relation is weakened for the DCM
group. The Monto-Carlo simulations performed in this
study confirmed these findings, the control subjects show
a more homogeneous and stable behavior in HRV. Our
results clearly indicate, that the NAAR-model parame-
ters contain important additional information in com-
parison to HRV parameters. The simulation study
showed that one-step predictions based on optimal
transformations gave promising results. For subjects
with atrial fibrillation or ventricular ectopy, however, no
real functional relationship could be estimated. A pre-
condition for applying this method are at least minimal
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correlations in the data and the exlusion of artifacts. All
results remain to be validated on a larger data base and
it will have to be investigated whether more sophisti-
cated models, such as polynomial fittings or NARMA-
models [1, 2, 5, 10, 15, 26], improve model-based data
analysis in risk stratification of cardiac patients. Sum-
marizing the results of this paper, we find that the ACE
algorithm is a powerful tool to estimate the transfor-
mations h and / in the analyzed model and, thus, en-
ables the qualitatively new step: the combination of data
analysis and modeling. Model-based nonlinear-dynamic
data analysis of non-invasively measured biosignals lead
to an improved clinical diagnostics in this study. La
Rovere et al. [23] showed that short-term HRV analysis
has an independent prognostic value in risk stratification
apart from that of clinical and functional variables. Our
introduced methodology is able to detect changes in
cardiovascular variability due to cardiac dysfunction
exemplary for DCM patients. It has to be mentioned
here, that this study was an exclusively methodological
investigation and has minor relevance for diagnosing
DCM patients. However, improving these modeling
techniques and understanding the underlying mecha-
nisms may lead to the detection of cardiac dysfunction
based on Holter monitoring in the future. Therefore, our
approach seems to be very promising also for other
biosignal processing, e.g. blood pressure variability or
multivariate cardiovascular modeling with nonlinear
interactions and feedback loops.
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5 Appendix: the ACE algorithm

This appendix provides a short description of the ACE
algorithm of Breiman and Friedman [6], the computer
programs used can be obtained from the authors
(http://tocsy.agnld.uni-potsdam.de/). In the following
section, the same notations as introduced in Sect. II are
used.

Generally, the estimation of functions that are opti-
mal for correlation is equivalent to the estimation of
functions that are optimal for regression. Therefore, the
problem

WðS; T1; . . . ; TkÞ ¼ max
h;/i

qðhðSÞ;
Xk

i¼1
/iðTiÞÞ

�����
����� ð8Þ

may also be expressed as the regression problem

E hðSÞ �
Xk

i¼1
/iðTiÞ

 !2
2
4

3
5!¼min : ð9Þ

Here, the functions h and /j (j=1,...,k) are varied in
the space of Borel measurable functions, and the con-
straints onto these functions are that they have vanish-
ing expectation and finite variances to exclude trivial
solutions.

For the one-dimensional case (k=1), the ACE algo-
rithm works as follows: When denoting the conditional
expectation of /1 (T1) with respect to S by E[/1 (T1)|S],
then the function �/0ðSÞ ¼ E½/1ðT1ÞjS�minimizes (9) with
respect to h(S) for a given /1(T1). Similarly,
�/1ðT1Þ ¼ E½hðSÞjT1�=jjE½hðSÞjT1�jj; where the norm is
defined by jjZjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
var½Z�

p
; minimizes (9) with respect to

/1 (T1) for a given h (S), keeping E[/1
2(T1)]=1. Now, the

ACE algorithm consists of the following iterative pro-
cedure: Starting with the initial function

/ð1Þ1 ðT1Þ ¼ E½SjT1�; ð10Þ

from i=2 it is calculated recursively

hðiÞðSÞ ¼ E½/ði�1Þ1 ðT1ÞjS� ð11Þ

and

/ðiÞ1 ðT1Þ ¼ E½hðiÞðSÞjT1�=jjE½hðiÞðSÞjT1�jj; ð12Þ

until E[(/1
(i) (T1) � h(i)(S))2] fails to decrease. The limit

values are then estimates for the optimal transforma-
tions h and /1. For the minimization of the right hand
side of Eq. 9 a double-loop algorithm is used. In the
additional inner loop, the functions

/ðiÞj ðTjÞ ¼ E hðiÞðSÞ �
X
p 6¼j

/ði;i�1Þp ðTpÞ j Tj

" #

are calculated. In the sum, the superscript ‘‘.(i)’’ is used
for p < j and ‘‘.(i-1)’’ for p > j. For k > 1, the ACE
algorithm works similarly.

There are several possibilities of estimating condi-
tional expectations from finite data-sets. In our exam-
ples, local smoothing of the data is used. This smoothing
can be achieved with different kernel estimators. We use
a simple boxcar window, i.e. the conditional expectation
value E[y|x] is estimated at each site i via

Ê½yjxi� ¼
1

2N þ 1

XN

j¼�N

yiþj

for a fixed half window size N. In all examples of this
paper, n=30 is used to account for a reliable estimate of
the mean value.

Furthermore, to allow for a better estimation in the
case of inhomogeneous distributions, the data are
transformed to have rank-ordered distributions prior to
the application of the ACE algorithm [i.e. the data-set X
is sorted in ascending order, resulting in the vector Y
and all further calculations are performed with the
corresponding index vector I, where Y=X(I)]. This al-
lows for a more precise estimation of expectation values
independently of the form of the data distribution and
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simplifies the algorithm considerably. It is allowed, since
the rank transformation is invertible and the maximal
correlation is invariant under invertible transformations
by definition. Proofs of convergence and consistency of
the function estimates are given in Ref. [6].
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