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ith heterogeneous degrees
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We study synchronization behavior in networks of coupled chaotic oscillators with heterogeneous
connection degrees. Our focus is on regimes away from the complete synchronization state, when
the coupling is not strong enough, when the oscillators are under the influence of noise or when the
oscillators are nonidentical. We have found a hierarchical organization of the synchronization
behavior with respect to the collective dynamics of the network. Oscillators with more connections
�hubs� are synchronized more closely by the collective dynamics and constitute the dynamical core
of the network. The numerical observation of this hierarchical synchronization is supported with an
analysis based on a mean field approximation and the master stability function. © 2006 American
Institute of Physics. �DOI: 10.1063/1.2150381�
omplex networks are playing an increasing role in the
nderstanding of complex systems. The analysis of vari-
us real-world complex systems using the approach of
omplex networks has uncovered general and important
rinciples in the structure organization of realistic sys-
ems. In particular, many complex networks are scale-
ree, characterized by a heterogeneous power-law distri-
ution of the degrees. A problem of fundamental

mportance is the impact of the network topology on the
ynamics of the complex systems, which has been re-
ently studied intensively in the context of synchroniza-
ion of coupled oscillators. Many previous works have
ocused on the global synchronizability, i.e., the ability of
he network to synchronize completely for fully identical
scillators. In this paper we consider more natural situa-
ions where the networks are not in the complete syn-
hronization state, for example, when the coupling is not
trong enough, when the oscillators are in the presence of
oise or when the oscillators are nonidentical. We have
hown that complex networks of chaotic oscillators dis-
lay significant collective oscillations in such regimes.
ore interestingly, we have found that in networks with

eterogeneous degrees, the individual oscillators have dif-
erent levels of synchronization with respect to the collec-
ive oscillations and they exhibit a hierarchical depen-
ence on the connection degrees. The behavior can be
nderstood analytically based on a mean field approxi-
ation and the linear stability analysis. Our results dem-

nstrate that, in the context of synchronization, hubs hav-
ng large degrees play the leading role in the formation of
he dynamical core, which is the main contributor to the
ollective dynamics of the network. In the future, it is
nteresting to study hierarchical synchronization in more
ealistic networks whose connection topology and connec-
ion strengths are time varying and the results could have

�
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meaningful applications in the dynamics of real-world
complex systems, such as the human brain.

I. INTRODUCTION

Recent years have seen important progress in the study
of complex systems from the view point of complex net-
works. The underlying idea is that many natural systems are
composed of subelements with complicated interactions
among them. The approach of complex network is to sim-
plify the complex system by a graph, when representing the
elements by the nodes of the graph and representing the in-
teractions by the connections among the nodes. The resulting
graphs often have a complex connection topology, i.e., they
are complex networks.

The study of complex networks has revealed important
and general organization principles in the topological struc-
ture of various real-world complex systems since the discov-
eries of the small-world1 and the scale-free2 properties.
Small-world networks �SWNs� exhibit short average dis-
tance between nodes and high clustering,1 while scale-free
networks �SFNs� are characterized by having a power-law
distribution of degree k �the number of connections per
node�,2

P�k� � k−�, �1�

so that there does not exist a characteristic degree in the
network. SFNs are featured by a statistical abundance of
“hubs” with a very large number of connections k compared
to the average degree value K= �k�.

These seminal findings on complex networks have
stimulated a great deal of research interest in a structure
analysis of real-world complex systems from the viewpoint
of network topology. It has been shown that both the small-
world and the scale-free properties are universal in many
real-world complex systems �cf. Refs. 3–7 and references

therein�.

© 2006 American Institute of Physics4-1
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An issue of fundamental importance in the study of com-
lex systems is the interplay between structure and dynam-
cs, which has recently attracted a great deal of attention in
he context of complex networks. The topology of the net-
orks can have a systematic influence on their physical and
ynamical properties, such as error and attack tolerance,8

ercolation transition,9,10 epidemic spreading,11–13 and cas-
ading failures,14 etc.

Synchronization of oscillators15,16 is one of the widely
tudied dynamical behavior on complex networks. It has
een shown that SWNs provide a better synchronization of
oupled excitable neurons in the presence of external
timuli.17 In pulse-coupled oscillators, synchronization be-
omes optimal in the small-world regime,18 and it is de-
raded when the degree becomes more heterogeneous with
ncreased randomness.19,20 Investigation of phase
scillators21 or circle maps22 on SWNs has shown that when
ore and more shortcuts are created at larger rewiring prob-

bility, the transition to synchronization become easier.21

hese observations have shown that the ability of a network
o synchronize is generally enhanced in SWNs compared to
egular chains. This enhanced synchronization in SWNs has
lso been analyzed in the context of complete synchroniza-
ion �CS� of identical chaotic systems.23–26 Physically, this
nhanced synchronizability was mainly attributed to the de-
reasing of the average network distance due to the shortcuts.

More recently, it has been shown that the ability of CS of
dentical chaotic oscillators also depends critically on the
eterogeneity of the degree distribution.27 In particular, ran-
om networks with strong heterogeneity in the degree distri-
ution, such as SFNs, are more difficult to synchronize than
andom homogeneous networks,27 despite the fact that het-
rogeneity reduces the average distance between the
odes.28,29 The synchronizability in Refs. 23–27 is assessed
ased on the stability of the CS state using the spectral analy-
is of the network coupling matrix.

Many of these studies of CS have focused on the global
ynchronizability of the networks and its robustness with re-
pect to removal of nodes30 or edges.26 In more realistic situ-
tions, CS of the whole network is not a natural state of the
etwork’s dynamics. Desynchronization happens often, for
xample, when the oscillators are subjected to perturbations
ue to noise or parameter drifts, or when the coupling
trengths are not in the synchronization regime. The stability
nalysis of the CS state may not provide useful information
bout the dynamical behavior in such regimes. However, the
etworks may still display a significant collective dynamics
nd the dynamical pattern of the effective synchronization
an be very interesting.

In this paper, we study the organization pattern of such
ffective synchronization in complex networks with hetero-
eneous degrees, i.e., in SFNs. We pay special attention to
ocal synchronization behavior of oscillators with respect to
he collective dynamics of the whole network in regimes
utside the CS state. We show that the synchronization orga-
ization displays a hierarchical structure, which is generally
bserved when the CS state is perturbed by noise, when there
s nonidentity in the oscillators or when the coupling strength

s too weak to achieve CS. The hierarchical structure is
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manifested by the dependence of the synchronization prop-
erties on the connection degree k of the nodes. Interestingly,
the stability analysis of the CS state can be adopted to pro-
vide an understanding of the hierarchical synchronization.
The results of the SFNs are compared to random networks
with homogeneous degrees which do not exhibit such hier-
archical synchronization behavior.

The paper is organized as follows. In Sec. II we intro-
duce the general model of dynamical systems and network
structures considered here. The transition to CS and desyn-
chronization by noise in identical oscillators are treated in
Sec. III. We consider nonidentical oscillators in Sec. IV.
Then possible extensions of these results to weighted net-
works and time-varying networks are discussed in Sec. V.

II. MODELS

A. Dynamical equations

Real networks are often growing and changing in their
topological structures and likely to have different coupling
strengths for different connections.31 Global synchronization
of time-varying networks has been studied recently in Refs.
31–34. Since our purpose is to study synchronization orga-
nization outside the complete synchronization regime due to
heterogeneous degrees, we consider in the following the sim-
pler case of time-invariant networks with uniform coupling
strength for all the connections as in Refs. 25, 27, and 30.
The dynamics of a such network of N coupled oscillators is
described by

ẋ j = � jF�x j� +
g

K
�
i=1

N

Aji�xi − x j� , �2�

where x j is the state of oscillator j and F=F�x� governs the
dynamics of each individual oscillator. The parameter � j con-
trols the time scale of the oscillators. A= �Aji� is the adja-
cency matrix of the underlying network of couplings, where
Aji=1 if there is a link from node i to node j, and 0 other-
wise. Here we assume that the coupling is bidirectional so
that Aij =Aji, i.e., A is symmetrical. The degree kj of a node is
kj =�i

NAji, and K= �1/N�� j=1
N kj is the mean degree of the

nodes in the network. g is the overall coupling strength. Note
that in previous analysis of complete synchronization of
identical oscillators,25,27,30 more general output function
�H�xi�−H�x j�� �Refs. 25 and 27� or inner coupling matrix
C�xi−x j� �Ref. 34� have been considered for the coupling
term in Eq. �2�, where too large coupling could lead to de-
synchronization of the networks. Here we avoid such com-
plications by taking H�x�=x �or C=I, the identity matrix�. In
this case, complete synchronization state is stable when the
coupling strength g is larger than a certain threshold.

We analyze the paradigmatic Rössler chaotic oscillator
x= �x ,y ,z�,

ẋ = − 0.97x − z , �3�

ẏ = 0.97x + ay , �4�
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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ż = x�z − 8.5� + 0.4, �5�

here the parameter a controls the coherence property of the
hase dynamics of the oscillations. For example, at a=0.15,
he oscillations are phase coherent �Fig. 1�a�� and at
=0.25, it is strongly phase noncoherent �Fig. 1�b��. For the
hase coherent oscillations, the trajectories rotate around a
nique center and the phase can be defined simply by
=arctan�y /x�.35 Such a unique rotating center does not ex-

st in the phase noncoherent oscillators, where the definition
f phase is nontrivial.36 With this system, we can study CS of
dentical oscillators as well as phase synchronization �PS� of
onidentical oscillators in Eq. �2�.

. Network models

Here we consider SFNs which are generated with the
arabási-Albert �BA� preferential attachment algorithm.2

tarting with M fully connected nodes, at each time step a
ew node is added and connected to M existing nodes in the
etwork, with the probability � j �kj. The index of the nodes
re sorted such that the degrees have a descending order, i.e.,

1�k2� , . . . ,kN=M �Fig. 2�. The resulting SFNs have a
ower-law degree distribution P�k��k−�, with �=3 �Fig. 2,
nset� and the minimal degree kmin=M, and the mean degree
=2M.

To demonstrate the impact of heterogeneous degrees, the
ynchronization behavior of the SFNs is compared to homo-
eneous networks �HNs� with the same mean degree K,
here each node is connected randomly to exactly K other
odes in the network. The degree distribution of HNs is a
elta function P�k�=��k−K�. In this paper, we fix N=1000
nd K=10.

IG. 1. Chaotic attractors of the Rössler oscillator in the phase coherent
egime �a� and phase noncoherent regime �b�.

IG. 2. Degree sequence kj of a SFN with N=1000 nodes. The inset shows
he power-law distribution P�k��k−�, averaged over 50 realizations of the

etworks. The flat tail results from finite size effects.

wnloaded 09 May 2006 to 141.89.176.14. Redistribution subject to AIP
III. IDENTICAL OSCILLATORS

In this section, we consider the case of transition to CS
when the oscillators are identical, i.e., �1=�2= ¯ =�N=1 in
Eq. �2�.

A. Linear stability

For identical oscillators, the completely synchronized
state 	x j�t�=s�t� , " j 
 ṡ=F�s�� is an invariant solution of �2�.
Complete synchronization of the network requires that this
solution is at least linearly stable.

The linear stability of this solution can be assessed in the
framework of the master stability function.25,37 Small pertur-
bations of the synchronization state s are governed by the
linear variational equations

�ẋ j = DF�s��x j −
g

K
�
i=1

N

Lji�xi, j = 1, . . . ,N , �6�

where DF�s� is the Jacobian on s and L= �Lji� is the Laplac-
ian matrix, where Lji=−Aji+� jikj. Note that the Laplacian
matrix L has zero sum of the raws which corresponds to the
invariance of the completely synchronized state s. Equation
�6� can be diagonalized into N decoupled blocks of the form

�̇ j = �DF�s� −
g

K
� jI
� j, j = 1, . . . ,N , �7�

where � j is the eigenmode associated to the eigenvalue � j of
the matrix L. Here �1=0, resulting from the manifold invari-
ance, corresponds to the eigenmode parallel to the synchro-
nization manifold, and the other N−1 eigenvalues � j repre-
sent the eigenmodes transverse to the synchronization
manifold.

Note that all the eigenmodes have the same generic form

�̇ = �DF�s� − 	I�� , �8�

except that 	=g� j /K are different by the eigenvalues � j. The
largest Lyapunov exponent 
 of the generic mode �8� is a
linear function of 	,


�	� = �1
F − 	 , �9�

where �1
F�0 is the largest Lyapunov exponent of the chaotic

attractor of the isolated oscillator �	=0�. So the jth mode is
damped if g� j /K��1

F where 
�0. The CS state is stable
when the least stable mode �2, associated with the minimal
non-zero eigenvalue �2, is damped, namely when g�gc,
where gc=K�1

F /�2.
When more general output function H�x� or inner-

coupling matrix C is considered, Eqs. �7� and �8� will be
changed accordingly, and the largest Lyapunov exponent 

is usually negative in a finite interval of 	,25,27,34 and com-
plete synchronization may become impossible for large
SFNs.27

B. Transition to synchronization

The transition to CS is shown in Fig. 3 for different
networks and different chaotic regimes. Here we have plot-
ted the average synchronization error E= �1/N�� j=1

N 
Xj,

where 
Xj = �
xj −X
�t is the time averaged difference be-
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ween the oscillator xi and the mean activity of the whole
etwork, X= �1/N�� j=1

N xj. When CS is achieved at g�gc,
ne has E=0 after a sufficiently long transient. We have also
hown the oscillation amplitude AX of the mean field X, cal-
ulated as the standard deviation of X over time. It is seen
hat the HN achieves CS at a critical coupling strength gc

maller than that of the SFN having the same mean degree K.
he synchronization error E decreases abruptly in the phase
oherent regime when a very weak coupling suddenly syn-
hronizes the phases of the chaotic oscillations, while E
hanges gradually in the phase noncoherent regime and
chieves CS at larger gc since the largest Lyapunov exponent

1
F is larger. In both networks, however, a collective oscilla-

ion with an amplitude AX comparable to that of the com-
letely synchronized state already emerges even for very
eak coupling strengths g, both in the phase coherent and
hase noncoherent regimes.

Now we look into the different behavior of the two net-
orks during the transition to synchronization. For this pur-
ose, we examine the synchronization difference 
Xj of an
ndividual oscillator with respect to the collective oscillations

of the whole network. It is seen in Fig. 4�a� that 
Xj is
lmost the same for the nodes in the HN; in sharp contrast, it
s strongly heterogeneous in the SFN and is negatively cor-
elated with the degree kj of the nodes. To get a clear depen-
ence of 
X on the degree k, we calculate the average value
X�k� among all nodes with degree k, i.e.,

IG. 3. Transition to CS in the SFN and the HN, indicated by the synchro-
ization error E �squares� and the amplitude AX of the mean field X �circles�.
he filled symbols are for the SFNs and the open symbols for the HNs. �a�
hase coherent oscillations at a=0.15. �b� Phase noncoherent oscillations at
=0.25. In both networks, N=1000 and K=10.

IG. 4. Synchronization difference 
Xj of the oscillators with respect to the
lobal mean field X in the SFN �solid line� and HN �dotted line�. The
ymbol ��� denotes the degree kj of the nodes. Note the log-log scales of the
lots. �a� When the coupling strength is weak �g=0.1� and �b� when the
ynchronized state �g=0.5� is perturbed by noise �D=0.5�. Here the oscil-
ations are phase noncoherent at a=0.25 and the behavior is very similar for

hase coherent oscillations at a=0.15.

wnloaded 09 May 2006 to 141.89.176.14. Redistribution subject to AIP

X�k� =
1

Nk
�
kj=k


Xj , �10�

where Nk is the number of nodes with degree kj =k in the
SFN network. Now a pronounced dependence can be ob-
served �Fig. 5�. In the regime where the collective oscillation
is significant with an amplitude comparable to that of the
synchronized state �g�0.05�, the dependence is character-
ized by a power-law scaling


X�k� � k−�, �11�

with the exponent ��1 when the coupling strength g ap-
proaches to threshold gc, both for the phase coherent �Fig.
5�a�� and phase noncoherent �Fig. 5�b�� regimes. These re-
sults demonstrate that in the SFNs, a small portion of nodes
with large degrees synchronize more closely to the mean
field X, while most of nodes with small degrees are still
rather independent of X. A comparison of the results between
the SFNs and the HNs in Fig. 4�a� shows that for the same
coupling strength g, only about 20% of the nodes in the
SFNs have the synchronization differences 
X smaller than
that of the HNs. In other words, in SFNs the pronounced
collective oscillation X is only contributed by the hubs, while
in HNs all the nodes have a significant contribution. This
provides a physical reason that SFNs are more difficult to
achieve CS than HNs.

C. Desynchronization by noise

When CS is obtained for g�gc, desynchronization can
be induced in the presence of noise. In our simulations, an
independent noise D�i is added to the variable y of the os-
cillators in Eq. �2�, where D represents the amplitude of the
noise, and �i follows the normal Gaussian distribution
N�0,1�. As we can see from Fig. 4�b�, the degree of desyn-
chronization, again measured by 
X, is rather homogeneous
in the HN, while it also depends on the connection degree k
in the SFN. The average value 
X�k� again displays the
power-law scaling as a function of k �Fig. 6�, with ��1
independent of the noise level D if it is not too large.

So far we have shown that when the coupling strength is
not strong enough to achieve CS or when the CS state is
perturbed by external noise, the synchronization behavior in
the SFNs having heterogeneous degrees displays a hierarchi-
cal structure. Nodes with larger degrees synchronize better

FIG. 5. The average values 
X�k� as a function of k at various coupling
strength g in the SFN. �a� Phase coherent regime a=0.15. �b� Phase nonco-
herent regime a=0.25. The solid line with slop −1 is plotted for reference.
and contribute more to the collective oscillations of the
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etwork. For a given mean degree K, the homogeneous net-
ork topology seems to be optimal for synchronization,

ince all the nodes have equally significant contributions.

. Effective synchronization clusters

We have shown that the synchronization behavior of the
ndividual oscillators in the SFNs is highly nonuniform. The
odes with large degrees are close to the mean field. As a
esult, the synchronization difference among them should
e also relatively small. We can define an effective synchro-
ization cluster for those oscillators which synchronize
o each other within some threshold. For this purpose, we
ave calculated the pairwise synchronization difference
Xij = �
xi−xj
�t. A pair of oscillators �i� j� is considered to
e synchronized effectively when their synchronization dif-
erence is smaller than a threshold, 
Xij �
th. Since the syn-
hronization difference is heterogeneous, there is no unique
hoice of the threshold value 
th. What we can expect is that
ith smaller values of 
th, the size of the effective cluster is

maller. The effective synchronization clusters for different
alues of the threshold 
th are shown in Figs. 7�a� and 7�b�.
he same clusters are also represented in the space of de-

IG. 6. The average values 
X�k� as a function of k in the SFN at various
oise levels D. �a� Phase coherent regime a=0.15 with the coupling strength
=0.3 in the CS region. �b� Phase noncoherent regime a=0.25 with g
0.5. The solid line with slop −1 is plotted for reference.

IG. 7. The effective synchronization clusters in the synchronized network
n the presence of noise �a=0.25, g=0.5, and D=0.5�, represented simulta-
eously in the index space �i , j� ��a�, �b�� and in the degree space �ki ,kj� ��c�,
d��. A dot is plotted when 
Xij �
th. �a� and �c� for the threshold value

th=0.25, and �b� and �d� for 
th=0.50. The solid lines in �a� and �b� denote
+ j=Jth and are also plotted in �c� and �d� correspondingly. Note the differ-

nt scales in �a� and �b� and the log-log scales in �c� and �d�.

wnloaded 09 May 2006 to 141.89.176.14. Redistribution subject to AIP
grees �ki ,kj� in Figs. 7�c� and 7�d�, respectively. Note that
almost all the oscillators forming the clusters have a degree
kj �kth where kth is the threshold degree satisfying 
X�kth�
=
th; or correspondingly, the effective cluster is formed by
nodes with j�Jth where Jth is the mean index of nodes with
degree kj =kth. The triangle shape of the effective clusters in
Fig. 7 is well described by the relation i+ j�Jth. Above the
solid line i+ j=Jth, those oscillators �i�Jth and j�Jth� hav-
ing large enough degrees, i.e., ki�kth and kj �kth, are close
to the mean field with 
Xi�
th and 
Xj �
th, but the pair-
wise distance is large, 
Xij �
th. These results demonstrate
clearly that the hubs are the dynamical core of the networks.

Some previous works have discussed cluster synchroni-
zation in complex networks.38–41 There are two types of clus-
ter formation in very sparse networks displaying tree-like
structures.38–40 One is self-organized cluster where the nodes
within the cluster display internal connections. The other one
is driven cluster, where the nodes of one cluster are driven by
those of the others, but do not connect to other nodes of the
same cluster. Cluster formation in this case is related to some
symmetry in the networks42 �e.g., a branch in the tree can
form a self-organized cluster, and two branches connected to
a common node can form driven clusters�. Such symmetry
vanishes with increasing connectivity in random networks,
and a clear identification of these types of clusters becomes
difficult, for example, for the networks considered here. We
emphasize that the clusters in Fig. 7 are effective in the sense
that there is still a synchronization difference among the os-
cillators even though they all synchronize to the mean field
strongly.

E. Analysis of hierarchical synchronization

The hierarchical synchronization in SFNs when the cou-
pling is not strong enough, or when there is noisy perturba-
tion in the network, can be understood by the following
analysis based on a mean-field approximation. Let
x j = �1/kj��i=1

N Ajixi be the local mean field of all the neigh-
bors connected to the oscillator j, Eq. �2� then can be rewrit-
ten as

ẋ j = � jF�x j� +
gkj

K
�x̄ j − x j�, j = 1, . . . ,N . �12�

Since the network is random, for a node with the degree
kj �1, the average signal it receives from its neighbors is
sufficiently close to that of the whole network, i.e., the local
mean field x̄ j can be approximated by the global mean field
X of the network, x̄i�X. And the system is approximated as

ẋ j = � jF�x j� +
gkj

K
�X − x j�, kj � 1. �13�

This approximation means that the oscillators are forced by a
common signal X, with the forcing strength being propor-
tional to their degree kj.

For identical oscillators �� j =1�, the linear variational

equations of �13� read
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�̇ j = �DF�X� −
g

K
kjI
� j, kj � 1, �14�

hich have the same form as �7�, except that � j is replaced
y kj. According to Eq. �9�, the largest Lyapunov exponent
�kj� of this linear equation is a function of kj and becomes
egative for �g /K�kj ��1

F. For large k values satisfying
g /K�k��1

F, we have 
�k��−�g /K�k.
Now suppose that the network is not completely syn-

hronized, but perturbed slightly from it when the coupling
trength g is below the threshold gc, or when there is noise
resent in the system. For nodes with large degree k, so that
�k��−�g /K�k is sufficiently negative, the dynamics of the

veraged synchronization difference 
X�k� over large time
cales can be expressed as

d

dt

X�k� = 
�k�
X�k� + c , �15�

here c�0 is a constant denoting the level of perturbation
ith respect to the CS state, which depends on the noise

evel D or the coupling strength g. From this we get the
symptotic result 
X�k�=c / 

�k�
, giving


X�k� � k−1, �16�

hich explains qualitatively the numerically observed scal-
ng in Figs. 5 and 6.

Note that the analysis does not use the knowledge of the
egree distribution. The scaling in Eq. �16� should be general
or random networks with different heterogeneous degree
istributions. To show this, we have examined another grow-
ng model of SFNs proposed in Ref. 43. This model extended
he BA model by taking into account the aging effects of the
odes. A node j is randomly selected to be connected to the
ew node with a probability � j which depends on the degree

j and age � j of the corresponding node, i.e., � j �kj� j
−�,

here � is the aging exponent controlling the aging effects.
=0 corresponds to the usual BA model,2 which generate
FNs with a power-law degree distribution at �=3. For the
ging exponent −����0, this model generates SFNs with
power-law tail P�k��k−� and the scaling exponent in the

nterval 2���3,43 as in most real SFNs. The degree distri-
43

IG. 8. 
X�k� as a function of k for networks with different degree distri-
utions �power law and exponential� due to different aging exponents �. The
esults obtained in the synchronization regime perturbed by noise �a=0.25,
=0.5, and D=0.5� in these different networks collapse into a single curve.
ution is exponential if ��0. As seen in Fig. 8, the scaling
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is the same for networks with different degree distributions
at various � values.

For more general output function H�x� or inner-coupling
matrix C, the largest Lyapunov exponent 
 is usually nega-
tive in a finite interval of 	1�	�	2.25,27,34 
�	� decreases
and then increases with 	. Equation �15� is still valid and the
behavior reported above is general for relative weak coupling
strengths g where 
�	� is in the decreasing regime. With
larger g values, nodes with the largest degrees may enter into
the increasing regime of 
�	� and the synchronization differ-
ence 
X�k� increases with k again. 
X�k� is minimal for
some nodes with intermediate degrees, even though it may
happen that there is no suitable values of g to achieve com-
plete synchronization of the whole network. More details
will presented elsewhere.

IV. NONIDENTICAL OSCILLATORS

Now we consider nonidentical oscillators by assuming
that the time-scale parameters � j are heterogeneous, so that
the oscillators have different mean oscillation frequencies
� j. In our simulations we use a uniform distribution of � j in
an interval �1−
� ,1+
��, with 
�=0.1. We focus on the
phase coherent regime at a=0.15. In the phase noncoherent
regimes, a phase variable could be defined based on the cur-
vature of the oscillations36 or use the recurrence plot.44 The
details are out of the scope of this paper, and will be studied
elsewhere.

Let us first examine the collective oscillations in the net-
work. Figure 9 shows the amplitude AX of the mean field X
as a function of the coupling strength g for the SFN and HN.
It is seen that both networks generate a coherent collective
oscillation when the coupling strength is larger than a critical
value gcr�0.08. However, the SFN generates a weaker de-
gree of collective synchronization as indicated by a smaller
amplitude of the mean field.

Next we study in more detail the synchronization behav-
ior in the weak, intermediate, and strong coupling regimes,

FIG. 9. The amplitude of the mean field as a function of the coupling
strength g in the SFN ��� and HN ���. The solid line is the analytically
obtained results �Eq. �20�� for globally coupled oscillators. The networks
have the same mean degree K=10 and size N=1000.
indicated by the three vertical dashed lines in Fig. 9.
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. Weak coupling: Nonsynchronization regime

We start with the weak coupling regime with g=0.05.
ere neither the HN nor the SFN displays significant collec-

ive oscillations. The frequencies of the oscillators are still
istributed and the phases of the oscillators are not locked.
owever, interesting dynamical changes can be already ex-
ected in the SFN. Based on the mean field approximation in
q. �13�, even though the overall coupling strength g is still
mall, the oscillators with large degrees are already strongly
orced by a common signal X, which has only a very small
mplitude in this weak coupling regime. These oscillators
hould somewhat synchronize to X. As shown in Figs. 10�a�
nd 10�b�, oscillators with k�10 already display a degree of
ynchronization indicated by a decreasing 
X for larger k,
hile all the oscillators in the HN are distant from X. A small
istance of an oscillator j from X having an almost vanishing
mplitude shows that the oscillation amplitude Aj of the os-
illator is small. We have calculated Aj as the standard de-
iation of the time series xj. We can see from Fig. 10�c� that

j indeed display almost the same behavior of 
Xj. This
ecomes even more evident when we compare the average
alue A�k�, in Fig. 10�d� with 
X�k� in Fig. 10�b�. The
hanges in the amplitudes can be understood as follows: tak-
ng X�XF, from Eq. �13� one has

ẋ j = � jF�x j� −
gkj

K
�x j − xF�, kj � 1, �17�

hich shows that hubs are experiencing a strong negative
elf-feedback, so that the trajectory is stabilized at the origi-
ally unstable fixed point xF, but with some fluctuations due
o small nonvanishing perturbations from the mean activity
f the neighbors. The power-law tail in Fig. 10�d� can be
ualitatively explained by the analysis in Sec. III E.

To summarize, in the weak coupling regime where even

IG. 10. �a� Synchronization difference 
Xj of the oscillators with respect
o the global mean field X in the SFN �solid line� and HN �dotted line�. �b�
he average values 
X�k� as a function of k in the SFN. �c� and �d�, as in �a�
nd �b�, but for the oscillation amplitude Aj and the average value A�k� of
he oscillators. The results are averaged over 50 realizations of the random
ime-scale parameters � j. The coupling strength is g=0.05.
requency and phase synchronization �PS� are not yet estab-
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lished, the heterogeneous SFN already displays a form of
hierarchical synchronization expressed by the change in the
oscillation amplitudes.

B. Intermediate coupling: Phase synchronization

Next we take an intermediate coupling strength g=0.13
where both networks are in the regime of transition to strong
collective oscillations �Fig. 9�. In this regime, frequency and
PS become evident, while the absolute distance 
X is still
large. In Fig. 11 we show the mean oscillation frequencies
� j of the oscillators. In the SFN, about 70% of the nodes are
locked to a common frequency �=0.99, forming a fre-
quency synchronization cluster. Note that most of the nodes
with large degrees kj are synchronized in frequency, while
many nodes with small degrees are not locked yet. In the
homogeneous network, on the contrary, the frequencies of all
nodes are locked so that the network is globally synchro-
nized in frequency. The nodes that are not frequency locked
in the SFN, are largely uncorrelated with each other and they
do not contribute to the collective oscillations, while all the
nodes in the HN have a significant contribution; as a result,
the amplitude of the collective oscillation is much smaller in
the SFN, as seen in Fig. 12. Note also that the collective
oscillations are periodic even though the oscillators are cha-
otic. Physically, this is due to the interplay between the pa-
rameter disorder and the coupling, which drives the system
from the chaotic regime into the periodic regime. A more
detailed and quantitative analysis of the bifurcation of the
mean field will be discussed with a set of low-dimensional
macroscopic equations in Sec. IV D.

Now we examine PS of the nodes with respect to X. We
measure PS by the time averaged order parameter,

Rj = �sin�
� j��2 + �cos�
� j��2, �18�

where 
� j =� j −�X is the difference of the phases of an in-
dividual oscillator j and the mean field X. Here the phases

FIG. 11. The mean oscillation frequencies � j of the oscillators in the SFN
�a� and the HN �b� at the coupling strength g=0.13.

FIG. 12. Time series of the mean field X in the SFN �a� and HN �b� at the

coupling strength g=0.13.
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re defined as � j =arctan�yj /xj� and �X=arctan�Y /X� for an
ndividual oscillator j and the mean field, respectively. Note
hat Rj �0 when there is no phase locking and Rj �1
hen the phases are locked with an almost constant phase
ifference. As consistent with Fig. 11, we find that Rj =1 for
ll the oscillators in the HN; while Rj �1 for many nodes
ith small degrees in the SFN �Fig. 13�a��. To get a clear
ependence of R on the degree k, again we calculate the
verage value R�k� among all nodes with degree k. Now
here is a more pronounced dependence between R�k� and k
Fig. 13�b��.

We also calculate the absolute distances 
Xj. They are
ot small on average in both networks in spite of phase syn-
hronization �Fig. 13�c��, because phase locked oscillators
ay have significant phase differences. However, 
Xj again

isplay the hierarchical structure in the SFN �Fig. 13�d��.
he nodes with large degrees are not only locked in fre-
uency, but also have a small phase differences. So in this
egime, the hierarchical synchronization is manifested by
ifferent degree of frequency and phase locking.

. Strong coupling: Almost complete synchronization

Now we consider the strong coupling regime where both
etworks have a large and saturated amplitude in the collec-
ive oscillations �Fig. 9�.

We take g=0.5 at which the amplitude of X is almost the
ame for the two networks. The frequencies of all the oscil-
ators are locked mutually as well as locked to the mean
eld; as a result, the phase synchronization order parameter

s Rj =1 for all oscillators in both SFN and HN, i.e., the
etworks are globally phase synchronized. In the HN net-
ork, the phase difference 
� j between an oscillator and the
ean field, averaged over time and over different realiza-

ions of random distribution of the time-scale parameters � j,

IG. 13. �a� Phase synchronization order parameter Rj of node j with re-
pect to the mean field X in the SFN �solid line� and HN �dotted line�. �b�
verage value R�k� of nodes with degree k as a function of k in the hetero-
eneous network. �c�,�d� as �a� and �b�, but for the distance 
Xj and its
verage value 
X�k�, respectively. The results are averaged over 50 realiza-
ions of random distribution of the time-scale parameter � j. The coupling
trength is g=0.13.
s small and on average rather homogeneous for all the os-
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cillators �Fig. 14�a��. As a result, the oscillators are almost
completely synchronized in the sense that 
X�AX sin�
��
�AX
� is also small and uniform on average �Fig. 14�c��. In
the SFN, however, many nodes with degree smaller than the
mean value K is not as strongly connected to the mean field,
and they have larger phase differences on average �Fig.
14�a��, as is shown evidently by the average value 
��k�
over nodes with degree k �Fig. 14�b��. Consequently, the syn-
chronization difference 
Xj is still heterogeneous �Fig.
14�c�� and 
X�k��k−� with ��1 �Fig. 14�d��. This behav-
ior can be understood qualitatively by the analysis of Eq.
�15� in Sec. III E, where the perturbation level �constant c�
now is due to the nonidentity in the time scale � j of the
oscillators.

D. Analysis of the coherent regime of HN

We have seen that in the HN, the oscillators are almost
completely synchronized at strong coupling strength, since
the synchronization difference 
X is small and uniform in
the network. Now we carry out some analysis of the collec-
tive oscillation of the network based on the mean field ap-
proximation in Eq. �13�. For the HN, there is kj =K, and if
K�1 the mean field approximation �13� is equivalent to a
globally coupled network,

ẋ j = � jF�x j� + g�X − x j�, j = 1,2, . . . ,N . �19�

As the difference 
Xj is uniformly small for all the oscilla-
tors, we can obtain the dynamical equations for the macro-
scopic variable X. Let x j =X+�x j. Expanding the system
�19� with respect to X and neglecting the higher order terms
O�
�x j
2� as proposed in, Ref. 45 we get the following low-

FIG. 14. �a� Averaged phase difference 
� j between a node j and the mean
field X in the SFN �solid line� and HN �dotted line�. �b� Average value

��k� of nodes with degree k as a function of k in the SFN. �c�,�d� as �a�
and �b�, but for the absolute difference 
Xj and its average value 
X�k�,
respectively. The solid line in �d� with slope �=1 are plotted for reference.
The results are averaged over 50 realizations of the random time scale
parameters � j. The coupling strength is g=0.5.
dimensional macroscopic equations:
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Ẋ = F�X� + DF�X�W ,

�20�
Ẇ = ��

2F�X� + DF�X�W − gW ,

here DF denotes the Jacobian matrix of F. Here
= ��� j −1��x j −X�� measures the dispersion in both the fre-

uency and the state. ��
2 is the variance of the distribution

f � j.
The amplitude AX of X obtained numerically from the

acroscopic equations �20� is shown in Fig. 9 �solid line�,
hich provides a good approximation for the HN over a
road range of coupling strength. The deviation becomes
arger at smaller g where 
Xj is not sufficiently small. In
rinciple, the above analysis based on small value expansion
s not applicable for the SFN in the same strong coupling
egime, since the difference 
Xj of many oscillators is not
mall. The difference is expected to vanish when g becomes
ufficiently large so that almost complete synchronization is
lso achieved in the SFN.

Surprisingly, despite the large deviation of the macro-
copic equations from the SFNs and from the HN at weak g,
he bifurcations �period doubling to chaos� of the collective
scillations of the SFN and the HN are captured qualitatively
Fig. 15�.

It is important to stress at this point that the sparsely
onnected networks �K=10 only� already generate a collec-
ive oscillation rather similar to that of globally coupled net-
ork described by the macroscopic equations in Eq. �20�.
his is of importance in real-world complex networks, such
s neural networks, since sparse connections save a great
eal of energy without degrading the essential function of the
etwork.

. CONCLUSION AND DISCUSSION

We have studied synchronization organization in com-
lex networks out of the complete synchronization regime. A
omparison between degree heterogeneous networks �SFNs�
nd degree homogeneous networks �HNs� has shown that
eterogeneous degrees have significant effects on the organi-
ation of the effective synchronization of the networks. We
ave shown with numerical simulations and linear stability
nalysis that the synchronization properties of the nodes in
he heterogeneous networks depend hierarchically on the de-
rees. The hubs having large degrees k are strongly influ-
nced by the collective dynamics of the whole network and
ynchronize more closely to the collective dynamics. In other

IG. 15. Bifurcation diagram of the collective oscillations X with respect to
he coupling strength g. The dots plotted are the local maxima Xm in the time
eries of X. �a� SFN, �b� HN, and �c� Macroscopic equations in Eq. �20�.
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words, the hubs in the network form a dynamical core which
is the main contributor to the collective dynamics of the
whole network. In this way, we have demonstrated that the
hubs in the topological structures of the networks are also the
hubs of the functioning of the networks.

Here we have considered the impact of network topol-
ogy on the synchronization organization by assuming that all
the links are identical in strength. However, a more complete
understanding of many realistic systems would require a
characterization of networks beyond the topology. For ex-
ample, different links can contribute differently. Many com-
plex networks are actually weighted and display a highly
heterogeneous distribution of both degrees and weights.46–49

Examples include brain networks,50,51 and airport
networks,46 which underlie the synchronization of epidemic
outbreaks in different cities.52,53 It has been observed that
heterogeneity in the coupling strength can lead to desynchro-
nization and localized instability in locally coupled regular
networks of periodic oscillators54 or in random networks of
pulse-coupled oscillators.55

We have recently studied the synchronizability of
weighted networks and shown that weighted coupling has
significant effects beyond the network topology,56–58 also see
Ref. 59. Synchronization of complex networks is relevant in
many real-world systems. For example, brain networks50,51

display a hierarchy of oscillation and synchronization on
various spatial and temporal scales. Heterogeneous weights
in coupling strength are natural, for example, in city net-
works of coupled populations in the synchronization of epi-
demic outbreaks,52,53 due to heterogeneous populations of
the cities. In communication and other technological net-
works, the functioning of the system relies on the synchro-
nization of interacting units.60 The study of hierarchical syn-
chronization organization in general weighted networks with
heterogeneity both in the connection topology and in the
connection strength represents an interesting and important
research direction in the future and has important potential
applications in real-world systems.

Real dynamical networks are often growing and chang-
ing in their connection topology and connection weights.
Conditions and criteria for global synchronization in such
time-varying networks have been discussed in Refs. 31–34.
It is very interesting to investigate how effective synchroni-
zation patterns evolve in time due to the evolution of the
structures in time-varying networks. So far, it is assumed that
the structural changes in time-varying networks are indepen-
dent of the oscillatory dynamics.31–34 Our present interest is
on self-organization of structures and dynamics due to the
interplay between them.61
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