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xperimental evidence of anomalous phase synchronization
n two diffusively coupled Chua oscillators
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We study the transition to phase synchronization in two diffusively coupled, nonidentical Chua
oscillators. In the experiments, depending on the used parameterization, we observe several distinct
routes to phase synchronization, including states of either in-phase, out-of-phase, or antiphase
synchronization, which may be intersected by an intermediate desynchronization regime with large
fluctuations of the frequency difference. Furthermore, we report the first experimental evidence of
an anomalous transition to phase synchronization, which is characterized by an initial enlargement
of the natural frequency difference with coupling strength. This results in a maximal frequency
disorder at intermediate coupling levels, whereas usual phase synchronization via monotonic de-
crease in frequency difference sets in only for larger coupling values. All experimental results are
supported by numerical simulations of two coupled Chua models. © 2006 American Institute of
Physics. �DOI: 10.1063/1.2197168�
he collective behavior of coupled nonlinear oscillators is
f significant interest in many areas of science and tech-
ology. Synchronization appears as one of the most fun-
amental phenomena in such systems, where the interac-
ion is able to attune the motion among the oscillators. It
as been shown that several forms of synchronization can
e displayed even in chaotic systems. Of special impor-
ance is the notion of phase synchronization in noniden-
ical oscillators, where coupling is able to overcome the
arameter mismatch and the oscillators mutually adjust
heir frequencies to a common synchronized frequency,
hile the phases become locked. Usually the introduction
f coupling simply promotes the existence of such coher-
nt oscillations among the oscillators. However in nonlin-
ar systems the response of the system to the onset of
oupling may be quite different. In the so-called anoma-
ous route to phase synchronization, with the addition of
eak coupling, the frequency difference between two os-

illators can be even larger. Furthermore, here we show
hat depending on the system parameters, different syn-
hronization states, such as in-phase or antiphase, can be
nitiated. Despite these interesting results very few ex-
eriments have been done to explore the full complexity
f the issue. Here we present the first experimental veri-
cation of these effects in chaotic oscillating electronic
ircuits.

. INTRODUCTION

Synchronization among interacting nonlinear oscillators
s one the most fundamental problems in nonlinear dynamics
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�
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with application in many areas of science and technology.1–4

Synchronization is a ubiquitous phenomenon and in the
course of time different forms of synchronization have been
identified. Most notably, two identical chaotic oscillators can
attain a state of complete synchronization, in which the mo-
tion takes place on an invariant synchronization manifold.5

In the case of generalized synchronization the instantaneous
states of the subsystems are interrelated by a functional
dependence.6 In contrast, the notion of phase synchronization
�PS� refers to a weaker form of synchrony between chaotic
systems, where two or many interacting oscillators with
varying natural frequencies develop a perfect phase locking
relation for weak coupling, although the amplitudes may re-
main almost uncorrelated.7–9 For interaction strength above a
critical value the coupled oscillators then rotate with a com-
mon frequency. PS is abundant in science and it is found to
play a crucial role in many weakly interacting natural
systems,3 in lasers,10 and also in electronic circuits.11 The
presence of PS has been confirmed in many living systems,
including the cardio-respiratory rhythm,12 neural oscillator,13

as well as behavioral psychology14 or ecology.15

Usually one would assume that increasing the interaction
between the oscillators could only enhance the amount of
synchronization. However, in nonlinear systems the onset of
coupling may also give rise to unexpected behaviors such as
oscillation death16 or dephasing with bursts of amplitude
change.17 In two identical chaotic systems coupling may
destabilize18 the state of complete synchronization in a short-
wavelength bifurcation, where the synchronous state be-
comes unstable at a critical coupling strength due to a zero
crossing of the largest transverse Lyapunov exponent. Other
counterintuitive effects of coupling can appear if the oscilla-
tors are nonidentical and differ in their natural frequency of

oscillation. In this case the usual route to phase synchroniza-

© 2006 American Institute of Physics1-1
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ion �PS� predicts that the frequency difference should, in
eneral, decrease monotonically with coupling strength and
isappear above a critical value.3 Recently, a marked
eparture19 from this common notion has been observed in a
oodweb model.15 Contrary to expectation, a large population
f nonidentical oscillators shows an initial amplification of
he frequency disorder with coupling, which is followed by
he usual monotonic decrease in frequency disorder only for
urther increase in coupling strength. Such an unusual en-
argement of the frequency disorder in the weaker coupling
ange with a maximal value of the frequency disorder at
ntermediate coupling range has been denoted as anomalous
hase synchronization �APS�.19–21 The anomalous transition
ffectively results in an inhibition of PS, since a larger cou-
ling strength is necessary for inducing phase locking, com-
ared to the usual route to PS. However, for an appropriate
hoice of the system parameters, the onset of PS may also be
nhanced,19 i.e., phase locking may be achieved for coupling
maller than what is usually required to establish PS.

It has been shown19 that APS originates in the nonisoch-
onicity of oscillation and arises when the nonisochronicity
ovaries with the natural frequency of the oscillation.
onisochronicity as a shear of phase flow22 induces an am-
litude dependence of the natural frequency of an oscillator.
ue to their mutual interaction the oscillators are perturbed
ff their free limit cycle, which as a consequence may detune
he oscillators in such a way that their natural frequency
ifference is enlarged. On the other hand, synchronization
an also be enhanced by this mechanism when nonisochro-
icity and natural frequency have negative covariance. As a
onsequence, APS is characterized by a smooth increase of
he frequency difference with the coupling strength and sets
n without threshold. It is in this way distinguished from
ther types of coupling-induced desynchronization bifurca-
ions �e.g., short-wavelength bifurcation�, where the synchro-
ization state is destabilized at a critical coupling strength.18

APS is established as a universal phenomenon and it has
een observed in a large number of different model systems
nd also for various coupling types, e.g., with local and glo-
al coupling.19 The exact condition for APS in any coupled
ystem can be derived when two or more parameters of a
ystem are functionally dependent.19 For example, contrary
o previous results,3 APS can also be found in coupled
össler oscillators by an appropriate selection of the system
arameters.19 APS appears already in only two interacting
scillators and it is robust to, and can even be enhanced by,
he presence of noise.20 Recently, by numerical simulations
n two interacting Ginzburg-Landau systems, it has been
hown that APS can also arise in spatially extended
ystems.21 However, up to now any experimental verification
f APS is still eluding the researchers.

In this paper we report the first experimental evidence of
PS in two diffusively coupled Chua oscillators. In our ex-
eriments, we measure the frequency difference �� and the
volution of the phase difference ���t� in two diffusively
oupled Chua oscillators as a function of the interaction
trength between the two circuits. The experimental results
re compared with direct numerical simulations. As our main

esult, we find clear evidence for the presence of anomalous

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
synchronization transitions in coupled Chua circuits, both in
our experiments and in the numerical simulations. Further-
more, in contrast to previous studies, the onset of phase syn-
chronization in our system turned out to be rather involved.
Depending on the sign and the magnitude of the frequency
mismatch between the two oscillators, we observe very
different—and so far not described—routes to phase syn-
chronization, involving successive transitions between differ-
ent synchronization states �e.g., in-phase or antiphase� and
various forms of APS.

If the frequency mismatch between the two oscillators is
adjusted to be comparatively large, we observe an anomalous
route to a state of in-phase synchronization, which is charac-
terized by a small absolute value of the locked phase differ-
ence ���� � �constant�. In contrast, for a smaller natural fre-
quency mismatch we observe an enhanced transition to
antiphase synchronization ���� � ��� at much weaker cou-
pling. To be more precise, for increasing the coupling
strength from zero above a first coupling threshold the two
oscillators are synchronized in a state of out-of-phase syn-
chronization, characterized by a large value of the phase dif-
ference �0� ��� � ���. With increasing coupling the, still
bounded, phase difference attains larger values, which even-
tually leads to a state of antiphase synchronization ���� �
���, immediately before the transition to a large desynchro-
nization regime. Finally, above a second critical coupling
strength, the desynchronization disappears and the oscillators
tune into a state of in-phase synchrony. Beside these two
synchronization transitions, we observe another route to
phase synchronization, which is realized by reversing the
sign of the frequency mismatch �a fact which emphasizes the
effective role played by coupling asymmetry for the anoma-
lous transition to PS�. In this case, we first observe an
anomalous transition to antiphase synchronization, which is
again followed by a large desynchronization regime and then
a second regime of phase synchronization.

One common property of these different synchronization
routes is the presence of several distinct synchronized states
�in-phase, out-of-phase, and antiphase�, which are separated
by an intermediate desynchronization regime. Similar transi-
tions have been reported in a few recent studies to appear in
a neural model,23 in delay-coupled phase oscillators24 and in
a model of recurrent epidemics.25 We would like to stress
that these synchronization routes and also states of antiphase
synchronization, to our knowledge, have never before been
observed or discussed in connection with APS.19 Further-
more, experimental evidence of such a transition from an-
tiphase to in-phase via a desynchronization regime has not
been reported earlier.

The paper is structured as follows: In Sec. II we describe
our experimental setup of two diffusively coupled Chua cir-
cuits and also the model, which is used for the numerical
simulations. In Sec. III we consecutively describe three dif-
ferent experiments, which demonstrate the typical routes to
phase synchronization, which are exhibited in our system.

Finally, our findings are summarized in the Conclusion.
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I. EXPERIMENTAL SETUP: TWO DIFFUSIVELY
OUPLED CHUA OSCILLATORS

In this work we study both experimentally and numeri-
ally the synchronization arising in two diffusively coupled
onidentical Chua oscillators as shown in Fig. 1. Each oscil-
ator consists of linear passive elements as a resistor R1,8,
nductor L1,2, capacitors C1,3, C2,4, and one nonlinear resis-
ance. In our notation, here, the first or second index always
enotes the respective element of the first or second oscilla-
or �see Fig. 1 and Table I�. The nonlinear resistance is ap-
roximated by a piecewise linear function and in our experi-
ents it is designed by a pair of linear amplifiers �U1-U2 or
3-U4: �A741� for each oscillator. The resistance RC deter-
ines the coupling strength �=1/RC.

The model of the two diffusively coupled Chua oscilla-
ors, in dimensionless form, is given by

dx1

d	
= 
1��y1 − x1� − f�x1�� + �1
1�x2 − x1� ,

dy1

d	
= �x1 − y1 + z1� ,

dz1

d	
= − �1y1 − �1z1,

dx2

d	
= 	c
2��y2 − x2� − f�x2�� + �2
2	c�x1 − x2� ,

IG. 1. Two coupled Chua oscillators: Power supply is ±9 V. The oscilla-
ors are identified as OS-1 and OS-2 within the dotted boxes. The compo-
ent values are shown below each symbol. Unit of resistance is in Ohm, the
apacitor is in Faraday.

TABLE I. Circuit parameters.

L1=20.3 mH r01=46.7 � C1=9.59 nF C2=
L2=20.51 mH r02=47.4 � C3=9.93 nF C4=
wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
dy2

d	
= 	c�x2 − y2 + z2� ,

dz2

d	
= 	c�− �2y2 − �2z2� , �1�

where the piecewise linear function f�x1,2� is defined as

f�x1,2� = �b1,2x1,2 + �b1,2 − a1,2� if x1,2 � − 1

a1,2x1,2 if − 1 
 x1,2 
 1

b1,2x1,2 + �a1,2 − b1,2� if x1,2 � 1

� �2�

and 	=t /R1C2, 	c=R1C2 /R8C4 and 
1=C2 /C1, �1

=R1
2C2 /L1, �1=R1r01C2 /L1, 
2=C4 /C3, �2=R8

2C4 /L2, �2

=R8r02C4 /L2, �1=�R1, �2=�R8 and �=1/RC. The state vari-
ables are the dimensionless voltages x1,2=VC1,C3 /E, y1,2

=VC2,C4 /E at the respective capacitor nodes and z1,2

=R1,8IL1,L2 /E corresponds to the inductor current IL1,L2 �pa-
rameters, see Table I�.

The piecewise linear function f�VC1,C3� has a slope a1,2

in the inner region near the equilibrium at the origin and a
slope b1,2 in the outer regions close to the two mirror sym-
metric equilibria26,27 of each oscillator. E denotes the satura-
tion voltage of the op-amps approximated as E�1. The
slopes a1,2 and b1,2 are given in terms of circuit components
by27

a1,2 = �−
1

R2,9
−

1

R5,12
	R1,8, b1,2 = � 1

R3,10
−

1

R5,12
	R1,8. �3�

Two similar state variables x1=VC1 and x2=VC3�E�1�
of the coupled oscillators at the nodes of capacitors C1 and
C3, respectively, are monitored using two channels of a digi-
tal oscilloscope �TEKTRONIX, TDS 220� for varying cou-
pling resistance RC. Data acquisition is made for 2500 data
points at each snapshot by an 8-bit memory �100 MHz� of
the oscilloscope. All circuit component values are precisely
measured using a standard LCR-Q bridge �APLAB 4910�.

For the synchronization analysis, the instantaneous
phases �1,2�t� of the measured scalar signals, both in coupled
and uncoupled states, are determined using the Hilbert
transform.3,7 The mean frequency �1,2 of each oscillator is
estimated as the mean rate of the change in �1,2�t�. A simple
index of the relative frequency difference, �����
=2��1−�2� / ��1+�2�, is taken as a measure of the fre-
quency disorder.15,19 ����� describes the frequency differ-
ence as percentage of the mean frequencies of the coupled
oscillators, �i��� �i=1,2�. Phase synchronization is estab-
lished when this relative frequency difference �� disappears
����0�.

The natural frequencies of the oscillators �1,2=2�f1,2 in
the uncoupled state are also estimated as the mean rate of
change of the instantaneous phases �1,2�t� of the measured
scalar signals VC1,C3�t� for each change in the parameter of

nF R2=3215 � R3=21.28 k� R5=2147 �

nF R9=3186 � R10=21.26 k� R12=2106 �
95.6
93.3
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp
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he oscillators. As detailed in Ref. 28 the natural frequency
f a single �uncoupled� Chua oscillator is a function of sev-
ral circuit parameters, including the nonlinearity parameters
f the oscillators, which are represented by the slopes of the
iecewise linear function �1,2= f�L1,2 ,C2,4 ,C1,3 ,

1,8 ,a1,2 ,b1,2�. This functional dependence of the natural fre-
uency of the oscillator on two or more control parameters is
n essential criterion for APS as established in Ref. 19 in
rder to induce APS in coupled Rössler oscillators. Since we
re interested here in the synchronization of two nonidentical
scillators and it is natural that no two similar off-the-shelf
omponents are identical �see Table I�, all the circuit compo-
ents were taken to be different. In this way we introduce a
ismatch in the natural frequencies of oscillations.

The Chua circuit is well known to show the limit cycle
o chaotic oscillations through different routes as period-
oubling or period-adding bifurcations.26,27 Throughout this
aper, all components are kept fixed except for the resis-
ances R1,8, which are varied to obtain the different dynami-
al regimes from periodic to chaotic, and also to adjust the
ismatch in the natural frequencies between the two oscilla-

ors. In Figs. 2�a� and 2�b� the experimental frequency-

IG. 2. Natural frequency bifurcation for the uncoupled oscillators. Experi-
ental results for the OS-1 oscillator �a� and for OS-2 oscillator �b�; the

ynamical regimes are denoted as P1 �period-1�, P2 �period-2�, P3 �period-
�, P4 �period-4� and SS �single scroll chaos�. Results of numerical simula-
ion for OS-1 �dotted line� and OS-2 �solid line� in �c�. In the simulations,
tarting in the P1 regime for high values of R1,8, oscillator OS-1 undergoes
transition to P2 at R1=1747, to P4 at R1=1736, and to SS at R1=1732,

espectively; oscillator OS-2 undergoes a transition to P2 at R8=1702, to
P4 at R8=1690, and to SS at R8=1680, respectively. The frequency
f1,2�=�1,2 /2�� is estimated as the mean rate of change of phase of the

easured scalar signals VC1,C3�t� for each R1,8 value in the uncoupled state
f the oscillators.
arameter bifurcations are plotted, which are obtained by

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
changing the resistances R1 and R8 of the single �uncoupled�
oscillators OS-1 and OS-2, respectively. The different oscil-
latory windows in the frequency-parameter space are de-
noted as Pn �n=1,2 ,3 ,4� for the period-n regime and SS for
single scroll chaos. In our experiment we could only identify
periodic windows up to the period-3 �P3� window in the
period-adding regime, since higher period windows in this
regime were found to be very narrow.

The frequency-parameter diagram for the numerical
simulation is shown in Fig. 2�c�. The numerical simulations
yield an excellent reproduction of the qualitative behavior
that is exhibited in the experiments. Especially, by reducing
the resistances R1,8, they reproduce the same sequence of
transitions from periodic windows to single scroll chaos
�with very similar attractor topologies�, together with a si-
multaneous decay of the natural frequency. However, there
are some differences in the exact value of the realized fre-
quencies. Whereas in the numerical simulations the spread-
ing of the natural frequency is about 100 Hz from P1 to SS,
in the experiments we observe a nearly four times larger
change of frequencies, of around 400 Hz. This discrepancy
could have been improved in several ways by refining the
simulation model, e.g., by taking into account the leakage in
capacitors, by trying more realistic models of the analog de-
vices ��741� to improve upon the piecewise-linear model-
ling of the function f�x1,2� in Eq. �2�, or by estimation of an
optimal parameter set that allows for the best representation
of the experimental results. It may be noted that matching
experiments with models is always a difficult proposition,
especially in coupled chaotic oscillators.29 This is due to sev-
eral natural imperfections including noise that necessarily
exists in real systems, which are difficult to model. There-
fore, we set our aim here not to numerically reproduce the
Chua circuit in the very best way. But instead, we chose to
run the numerical simulations with exactly the same mea-
sured values of the circuit elements that have been used in
our experiments �see Table I�. Consequently, also in the
simulations we allowed the variations in our main bifurca-
tion parameter R1,8. With the help of the frequency curves in
Fig. 2, we were able to adjust an arbitrary natural frequency
mismatch between the two oscillators in terms of the resis-
tances R1 and R8, which later was used as an important con-
trol parameter.

In the experiments the induction of the PS has been per-
formed as follows. First, fixed values of the resistances R1,8

have been chosen in the uncoupled state �RC is open� to
achieve a desired dynamical behavior and also to select the
frequency mismatch, ��. Then, the interaction between the
oscillators was successively introduced by decreasing the
coupling resistance RC �=1/�� from 400 k�. For each level
of coupling strength, the individual frequencies �1,2��� and
the relative frequency difference ����� were estimated from
the measured time series of two coupled oscillators. In the
numerical simulations, we always searched for such combi-
nations of parameter values R1,8 that allow for the best re-
production of the experimental results. Due to the shift in the
frequency-parameter curves between experiment and simula-
tion �see Fig. 2�, this always resulted in a shift in the optimal

parameter range �compared to the experimental parameter
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ange�, which best described a certain transition to synchro-
ization in the simulations.

Further care has been taken to choose appropriate initial
alues. Depending on the set of parameters, a single Chua
scillator may have either a double scroll attractor or two
oexisting single scroll attractors around two mirror symmet-
ic equilibria.26–28 In the numerical simulations we always
et the coupled oscillators to either of the coexisting attrac-
ors by fixing the initial conditions. In the experiment, we
eset the circuit whenever the attractor switched to the other
oexisting attractor.

II. TRANSITION TO PHASE SYNCHRONIZATION
N TWO COUPLED CHUA OSCILLATORS

. Anomalous transition to in-phase synchronization

In our first experiment we demonstrate the possibility
hat the two coupled Chua circuits exhibit an anomalous
ransition to PS �see Fig. 3�. For these aims the resistances R1

nd R8 were selected so that R1�R8 and further that the
atural frequency �1=�1��=0� of OS-1 is larger than the
atural frequency of OS-2, �2=�2��=0�. The following
elative frequency mismatch ��=�1−�2�0 is defined as a
ositive mismatch �see Fig. 1�. In the experiment �Figs. 3�a�
nd 3�c�� we used either the values R1=1570 �, R8

1449 � with a natural frequency mismatch of ��
279 Hz �solid line� or a second parameterization R1

IG. 3. Anomalous phase synchronization: frequency difference ����� first
ncreases with coupling strength, �, and then decreases to in-phase syn-
hrony. �a� Experimental results for two natural frequency mismatches,
�=279 Hz �dotted line, R1=1570 � for OS-1, R8=1449 � for OS-2� and
�=289 Hz �solid line, R1=1570 � for OS-1, R8=1447 � for OS-2�. OS-1
nd OS-2 are both parameterized in period-1. �b� Results from numerical
imulations with natural frequency mismatches ��=47.66 Hz �dotted line,

1=1765 �, R8=1671 �� and ��=59.44 Hz �solid line, R1=1771 �, R8

1671 �� for OS-1 and OS-2 in period-1 and chaotic �single scroll chaotic�
egime, respectively. Plotted also are the individual oscillator frequencies

1,2��� as a function of coupling. �c� Experimental results for frequency
ismatch ��=279 Hz �corresponding to the dotted line in �a�� and �d�

umerical simulation for ��=47.66 Hz �corresponding to the dotted line in
b��. For small coupling, ���C2 �left of the vertical dotted line�, frequencies
re linearly detuned with coupling, with a slope that increases with the
atural frequency, resulting in the effect of increasing frequency difference
ith coupling strength.
1570 �, R8=1447 � with a natural frequency mismatch of

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
��=289 Hz �dotted line�. For these parameters both oscilla-
tors are in the period-1 regime. In the numerical simulations
�Figs. 3�b� and 3�d�� the best agreement to the experimental
results was found for the resistances R1=1765 �, R8

=1671 � with a natural frequency mismatch of ��
=47.66 Hz �dotted line� and R1=1771 �, R8=1671 � with
��=59.44 Hz �solid line�. In this case the first oscillator
OS-1 is in the period-1 regime, whereas the second oscillator
OS-2 is in a regime with single scroll chaos.

As can be clearly seen in Figs. 3�a� and 3�b� at small
coupling levels, when the resistance RC is decreased from a
large initial value �
400 k��, the frequency difference
����� first increases with coupling strength �. At an inter-
mediate coupling strength, �=�C2, the frequency difference
nearly attains a maximal value. Only for stronger coupling
the frequency difference is reduced before the final onset of
phase synchronization ���=0� above a critical coupling, �
��C1. This is an in-phase state when ��� � �0. In the nu-
merical simulations, APS is not as strong as compared to the
experiment. Nevertheless, its presence is quite evident from
the plot of ����� as a function of coupling in Fig. 3�b�.
Evidently, the frequency difference begins to grow without
any threshold as can be seen from the two traces �solid and
dotted lines� for two different values of natural frequency
mismatch, ��. Furthermore, for the two parametrizations we
observe a shift in the critical coupling �C1, which is needed
to attain phase synchronization. We find in Figs. 3�a� and
3�b� that the coupling threshold to synchronization increases
with the natural frequency mismatch.

The individual frequencies �1,2��� as a function of cou-
pling strength are shown in Figs. 3�c� and 3�d� �for one
choice of the mismatch corresponding to the dotted line in
Figs. 3�a� and 3�b��. Clearly, in the range of small coupling
to the left of the vertical dotted line ����C2�, the frequencies
are linearly detuned with coupling. The slope of the detuning
of the “faster” oscillator OS-1 �solid line� defined as d�1 /d�
is larger than that of the “slower” oscillator OS-2 �dotted
line�, d�2 /d�. Thus, the slope of the detuning increases with
the natural frequency. This difference in the amount of de-
tuning results in the net effect of increasing frequency differ-
ence with coupling strength. In Ref. 19 a sufficient condition
for APS is defined as d� /d��0 where � is the slope of the
individual frequency detuning with coupling. This condition
is clearly satisfied in our experiment during the initial rising
phase of �1,2��� for coupling ���C2, and thus confirms the
existence of an anomalous transition to PS in our first experi-
ment.

B. Enhanced transition to antiphase synchronization

In our next experiment we explore a different set of sys-
tem parameters where OS-1 is still faster than OS-2 ���
�0�, but for a smaller absolute value of the frequency mis-
match and weaker coupling. In this parameter range we ob-
serve an enhanced transition to antiphase synchronization
�see Fig. 4�. The enhanced transition is characterized by a
fast monotonic decrease of the frequency difference �����
with coupling, and phase synchronization ���=0� sets in at
a smaller coupling strength ��� . In fact, for ��� , im-
C3 C3
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ediately after the onset of synchronization, we observe a
tate of out-of-phase synchronization, which is characterized
y a finite phase lag, 0� ��� � ��, between the oscillators
see Fig. 5, top row�. This state gradually moves to full an-
iphase synchronization, ��� � �� �see Fig. 5, middle row�
ith increasing coupling strength, just before the onset of a

econd large desynchronization regime at ���C2. Finally, for
arge coupling ���C1, the two oscillators are again synchro-
ized to in-phase. This second, large coupling synchroniza-
ion regime for ���C1, however, differs from the first small
oupling regime �C3����C2, in the phase relation between
he two locked oscillators. Instead of anti or out-of-phase
ynchronization, for large coupling ���C1, we observe a
tate of in-phase synchronization in which the phase lag be-
ween the two oscillators disappears, ��� � �0 �even though
he amplitudes are not fully correlated, see Fig. 5, bottom
ow�.

The plot of the individual frequencies �1,2��� as a func-
ion of coupling in Figs. 4�c� and 4�d� shows that in the
ange, ���C3, before the first transition to synchronization,
he oscillator with the larger frequency is less influenced by
oupling. In this range, during the transition from nonsyn-
hronization to out-of-phase synchronization, the slopes of
he individual frequencies �d� /d�� violate the sufficient con-
ition of d� /d��0 for APS, thus confirming again the find-
ng of enhanced synchronization. In the antiphase synchro-
ized state, �C3����C2, the individual frequencies increase
ith coupling until they bifurcate again at the critical cou-

IG. 4. Antiphase to in-phase transition for reduced frequency mismatch.
lotted are the frequency difference ����� �top row� and the individual
requencies �1,2��� �bottom row� as a function of coupling � for the experi-
ent �left� and simulation �right�. In the experiment the oscillators OS-1 and
S-2 are parameterized in the period-1 regime with parameter values R1

1552 �, R8=1447 �, resulting in a frequency mismatch of ��=239 Hz.
n the simulation OS-1 and OS-2 are in the period-1 and period-2 regime
ith parameters R1=1780 �, R8=1690 �, respectively, with a frequency
ismatch of ��=75.39 Hz. The two oscillators show an enhanced transi-

ion to out-of-phase synchronization �0������ for coupling �=�C3, and
ntiphase synchronization ���=�� for ���C2 just before the onset of large
esynchronization in the range �C2����C1, and finally in-phase synchro-
ization ���=0� for large coupling strength ���C1.
ling ���C2 with the onset of a region of large desynchro-

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
nization. In this intermediate coupling regime, �C2
���C1,
we observe a phase of coexisting antiphase and in-phase
states, with several topological changes in the attractor. Fi-
nally, in the in-phase synchronization regime for coupling
���C1, the individual frequencies show a decreasing trend
as a function of coupling.

Again, our numerical results, by simulating the two
coupled Chua oscillators Eq. �1� in the corresponding param-
eter range, perfectly agree with the experiments �see Figs.
4�b� and 4�d��. The two oscillators show an enhanced transi-
tion to out-of-phase synchronization �0� ��� � ��� for
small coupling strength ���C3, antiphase synchronization
���� � ��� in the intermediate range of ���C2 just before
the onset of the large desynchronization area, �C2����C1,
and finally in-phase synchronization ���� � �0� sets in for
large coupling strength ���C1.

The different synchronization states in this second ex-
periment are visualized in Fig. 5, which depicts typical time
series of either experimental results VC1�t� and VC3�t�, or the
numerical simulation of the similar circuit nodes of the os-
cillators OS-1 and OS-2.

C. Anomalous transition to antiphase synchronization

In our last experiment, we investigate the case that the
uncoupled oscillator OS-2 rotates faster than OS-1, i.e.,
�1�0���2�0�. By reversing the sign of the natural fre-
quency mismatch in this way ����0�, we observe an

FIG. 5. Time series representing the different synchronization regimes cor-
responding to Fig. 4. Left column: typical experimental time series of the
voltages VC1�t� �solid line� and VC3�t� �dotted line� of oscillator OS-1 and
OS-2, respectively. Right column: similar numerical time series of x1�t�
=VC1�t� /E �bold line� and x2�t�=VC3�t� /E �dotted line�, E�1. Different
rows show synchronization regimes for increasing coupling strength from
top to bottom. Top row: out-of-phase synchronization for coupling just after
the first onset of phase synchronization ���C3; middle row: antiphase syn-
chronization for coupling ���C2; bottom row: in-phase synchronization for
large coupling values after the second onset of phase synchronization �
��C1. Parameter values, left column: �=5.95E−6 �top�, �=1.28E−5
�middle�, �=5.55E−5 �bottom�; right column: �=3E−6 �top�, �=2E−5
�middle�, �=7E−5 �bottom�. Parameters otherwise as in Fig. 4.
anomalous transition to antiphase synchronization as shown
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n Fig. 6. In the experiment �Figs. 6�a� and 6�b�� we use two
arameter combinations with R1�R8: first, the values R1

1503 �, R8=1552 � with a natural frequency mismatch of
�=−130 Hz �dotted line�, and second, R1=1478 �, R8

1537 � with a natural frequency mismatch of ��
−179 Hz �solid line�. For these parameters both oscillators
re in the period-1 regime. In the numerical simulations
Figs. 6�c� and 6�d�� we use the resistances R1=1725 �,

8=1704.5 � with a natural frequency mismatch of ��
−48 Hz �dotted line� and R1=1724.5 �, R8=1704.5 �
ith ��=−58 Hz �solid line�. In this case the first oscillator
S-1 is in a regime with single scroll chaos, whereas the

econd oscillator OS-2 is in period-1.
As is clearly visible in the magnified view in Figs. 6�b�

nd 6�d� with the onset of coupling, the two oscillators show
n anomalous enlargement of their frequency difference.
ith further increase of coupling, the frequency difference

apidly drops down and the system approaches the first re-
ime of phase synchronization ���=0�. An inspection of the
ime series reveals that in this regime the oscillators are syn-
hronized in antiphase. In this transition to antiphase syn-
hronization for a larger natural frequency mismatch, a larger
oupling threshold is necessary to achieve synchronization
compare Figs. 6�b� and 6�d�, solid lines versus dotted lines�.
he out-of-phase and antiphase synchronization as discussed
bove are also observed for both frequency mismatches.
imilar to Fig. 4 also in this experiment the first synchroni-
ation regime is intersected by the intermediate desynchro-
ization region, characterized by large fluctuations in fre-
uency disorder. Finally, at the high coupling end, again a
econd regime with in-phase synchronization is observed.

IG. 6. Anomalous transition to antiphase synchronization for an inverted
atural frequency mismatch. Plotted is the negative frequency difference,
�����, as a function of coupling �. The oscillators are parameterized so

hat the natural frequencies are inverted, �1��2, for two different values of
he frequency mismatch. Experimental results �left column�: ��=−130 Hz
ith R1=1503 �, R8=1552 � �dotted lines� and ��=−179 Hz with R1

1478 �, R8=1537 � �solid lines�. Both oscillators are in the period-1
egime. In the simulation OS-1 is in the single scroll chaos and OS-2 in the
eriod-1 regime �right column� with parameters: ��=−48 Hz with R1

1725 �, R8=1704.5 � �dotted lines� and ��=−58 Hz with R1

1724.5 �, R8=1704.5 � �solid lines�. The anomalous increase in fre-
uency difference is visible in the magnified plot showing the small cou-
ling region �bottom row�.
he numerical results also verify the anomalous transition to

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
antiphase for two different frequency mismatches as shown
in Figs. 6�c� and 6�d�. However, whereas in the experiment
the second large coupling regime is an in- phase state, in the
simulations in this regime the oscillators are found to be in
antiphase synchronization.

The individual frequencies �1,2��� versus coupling are
shown in Fig. 7 for both experiment and numerical simula-
tions. Similar to the anomalous synchronization in Fig. 3,
during the anomalous transition to antiphase, the magnitude
of the frequency detuning �i.e., the slope of frequency
change with coupling� increases with the individual oscilla-
tor frequency.

In summary, the transition to synchronization in this last
experiment by reversing the sign of �� is very similar to that
exhibited in Fig. 4. The major difference is that in Fig. 6 the
first onset of antiphase synchronization is anomalous,
whereas in Fig. 4 this first transition is enhanced.

IV. CONCLUSION

Electronic circuits have a long history as experimental
systems to study phenomena in nonlinear dynamics. Espe-
cially Chua oscillators have frequently been used as one of
the simplest systems for the experimental realization of cha-
otic dynamics and synchronization phenomena.30 In this pa-
per the first experimental evidence of anomalous phase syn-
chronization is reported in two diffusively coupled Chua
oscillators. So far anomalous transitions to phase synchroni-
zation have only been observed for the case of in-phase syn-
chronization in a model system.19 In this paper, most notably,
we find an anomalous transition to antiphase both in the
experiment and in the numerical simulation. We also find
several other routes to synchronization, involving sequences
of various synchronization states �in-phase, out-of-phase,
and antiphase synchronization�, which are intersected by de-
synchronization regimes. To the best of our knowledge these

FIG. 7. Individual frequencies �1,2��� as a function of coupling strength � in
the experiments with inverted natural frequency �see Fig. 6�. Left column:
experimental results for the mismatch ��=−130 Hz �dotted curve in Fig.
6�. The necessary condition for the APS as elaborated in the text is satisfied
for ��5E−6. Right column: similar numerical results for ��=−58 Hz
�dotted curve in Fig. 6�. Bottom row: magnified plot showing an enlarge-
ment of the small coupling region.
findings have not been reported earlier.
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Of special interest is the desynchronization regime for
ntermediate coupling �C2
���C1 during the transition
rom antiphase to in-phase, where a phase of coexisting an-
iphase and in-phase states with large fluctuations in the fre-
uency difference is found, together with several topological
hanges in the attractor. This is in contrast to the anomalous
ransition to PS, where the attractor topology of the oscilla-
ors changes very smoothly. The existence of an intermediate
esynchronization regime with coexisting antiphase and in-
hase states has recently been reported in other systems.24,25

coupling threshold is seen for the onset of this large de-
ynchronization. However, no decisive statement can be
ade, at this point, regarding the nature of the shift in the

oupling threshold, which requires more rigorous investiga-
ions.

We have shown that the nature of the transition to PS
anomalous or enhanced� depends on the sign of the natural
requency mismatch, i.e., whether �� is positive or negative.
n principle, the sign of the mismatch should be arbitrary for
wo diffusively coupled oscillators. Nevertheless we can
hange the transition to PS from an anomalous to a usual �or
ven enhanced� transition by reversing the sign of ��, using

1 and R8 as control parameters. We are thus able to control
he synchronization in two coupled Chua circuits, either to
nhance or to inhibit synchrony. Further, by controlling the
ign and amount of the frequency mismatch, we are able to
djust the in-phase state into an antiphase state. All this re-
ects the relevance of the asymmetry of coupling, which
lays a key role in the anomalous transition to phase
ynchronization.20 Further experiments on the effect of cou-
ling asymmetry will be attempted in our future work. Fur-
hermore, our results open the door for strategies of synchro-
ization control. With appropriate selection of system
arameters, the effect of APS may be used either to enhance
r to inhibit PS.

CKNOWLEDGMENTS

S.K.D. is supported by BRNS/DAE Grant No. 2000/34/
3-BRNS. B.B. is supported by the German VW-Stiftung
nd J.K. by DFG Grant No. SFB 555. S.K.D. wishes to ac-
nowledge the support and hospitality extended by the Insti-
ute of Physics, Potsdam University, Germany during his two
rief stays in Potsdam. J.K. acknowledges the support of the
umboldt Foundation and CSIR, India, by the Reciprocity

esearch Award.

wnloaded 30 May 2006 to 141.89.176.133. Redistribution subject to AIP
1A. T. Winfree, The Geometry of Biological Time �Springer, New York,
1980�.

2Y. Kuramoto, Chemical Oscillations, Waves and Turbulence �Springer-
Verlag, Berlin, 1984�.

3A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization—A Unified
Approach to Nonlinear Science �CUP, Cambridge, 2001�.

4J. Kurths, S. Boccaletti, C. Grebogi, and C. H. Lai, Chaos 13, 126 �2003�.
5H. Fujisaka and T. Yamada, Prog. Theor. Phys. 69, 32 �1983�; L. M.
Pecora and T. L. Carroll, Phys. Rev. Lett. 64, 821 �1990�.

6N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel,
Phys. Rev. E 51, 980 �1995�; L. Kocarev and U. Parlitz, Phys. Rev. Lett.
76, 1816 �1996�.

7A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Europhys. Lett. 34, 165
�1996�; M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, Phys. Rev. Lett.
76, 1804 �1996�.

8S. Boccaletti, J. Kurths, G. Osipov, D. L. Valladares, and C. S. Zhou,
Phys. Rep. 366, 1 �2002�.

9V. S. Anischenko and T. E. Vadivasova, Radiotekh. Elektron. �Moscow�
47, 133 �2002�.

10S. Boccaletti, E. Allaria, R. Meucci, and F. T. Arecchi, Phys. Rev. Lett.
89, 194101 �2002�.

11U. Parlitz, L. Junge, W. Lauterborn, and L. Kocarev, Phys. Rev. E 54,
2115 �1996�; T. L. Carroll, ibid. 64, 015201 �2001�; P. K. Roy, S.
Chakraborty, and S. K. Dana, Chaos 13, 342 �2003�.

12C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, Nature �London�
392, 239 �1998�.

13V. Makarenko and R. Llinás, Proc. Natl. Acad. Sci. U.S.A. 95, 15747
�1998�; P. Tass, M. G. Rosenblum, J. Weule, J. Kurths, A. S. Pikovsky, J.
Volkmann, A. Schnitzler, and H.-J. Freund, Phys. Rev. Lett. 81, 3291
�1998�.

14J. Bhattacharya and H. Petsche, Phys. Rev. E 64, 012902 �2001�.
15B. Blasius, A. Huppert, and L. Stone, Nature �London� 399, 354 �1999�;

B. Blasius and L. Stone, Int. J. Bifurcation Chaos Appl. Sci. Eng. 10,
2361 �2000�.

16K. Bar-Eli, Physica D 14, 242 �1985�; P. C. Matthews and S. H. Strogatz,
Phys. Rev. Lett. 65, 1701 �1990�.

17S. K. Han, C. Kurrer, and Y. Kuramoto, Phys. Rev. Lett. 75, 3190 �1995�.
18J. F. Heagy, L. M. Pecora, and T. L Carroll, Phys. Rev. Lett. 74, 4185

�1994�; L. M. Pecora, Phys. Rev. E 58, 347 �1998�.
19E. Montbrió and B. Blasius, Chaos 13, 291 �2003�; B. Blasius, E. Mont-

brió, and J. Kurths, Phys. Rev. E 67, 035204 �2003�.
20B. Blasius, Phys. Rev. E 72, 066216 �2005�.
21J. Bragard, S. Boccaletti, and H. Mancini, Phys. Rev. Lett. 91, 064103

�2003�; J. Bragard, E. Montbrió, C. Mendoza, S. Boccaletti, and B. Bla-
sius, Phys. Rev. E 71, 025201 �2005�.

22D. G. Aronson, G. B. Ermentrout, and N. Kopell, Physica D 41, 403
�1990�.

23D. E. Potsnov, S. K. Han, O. V. Sosnovtseva, and C. S. Kim, J. Diff. Eqns.
10, 115 �2002�.

24O. Popovych, V. Krachkovskyi, and P. A. Tass, in Proceeding of the NDES
2003 �2003�, Vol. 197.

25D. He and L. Stone, Proc. R. Soc. London, Ser. B 270, 1519 �2003�.
26L. O. Chua, M. Komuro, and T. Matsumoto, IEEE Circuits Syst. Mag. 33,

1073 �1986�.
27M. P. Kennedy, IEEE Trans. Circuits Syst., I: Fundam. Theory Appl. 40,

657 �1993�.
28A. S. Elwakil and M. P. Kennedy, IEEE Trans. Circuits Syst., I: Fundam.

Theory Appl. 47, 76 �2000�.
29Y-C. Lai, C. Grebogi, Phys. Rev. Lett. 82, 4803 �1999�.
30L. Pecora and T. Carroll, Nonlinear Dynamics in Circuits �World Scien-

tific, Singapore, 1995�.
 license or copyright, see http://chaos.aip.org/chaos/copyright.jsp


