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Upper bounds in phase synchronous weak coherent chaotic attractors
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Abstract

An approach is presented for coupled chaotic systems with weak coherent motion, from which we estimate the upper bound value for the
absolute phase difference in phase synchronous states. This approach shows that synchronicity in phase implies synchronicity in the time of
events, a characteristic explored to derive an equation to detect phase synchronization, based on the absolute difference between the time of these
events. We demonstrate the potential use of this approach for the phase coherent and the funnel attractor of the Rössler system, as well as for the
spiking/bursting Rulkov map.
c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

This work deals with the phenomenon of phase synchro-
nization (PS) [1,2] in coupled chaotic systems, which describes
interacting systems that have a bounded phase difference, de-
spite the fact that their amplitudes may be uncorrelated. PS was
found in many natural and physical systems [1,2], being ex-
perimentally observed in electronic circuits [3], electrochemi-
cal oscillators [4], Chua’s circuit [5], and spatio-temporal sys-
tems [6]. There is also evidence of PS in communication pro-
cesses in the human brain [7,8] and neural networks [9].

In the case of two coupled systems, PS exists [1] if

|φ1 − qφ2| ≤ %, (1)

where φ1,2 are the phases calculated from a projection of
the attractor onto appropriate subspaces X1,2, in which the
trajectory has coherent properties [1,10]. The rational constant
q [11] is the frequency ratio between the average phase
growing, and % is a finite constant to be determined, bounded
away from zero.
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The purpose of this work is to give an upper bound
value for the absolute phase difference in Eq. (1) in phase
synchronous states, in terms of a defined phase [13]. This
is equivalent to determining an inferior bound value for the
constant %. We show that this minimal value, namely 〈r〉, can
be estimated as the average growing of the phase, calculated
for typical trajectories, in one of the subspaces. Particularly,
〈r〉 = 〈W 〉 × 〈T 〉, where 〈W 〉 is the average angular frequency
associated to a subspace X , and 〈T 〉 is the average returning
time of trajectories in this same subspace, calculated from
the recurrence of events of the chaotic trajectory. Similarly to
periodic oscillating systems, in which it is valid to say that an
angular frequency ω is related to the period T by ω = 2π/T ,
for chaotic systems it is valid to say that 〈W 〉 = 〈r〉/〈T 〉.

In the derivation of the constant 〈r〉, we obtain a series of
inequalities that can be used to check for the existence of PS.
A particular interesting one is suitable for systems where the
only available information is a series of time events. We also
introduce the phase of a chaotic attractor to be given by the
amount of rotation of the tangent vector of the flow.

These results are shown to be valid to coupled chaotic
systems that present weakly coherent attractors. By weakly
coherent attractors we mean, following Ref. [10], attractors in
which it is possible to define a Poincaré section or a threshold
that defines an event, such that for the time between two events
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τ , it is true that |τ − 〈T 〉| < κ , where 〈T 〉 is the average
returning time between two successive events, and κ < 〈T 〉 is a
rather small constant. So, our results are extended to attractors
whose trajectories might not have a clear rotation point, but still
presenting a weak coherent property in the time between events,
e.g. bursting/spiking dynamics.

For illustrating our ideas, we use two coupled Rössler
oscillators in two situations: when they produce a phase
coherent attractor and when they produce the funnel attractor.
We also work with two coupled neuron models from the Rulkov
map [14]. This last example was chosen because we want to
demonstrate that PS can be detected by only knowing the time
at which bursts occur (events).

2. A minimal bound for the constant %

We start by developing some ideas to give a minimum
bound for c in Eq. (1). For simplicity, we eliminate the rational
constant q [11], given by q =

〈W1〉
〈W2〉

, by a changing of variable,
φ2(t)′ = qφ2(t). With a slight abuse of notation, from now on,
we omit the ′ symbol in the phase. Note however that such a
changing of variable does not change the fact that PS exists or
not.

Having two oscillators S1 and S2 that are coupled forming
a chaotic attractor, we define the subspaces X j to be a special
projection in the variables of § j . This projection is such that
the attractor in these subspaces presents the coherent properties
defined in [10], such that one can calculate the phase on them.

Next, we define a time series of events, where events here are
the crossing of the trajectory to a given Poincaré section or the
crossing of one variable to some threshold. Being τ i

j the time
at which the i th event happens in X j , we consider the average
return time, 〈T j 〉, of the subspace X j to be the average of time
intervals T i

j = τ i
j − τ i−1

j between two events in X j , for N
events. So,

〈T j 〉 =

N∑
i=1

T i
j

N
=

τ N
j

N
. (2)

We introduce the phase as the amount of rotation of the
unitary tangent vector, EA j (t). Being | EA j (t + δt) − EA j (t)| a
a small displacement of the phase for the time interval δt ,
calculated on the subspaces X j , and making δt → 0, we arrive
at

φ j (t) =

∫ t

0
| ĖA j |dt. (3)

So, φ j (t) measures how much the tangent vector of the flow,
projected on the subspaces X j , rotates in time. This equation

also suggests that | ĖA j | can be seen as an angular frequency,

more precisely W j = |
d EA j

dt | [15] and the average angular
frequency is simply

〈W j 〉 =
1
T

∫ T

0
Wi dt. (4)
We introduce the quantity r i
1 =

∫ τ i+1
2

τ i
2

W1dt , which is the

evolution of the phase from the time τ i
2 (when the i th event

happens in X2) until the time τ i+1
2 (when the (i + 1)th event

happens in X2). Thus, 〈r1〉 = (
∑N

i=0 r i
1)/N , or in a continuous

form, after the N th event, this average is calculated as 〈r1〉 =∑
i

∫ τ i+1
2

τ i
2

W1dt/N which is equal to

〈r1〉 =

∫ τ N
2

0 W1dt

N
. (5)

Using that, for N → ∞, it is valid to say that τ N
2 u N 〈T1〉, in

Eq. (4), for T = τ N
1 , we have that 〈r1〉 =

1
N 〈T1〉

∫ τ N
2

0 W1dt =

1
〈T1〉

(
1
N

∫ τ N
2

0 W1dt

)
, which using Eq. (5), can be written as

〈W1〉 =
〈r1〉

〈T1〉
. (6)

These calculations can be done for 〈r2〉, however, if PS exists,
i.e. Eq. (1) is satisfied, one should have that 〈W1〉 = 〈W2〉,
〈r1〉 = 〈r2〉, and 〈T1〉 = 〈T2〉. Thus, in Eq. (6) we can use
the index j .
Synchronicity of events: The number of events at a given
time for synchronous oscillators is not always the same, but
can differ by unity. This occurs because the N th event in X1
and X2 may not be simultaneous, resulting in a difference of
unity between the number N1 and N2 of events, in X1 and X2,
respectively. So, we can say that the number of events in PS are
always related by

|N1(t) − N2(t)| ≤ 1. (7)

The inequality in Eq. (7) is another variant for the condition
already used to detect phase synchronization [1]. In that
equation, every time an event occurs, like the crossing of the
trajectory through a threshold, the phase is assumed to grow
2π . And PS is considered to happen if the phase difference is
always smaller than or equal to 2π . Note that Eq. (7) can also
be used to detect synchronous events in maps, in the case an
event can be well specified. As an example, one can observe
the occurrence of local maxima in the trajectory [16].
Synchronicity in the time of events: Using Eq. (2) in Eq. (7),
we arrive at:∣∣∣∣∣ N∑

i=0

(T i
1 − T i

2 )

∣∣∣∣∣ ≤ 〈T1〉. (8)

This equation is related to the weak coherence in the dynamics.
The more phase coherent the attractors are the more the amount
|
∑

i (T i
1 −T i

2 )| approaches to zero. As a consequence, the value
〈T1〉 overestimates the maximum difference in the time intervals
between events. To overcome this, we introduce a physical
parameter, namely γ , which brings us information about the
coherence of a specific system. Thus, we put Eq. (8) as∣∣∣∣∣ N∑

i=0

(T i
1 − T i

2 )

∣∣∣∣∣ ≤ γ 〈T1〉. (9)
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It is important to notice that γ also brings some information
about the projection and about the section in which the events
are defined, once the difference in the time intervals depends on
the projection and on the Poincaré section definition.

Multiplying both sides of Eq. (9) by 〈W1〉, we can relate the
time of events with the averaging growing of the phase:

〈W1〉

∣∣∣∣∣ N∑
i=0

(T i
1 − T i

2 )

∣∣∣∣∣ ≤ γ 〈r1〉. (10)

Synchronicity of the phase: Next, we represent Eq. (1) at the
time the N th event happens in X1 by∣∣∣∣∣N−1∑

i=0

(r i
1 − r i

2) + ξ(N )

∣∣∣∣∣ ≤ %, (11)

where

ξ(N ) =

∫ τ N
1

τ N−1
2

W1dt −

∫ τ N
1

τ N−1
1

W2dt. (12)

The term
∑N−1

i=0 (r i
1 − r i

2) represents the phase in X1 at the
moment the (N − 1)th event happens in X2 minus the phase in
X2 at the moment the (N − 1)th event happens in X1. The term
ξ(N ) represents the difference between the evolution of the
phase from the event N − 1 in X2 till the time at which the N th
event happens at the subspace X1, minus the evolution of the
phase at the subspaceX2 from the (N−1)th event inX1 until the
time at which the event N happens in X1. This term establishes
a bridge between the continuous-time formulation of the phase
difference [Eq. (1)] and the phase difference between events.

From Eq. (10), one sees that the smaller (bigger) is the time
difference |T i

1 − T i
2 | the more (the less) synchronous is the

system, which means that the phase difference |r i
1 − r i

2| also
gets smaller (bigger). So, it is suggestive to consider that the
difference (r i

1 − r i
2) is linearly related to (T i

1 − T i
2 ) as

(r i
1 − r i

2) = β〈W1〉(T i
1 − T i

2 ) + σ(i), (13)

with β being a constant, and σ(i) brings non-linear terms.
To obtain the value of the constant β in Eq. (13), we imagine

that PS is about to be lost, by a small parameter change, and
so |T N

2 − T N
1 | approaches γ 〈T1〉. Analogously, at this situation,

the phase difference |r i
1 − r i

2| has the ability to grow one typical
cycle, i.e., 〈r1〉, and therefore the term σ(i) in Eq. (13) becomes
very small and can be neglected. Thus, from Eq. (13) we have
that β〈W1〉γ 〈T1〉 ≈ 〈r1〉, and we arrive at β ≈

1
γ

. That means
that the larger is the time difference between two events (γ ),
the smaller is the linear growing of the phase difference (β). In
other words, the more non-coherent (coherent) the two coupled
oscillators are, the smaller (larger) is the linear growing of the
phase difference.

For coherent attractors, whose trajectories spiral around an
equilibrium point, β is approximately 2. This result is discussed
in the appendices. In Appendix A, we discuss how to construct
maps using the time events τ i

j , and in Appendix B, we explain
how to use these maps in order to obtain that β ≈ 2.
Knowing the constant β, we put Eq. (13) in Eq. (11), and we
get that∣∣∣∣∣β〈W1〉

N−1∑
i=0

(T i
1 − T i

2 ) +

N−1∑
i=0

σ(i) + ξ(N )

∣∣∣∣∣ ≤ %. (14)

Using the triangular inequality and the fact that % at this
moment is considered to be an arbitrary constant, with a
threshold (minimal) value, we write that∣∣∣∣∣β〈W1〉

N−1∑
i=0

(T i
1 − T i

2 )

∣∣∣∣∣ +

∣∣∣∣∣N−1∑
i=0

σ(i) + ξ(N )

∣∣∣∣∣ ≤ %. (15)

Eq. (15) can be written as |
∑N−1

i=0 σ(i) + ξ(N )| ≤ % −

|β〈W1〉
∑N−1

i=0 (T i
1 − T i

2 )|. At a specific event, may the term
|
∑N−1

i=0 σ(i) + ξ(N )| reach the permitted maximum value; this
implies that the term |β〈W1〉

∑N−1
i=0 (T i

1 −T i
2 )| gets close to zero.

At this situation, |
∑N−1

i=0 σ(i) + ξ(N )| ≤ %. Using the same
arguments we arrive at |β〈W1〉

∑N−1
i=0 (T i

1 − T i
2 )| ≤ %, which

implies that 〈r1〉 ≤ %. Since |
∑N−1

i=0 σ(i) + max ξ(N )| ≤ % we
also have straightforwardly that |

∑N−1
i=0 σ(i)| ≤ %.

These results show that the upper bound for the phase
difference is given by the constant 〈r1〉 = 〈W 〉 × 〈T 〉. This
means that the arbitrary constant % in Eq. (1) is always greater
than or equal to 〈r1〉, in other words, 〈r1〉 is our threshold. The
physical meaning is obvious. If 〈r1〉 is the bound for phase
difference, given a number κ ≥ 1, the value κ〈r1〉 is also a
bound, but it is not a minimal one. Thus, we fix the constant %

as

% = 〈r1〉. (16)

From Eqs. (15) and (1), we have the following inequalities∣∣∣∣∣N−1∑
i=0

σ(i)

∣∣∣∣∣ ≤ 〈r1〉 (17)

β〈W1〉

∣∣∣∣∣N−1∑
i=0

(T i
1 − T i

2 )

∣∣∣∣∣ ≤ 〈r1〉 (18)

∣∣∣∣∣N−1∑
i=0

(r i
1 − r i

2)

∣∣∣∣∣ ≤ 〈r1〉 (19)

|φ1(t) − φ2(t)| ≤ 〈r1〉. (20)

If one wants to use the inequality in Eq. (20) [or Eq. (19)]
to detect phase synchronization, it is required that the phase
is an available information. For that, one needs to have
access to a continuous measuring of at least one variable. The
inconvenience of using this approach becomes evident when
either one has an experimental system where the only available
information is a time series of events, like the dripping faucet
experiment [18], or the signal is so corrupted by noise that one
can really only measure spikes in neurons [19]. In these two
cases one should use the inequality in Eq. (9) [or Eq. (18)].
The only inconvenience in the use of this inequality is that one
should be careful with the type of event chosen. If the specified
event is the spiking times, one might not see PS in the bursting
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Fig. 1. The fluctuation |
∑N

i=0(T i
1 − T i

2 )|, in Eq. (9). Note that |
∑N

i=0(T i
1 −

T i
2 )| ≤ 0.5〈T1〉. δα = 0.001 and ε = 0.01. The phase is calculated from

Eq. (3).

time (and vice versa). In detecting PS in large networks, it might
be computationally costly to check for all the phase difference
or event time difference among each pair of subsystems. In this
case, one could check the validation of inequality in Eq. (7),
but having in mind that such a condition is only a necessary
condition for PS.

3. Phase synchronization in the two coupled Rössler
oscillators

To illustrate our approach we consider two non-identical
coupled Rössler oscillators, given by

ẋ1,2 = −α1,2 y1,2 − z1,2 + ε[x2,1 − x1,2]

ẏ1,2 = α1,2x1,2 + ay1,2

ż1,2 = b + z1,2(x1,2 − d),

(21)

with α1 = 1, and α2 = α1 + δα. First, the constants a = 0.15,
b = 0.2, and d = 10 are chosen such that we have a chaotic
attractor in a phase coherent regime, whose attractor projections
can be seen in Fig. A.1. The subspace where the phase is
computed is given by X1 = (x1, y1) and X2 = (x2, y2). The
time series that defines the events in X j , are defined as follows.
τ i

1 is constructed measuring the time the trajectory crosses the
plane y2 = 0 in X2; τ i

2 is constructed measuring the time the
trajectory crosses the plane y1 = 0 in X1. In Fig. 1, we show
the coupled Rössler oscillator for the parameters δα = 0.001
and ε = 0.01. We show that the inequality in Eq. (9) is always
satisfied (for 105 pairs of events), i.e., |

∑N
i=0(T i

1 − T i
2 )| ≤

〈T1〉/2, with 〈T1〉/2 = 3.0353, and therefore, there is PS.
In Fig. 2(A), we show that the inequalities in Eqs. (17), (19)

and (20) are satisfied and therefore, there is PS. In (A), we show
the phase difference at the time the N th event happens in both
systems, i.e. the term

∑N
i=0(r

i
1 − r i

2) in Eq. (11). Note that the
time that the N th event happens in X1 is different from the time
the N th event happens in X2. In (B), we show ξ(N ) in Eq. (12),
Fig. 2. In (A), we show the phase difference at the time the N th event
happens in both subsystems. In (B) we show ξ(N ), and in (C), we show
the phase difference at the time that the N th event happens in X1. So, the
number of events in X2, N2, can assume either one of the following values
(N − 1, N , N + 1). δα = 0.001 or ε = 0.01. The phase is calculated from
Eq. (3).

Fig. 3. The variable (r i
1 − r i

2) versus 〈W1〉(T i
1 − T i

2 ). We find that r i
1 − r i

2 '

β〈W1〉(T i
1 − T i

2 ), with β = 2.0512(3).

and in (C), we show the phase difference, at the time that the
N th event happens in X1. Note that the phase difference in (C)
is just the phase difference for the same number of events [in
(A)] plus the term ξ(N ) [in (B)].

Then, we show in Fig. 3 that the linear hypothesis between
(r i

1 − r i
2) and 〈W1〉(T i

1 − T i
2 ) done in Eq. (13) stands and

β = 2.0512 ± 0.0003. If PS is not present, such a linear scale
is not anymore found for the system considered.
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Fig. 4. In (A), we show the quantity
∑

σ in Eq. (17) for a situation when PS
exists. As we decrease the coupling, Eq. (20) is not anymore satisfied as shown
in (B), as well as Eq. (17), as shown in (C). In (C) we have made a zoom in of
the vertical axis. In (A), δα = 0.001 and ε = 0.01 and in (B)–(C), δα = 0.001
and ε = 0.000001.

In Fig. 4(A), we show the quantity σ in Eq. (17) for a
situation that PS exists. As we decrease the coupling, Eq. (20)
is not anymore satisfied as shown in (B), as well as, Eq. (17). In
(C) we make a zoom in of the vertical axis. Note the different
nature of the fluctuations of the phase difference in (B) and the
term

∑
σ in Eq. (17).

In order to compare the phase as defined in Eq. (3) (for
δα = 0.001 and ε = 0.01), and the phase as defined in [2],
e.g. θ = tg(y/x), we compare the function 〈r j 〉, as calculated
for both definitions. For the phase, as defined in Eq. (3), we
arrive at 〈r j 〉 = 6.2984 and so, 〈r j 〉 > 2π . Other quantities are
〈W j 〉 = 1.0375, and 〈T j 〉 = 6.07097. On the other hand, the
phase as defined in [2] is a function that grows on average 2π

each time the trajectory crosses some Poincaré section, which
gives 〈r j 〉 = 2π . So, the phase definitions arrive at two different
quantities, but Eq. (20) is valid in order to detect PS and
Eq. (6) is valid to measure the average angular frequency of
the attractor, using both phase definitions.

To illustrate the generality of the phase definition in Eq. (3)
in order to detect the phenomena of PS also in non-coherent
attractors, we consider Eqs. (21) with the following set of
parameters, a = 0.3, b = 0.4, d = 7.5, such that we
have the funnel attractor shown in Fig. 5(A). This attractor
has a non-coherent phase character [9,10]. For a parameter
mismatch of δα = 0.0002, and for a null coupling, ε = 0,
both Rössler oscillators (presenting the funnel attractor) are
not phase synchronized as one can check in Fig. 6(A), which
shows the absolute discrete phase difference in Eq. (19). At this
situation, one has different angular frequencies 〈W1〉 = 1.2763
and 〈W1〉 = 1.2994, with the angular frequencies calculated
from Eq. (4).
Fig. 5. Chaotic attractors projected on the variables x1 and y1. (A) The
coupling is null and therefore, there is no PS. Here one sees the non-coherent
funnel attractor. (B) The coupling induces PS, creating a coherent dynamics.

Fig. 6. Discrete phase difference |
∑N−1

i=0 (r i
1 − r i

2)| for no coupling (A) in
which there is no PS and for a coupling ε = 0.00535 (B) responsible to induce
PS.

As we introduce the coupling ε = 0.00535, the oscillators
present PS with a weak coherent motion [see Figs. 5(B)
and 6(B)], and as it should be expected, with equal angular
frequencies 〈W1〉 = 1.4785 and 〈W1〉 = 1.4785, calculated
with Eq. (4), i.e., using the phase as defined in Eq. (3).
At the present situation, the attractor has a weak coherent
character, and therefore, it is possible to measure the average
time of recurrence, which is 〈T j 〉 = 8.4992 . . .. Since 〈r j 〉 =

12.5667 . . ., one can check that indeed, Eq. (6) is valid.

4. Phase synchronization in two coupled neurons

Now, we give an example for the detection of PS without
knowledge of the state equations, but instead only using a
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Fig. 7. A sample of the variables x1(n) and x2(n) from the subspaces that
correspond to both neurons, for a situation where there is PS, for ε = 0.03
(A), and for a situation where there is not PS, for ε = 0.001 (B). In (A), Eq. (9)
is satisfied, and in (B) it is not. In (A), we show three bursts, which are basically
a sequence of spiking.

time series of bursting events. We consider two non-identical
coupled neurons described by the Rulkov map

x j (n + 1) = f [x j (n), y j (n) + β j (n)] (22)

y j (n + 1) = y j (n) − θ(x j (n) + 1) + θσ j + θβ j (n), (23)

which produces a chaotic attractor, for θ = 0.001, α2 = 5,
σ1 = 0.240, and σ2 = 0.241. The subspaces are defined as
X j = (x j , y j ). β1,2(n) = g[x2,1(n) − x1,2(n)]. The function f
is given by

f = α j/[1 − x j (n)] + y j (n), x ≤ 0

f = α j + y j (n), 0 < x < α j (n) + y

f = −1, x ≥ α + y j (n).

(24)

The control parameters are α1 and g, with |α1 − α2| being the
parameter mismatch and g the coupling amplitude (cf. [14]).
The time at which events occur is defined by measuring the time
instants in which the variable x j , of subsystem X j , is equal to
x j = −1.2 (the event is the occurrence of a burst) [20], and N j
is the number of bursts of the subsystem X j . In this example,
PS exists if Eq. (9) is satisfied, which also means that Eq. (7) is
satisfied.

In Fig. 7, we show the variables x1(n) and x2(n) for a
situation where there is PS (A), and for a situation where there
is not PS (B). Note that in (A), although the neurons are phase
synchronized, the difference between the number of bursts in
the variable x1(n) minus the number of bursts in the variable
x2(n) might be different to zero (for a short moment), as the
hypothesis done in Eq. (7). In (A), we also represent by the
Fig. 8. In (A)–(B), we show the absolute difference between the time of the
N th burst, in both subspaces (that represent the two neurons). In (A), Eq. (9) is
satisfied with 〈T1〉 = 259.028 and, in (B), Eq. (9) is not satisfied (there is not
PS). For (A) and (C), α1 = 4.99 and ε = 0.03. For (B) and (D), α1 = 4.99 and
ε = 0.001.

dashed line the threshold, x j = −1.2, from which the events
are specified.

In Fig. 8(A)–(B), we show the absolute difference between
the time of the N th burst, in both neurons. In (A), Eq.
(9) is satisfied (there is PS) with 〈T1〉 = 259.028, and
therefore 0.5〈T1〉 = 124.5014, much bigger than the maximum
fluctuation in (A). In (B), there is no PS. In (C) and (D), we
show a projection of the attractor on the variables (x1, y1), for
the parameters in (A) and (B) respectively.

Note that although the attractor of these neurons does
not have the dynamics of a limit cycle, presenting a very
complicated geometry in the phase space (as one can see in
Fig. 8), it is still possible to well define events as well as the
average period of the spiking times by the use of the threshold
shown in Fig. 7, a characteristic that defines this attractor to be
of the weak coherent type.

5. Conclusions

We estimate the upper bound value of the absolute phase
difference between two coupled chaotic systems, in order to
verify the existence of phase synchronization. Our approach
shows that this bound value 〈r〉 is given by the average
evolution of the phase, calculated in a subspace of the attractor,
for a series of pairs of events in this same subspace. These
events can be the number of local maxima or minima in
the trajectory, the crossing of the trajectory to some Poincaré
section, or the occurrence of a burst/spike.

The advantage of looking at the phase difference at these
discrete times, instead of looking at the continuous phase
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difference, is that this approach allows us to detect phase
synchronization by looking for a bounded time difference
between events. This is helpful for chaotic systems from which
there is no available information about the state equations, and
therefore, this work is helpful in the experimental detection of
PS in chaotic oscillators, in the laboratory or by data analyses.

In searching for a bound value of the absolute phase
difference, we have shown that the larger is the time difference
between two events (proportional to γ ), the smaller is the
linear growing of the phase difference (proportional β). In other
words, the more non-coherent (coherent) two coupled chaotic
oscillators are, the smaller (larger) is the linear growing of the
phase difference.

All our results are extended to coupled chaotic systems that
present weak coherent properties, i.e., it is possible to define an
average time between two events 〈T 〉, such that for each time
interval between two events τ , it is true that |τ −〈T 〉| < κ , with
κ being a small constant.
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Appendix A. Constructing PS-sets from the event time
series

The event time series τ i
j can be used to construct maps of the

attractor, whose geometrical properties states whether there is
PS. These maps are constructed following simple rules:

• At the time τ i
2, a point of the trajectory in X1 is collected.

• At the time τ i
1, a point of the trajectory in X2 is collected.

So, as a result of measuring the trajectories in X1 (resp. X2)
at the times τ i

2 (resp. τ i
1) we have a discrete set of points D1

(resp. D2).
In PS, these sets D j will be localized, not spreading out to

the whole attractor. In this caseD j is called a PS-set. The theory
for characterizing and constructing these sets is presented
in [21]. In short, what happens is the following: when phase
synchronization occurs, the time difference between events in
both subspaces becomes smaller. As a consequence, the points
in the D j sets are more localized. For a non-synchronous phase
dynamics, the setsD j spreads overX j . Thus, detecting a PS-set
offers an alternative way of detecting PS [22].

In the following, we give examples of the PS-sets in the
coupled Rössler oscillators and in the Rulkov map, that mimic
the neuronal dynamics presenting spiking/bursting behavior.

A.1. PS-sets for the coupled Rössler oscillators

The time series that defines the events in X j are defined as
follows. τ i

1 is obtained measuring the time the trajectory crosses
the plane y2 = 0 in X2. The discrete set of points is called
D2. τ i

2 is obtained measuring the time the trajectory crosses the
plane y1 = 0 in X1. The discrete set of points is called D1.
Fig. A.1. Bidimensional projection of the attractor (gray) and of the projections
D j of the PS-set (black) on the subspacesX j . The PS-set projectionD2, in (A)
and D1, in (B). δα = 0.001 and ε = 0.01.

In Fig. A.1, we show the coupled Rössler oscillators for a
situation where PS exists. In this figure, we show bidimensional
projections on the variables of subsystem X2 (A) and X1 (B). In
gray, we show the attractor projection, and in black, projections
of the PS-set D2 (A) and D1 (B). Note that the PS-sets, do not
visit everywhere X j , rather are localized structures.

A.2. PS-sets for the coupled Rulkov map

In the neuronal dynamics it is not possible to define a
Poincaré section, due to the non-coherence of the attractor.
However, it is possible to define an event where the dynamics is
weak coherent. This event is the ending or the beginning of the
bursts, and in here we choose the beginning of the burst. Hence,
we construct our time series by measuring the crossing of the
trajectory with the threshold, x j = −1.2.

In Fig. A.2 we show a projection of the attractor on the
variables (x1, y1), in black points, and the subsets D j , in gray
points. In (A), where we have phase synchronization the set
D1 does not fulfill the whole attractor, but is rather localized,
whereas in (B), where PS is not present the set D1 spreads over
the attractor X1.

Appendix B. Estimation of β for coherent coupled oscilla-
tors

In this section, we explain why in coherent attractors,
e.g. Rössler-type, the constant β is approximately 2.

That is so, because we compare the phase difference at
the time events occurrence. Let us just remember that we
are measuring the phase in one subsystem at the times that
events in the other subsystem happen. Hence, at the time events
happens in X1 [resp. X2], we collect points in X2 [resp. X1],
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Fig. A.2. In (A), Eq. (9) is satisfied (there is PS), with 〈T j 〉 = 259.028 and, in
(B), Eq. (9) is not satisfied (there is not PS). While in (A) the setD1 (gray) is a
PS-set, in (B) there is not a PS-set. In (A), α1 = 4.99 and ε = 0.03 and in (B)
α1 = 4.99 and ε = 0.001.

Fig. B.1. Pictorial visualization of a situation where PS exists. We represent by
the full line in (A) the trajectory in the subspace X1, and (B) the trajectory in
the subspace X2. The filled regions in (A) [(B)] represent trajectory positions
at the time the N th event happens in X2 [X1] for a situation when PS exists.
An event is considered to happen when the trajectory crosses the dotted line.

obtaining the gray filled region in Fig. B.1(B) [resp. (A)], which
represents a PS-set.

In particular, when the N th event happens in X2, the
trajectory on X1 is indicated by the cross in (A). At this time,
τ N

2 , we record the phase in X1, namely φ1(τ
N
2 ). As the time

goes on, the trajectory (in an counter-clockwise direction of
rotation) in X reaches the event line in X1 at the time τ N

1 . At
this time, the trajectory in X2 is at the cross in (B), and the
phase is φ2(τ

N
1 ). Since these are typical events, we can say that

|τ N
2 − τ N

1 | ≈ 〈T 〉/4, for the particular case represented in this
figure. That is so because the time difference is approximately
given by the time that the trajectory in X1 spends from the cross
in (A) till the event line, which is approximately 1/4 of the
average period 〈T 〉.

The phase difference, at which the same number N of
events happen, is |φ1(τ

N
1 ) − φ1(τ

N
2 )| ≈ 〈r〉/2, since this

phase difference is basically given by the displacement of the
phase in X1 from the cross in (A) till the event line, plus the
displacement of the phase inX2 from the event line till the cross
in (B). But that is approximately given by 1/2 of the average
increasing of the phase 〈r〉, which was shown to be equal to
〈W 〉 × 〈T 〉. Therefore, |φ1(τ

N
1 ) − φ1(τ

N
2 )| ≈ 2 × |τ N

2 − τ N
1 |,

which consequently leads to β ≈ 2.
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