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We study pre-bifurcation noise amplification in nonlinear oscillators subject to 

bifurcations of spontaneous symmetry breaking which are manifested in the doubling of 
stable equilibrium states. Our theoretical estimates of both the linear growth and the nonlinear 
saturation of the bifurcations are in good agreement with our results from numerical 
simulations. We show that in the saturation mode, the fluctuation variance 2

x  is proportional 

to the standard deviation of the external noise  , whereas in the linear mode, 2
x  is 

proportional to the noise variance 2
 . It is demonstrated that the phenomenon of pre-

bifurcation noise amplification is more pronounced in the case of a slow transition through the 
bifurcation point. The amplification of fluctuations in this case makes it easier to form a 
symmetric probability of the final equilibrium states. In contrast, for a fast transition through 
the bifurcation point, the effect of amplification is much less pronounced. Under backward 
and forward passages through the bifurcation point, a loop of noise-dependent hysteresis 
emerges here. We find that for a fast transition of the nonlinear oscillator through the 
bifurcation point, the probability symmetry of the final equilibrium states is destroyed. 

1. INTRODUCTION 

In nonlinear systems, pre-generation noise amplification is commonly observed at 
the threshold of self-sustained oscillations. This was shown for both radiophysical and optical 
self-sustained oscillating systems [1]. Noise amplification near the generation threshold is 
conditioned by the decrease of losses in the oscillator casting the real part of one of Lyapunov 
indexes of the system from negative to positive values. The initial state of the system loses its 
stability and the amplified pre-generation noise turns into an effective push for self-sustained 
oscillations. 

Pre-generation of noise amplification is a particular case of a more general 
phenomenon, the pre-bifurcation amplification of noise and of weak signals due to the 
decrease  (down to zero at the critical point) of the damping strength [2]-[5]. The linear theory 
developed in [2-5] predicts unlimited growth of fluctuations when approaching the bifurcation 
point.  

Nonlinear analysis of pre-bifurcation noise amplification was performed in [6] for 
the case of period doubling bifurcations in the logistics map. In this case, similarly to the 
general one, the Lyapunov exponent changes from negative to positive. However in general, 
the change of the sign of the real part Re of Lyapunov exponent  now leads not to emerging 
generation of oscillations but to the transition of the system from the unstable state to one of 
the two possible stable states. 

The aim of this work is to study this phenomenon of pre-bifurcation noise 
amplification in a nonlinear oscillator subject to a bifurcation of spontaneous symmetry 
breaking. Such a bifurcation is known to lead to two new stable states instead of one stable 
equilibrium state which loses its stability. 
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In Section 2, we describe the model of a nonlinear oscillator where doubling of stable 
equilibrium states may take place. An example of such a system are one-dimensional cross-
oscillations of a rod squeezed along its axis (see Sec.2). In Sections 3-5, we present analytical 
and numerical estimations of the fluctuation level under fast and slow changes of a control 
parameter. Section 6 presents results of numerical modeling. Section 7 describes the 
phenomenon of noise-dependent hysteresis in the system under consideration. Finally in 
Section 8, it is shown that under fast bifurcation transitions in the nonlinear oscillator, the 
probability symmetry of the stable final states is destroyed. 

2. DYNAMIC MODEL 

We start by considering oscillations in a nonlinear oscillator described by the second-
order equation: 
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Here  is damping strength, (t) is the noise forcing the system, and U(x) is the potential 
energy. 

As is well-known, the number of minima of the potential energy profile U(x) in the 
nonlinear oscillator determines the number of equilibrium states [7]. Under the bifurcation of 
spontaneous symmetry breaking, a transition from a one-minimum potential  to a two-
minimum one takes place. This is accompanied by a doubling of the number of the stable 
states. The potential 

     ,)( 24 BxAxxU       (2) 
corresponds to bifurcation of spontaneous symmetry breaking. For At B>0, it has one 
minimum Umin=0 (at x=0), and for B<0, there are two equal negative minima 

ABxU 4)( 2
min   located at ABx 2/  with the maximum 0max U  in between at 

x=0.  
Assume parameter B to be dependent on time, B=B(t), taking positive values B>0 for 

t<t* and negative ones for t>t*. Such behavior is demonstrated, e. g. by the function 

     ),()( *2
0 tttB   arctg     (3) 

as shown in Fig. 1. The coefficient   characterizes here the speed of the change of the 
control parameter. 

For a physical prototype of the system, described by potential (2), we can take one-
dimensional cross-oscillations (along axis x) of a flat rod (ruler) under the influence of a 
growing in time squeezing force along its axis. At a critical squeeze, when B turns zero, the 
rod undergoes a bifurcation of spontaneous symmetry breaking and takes a curved shape 
corresponding to one of the two stable states, x+ or x- [7]. 

The goal of this paper is to determine the variance 22])([ xxtx   of the response 

of )(tx  to the fluctuation force (t) (the x  is mean value equal to the stationary value) and in 
that way we describe both the growth and nonlinear saturation of the pre-bifurcation noise 
amplification in shortly before the bifurcation.  

We will assume that the fluctuation force (t) is a stationary random process with the  
auto-correlation function  

   ),()()( 2 tttt       (4) 

where 2
  is variance and )(  is auto-correlation function. We define the correlation time   

  as the time when the autocorrelation function goes down to the value 0.5. 
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Below we will restrict shortly-correlated processes, i. g.  is small compared to the period of 
the free oscillations 02   of the unperturbed oscillations, so that   20  . Hence, the 

noise is similar white noise. 

3. ESTIMATION OF FLUCTUATIONS UNDER SLOW CHANGE OF SYSTEM 
PARAMETERS: WKB APPROXIMATION  

Under a low amplitude of the oscillations and for B(t) > 0, eq. (1) can be linearized  
    ),()(2 2 txtxx        (5) 

where )()( tBt  . For a slow enough decrease of B(t), i. e. when  <<0, x(t) is fairly well 

described by the Wentzel-Kramers-Brillouin approximation (WKB):  
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It is easy to apply the same approximation to the Green function of eq. (5): 
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 Using the Green function (7), the solution of the heterogeneous linear equation (5) can 
be written as 
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and the variance  )(22 txx  as 
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For shortly-correlated noise (4) and the Green function (7), this expression takes the 
form 
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Substituting for ),(sin 2 ttg   its mean value 1/2 , we get the estimate 
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where 1/(t) denotes  the integral  
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representing the value )'(1 t  time-averaged with the weight )]'(exp[ tt  . 
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It is worth mentioning that for a constant frequency 0  , the expression (11) 

turns into the well known expression for steady fluctuations of the linear oscillator under 
shortly-correlated fluctuation forcing (t) [1] 

     .
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      (13) 

When approaching the bifurcation point t=t*, where B(t) turns to zero,  linear 
estimate (11) describes a growing fluctuation variance reflecting a pre-bifurcation 
amplification of the noise. The solid line in Fig. 3 represents this fluctuation growth. The 
values 1/(t) and 1/(t) from (11) go to infinity for t t*. The linear estimate (11) follows 
the same path, as is shown in Fig. 3 by dash-and-dots. Obviously, the linear estimate (11) 
based on the VKB approximation is not applicable in the vicinity of the bifurcation point. 
However, we will demonstrate in the next section, that for t t* , it is possible to obtain a 
nonlinear estimate for the variance 2

x and will show that it takes the finite values even in the 

bifurcation point.  
A peculiarity of the bifurcation scenario consists in the fact, that while approaching 

the point of bifurcation, the real part of the Lyapunov exponents  = Re do not go down to 
zero as for the Landau-Hopf bifurcation and the period doubling bifurcation. That is why the 
fluctuation increase here is not related to loss decrease. Instead, we have a transformation of a 
pair of conjugate complex exponents 1,2 = - i into a pair of real exponents, one of which 
is positive. As a result, the pre-bifurcation noise amplification is now connected with the 
decrease of the frequency  = Im, because for 0, the amplitude of the free oscillations 

grows as )(1 t . 

4. NONLINEAR ESTIMATIONS OF FLUCTUATION INTENSITY IN THE 
VICINITY OF BIFURCATION POINT  

As discussed above, expression (11) based on linear theory loses its validity in the 
vicinity of the bifurcation point. This occurs due to nonlinear effects arising under a infinite 
growth of the fluctuations. Nonlinear effects can be neglected as far as the fourth-power term 
in (2) is small compared to the second-order term: 

   24 )( xtBxA .     (14) 

Supposing the fluctuations  and x are Gaussian, for estimations we assume 
     4224 33 xxx   

and then re-write inequality (14) as 
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If we also assume, that the characteristic oscillation attenuation time 1/  is less than the 
characteristic change time 1/  of the frequency (t), e. g.  > ,  then from eq. (12), we get 
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Then eq. (15) takes the form  
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From (17), we infer the estimate  
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for a permitted distance to the point of bifurcation, and from (11) together  with (16), estimate 

    max
2
x 
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
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for the maximum fluctuation intensity.  Therefore, for B<Bmin, the linear effects of fluctuation 
growth are replaced by nonlinear saturation to be reached at fluctuation intensity max

2
x . A 

horizontal line in Fig. 2 denotes value max
2
x . A similar saturation of the fluctuation intensity 

is found for period doubling bifurcations as well [6]. A general approach for estimating the 
saturation level is discussed in [8]. 

It is useful to introduce the pre-bifurcation noise amplification factor K as the ratio of 

max
2
x  to the fluctuation intensity (13) at =0: 
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This value indicates how many times the fluctuation intensity in the saturation zone is greater 
than the stationary fluctuation intensity of the oscillator.  

The phenomenon of pre-bifurcation increase of fluctuation intensity is accompanied 
by another phenomenon - pre-bifurcation correlation time rise. The latter also experiences 
saturation in the vicinity of the bifurcation point. In fact, one can speak about pre-bifurcation 
rise and subsequent saturation of correlation time. This phenomenon is found for period 
doubling bifurcations [9]. It is noteworthy, that the phenomenon of pre-bifurcation correlation 
time rise has a general nature. It is as well observed in the nonlinear oscillator subject to 
bifurcations of spontaneous symmetry breaking and described in the present paper. 

This approach looks to be prospective for analysis of different nonlinear geophysical 
systems in which a period-doubling bifurcations and a bifurcation of spontaneous symmetry 
breaking take place. Such a system is, for example, the Kuroshio Current System [10]. 

5. FLUCTUATIONS UNDER A VERY FAST CHANGE OF THE OSCILLATOR 
PARAMETERS 

Above we considered fluctuations for rather slow changes (<) of the oscillator 
parameters. At a fast passage through bifurcation point, that is at  > , one may expect some 
decrease of 2

max  in comparison to the case  < . 
The trend to a smaller 2

max  with growing speed  of the transition through the 

bifurcation point can be illustrated by the extreme case  , when for t < t*, B(t) is constant 
and equals 2

0 , while for t > t* , it is constant as well but equals - 2
0 . In this case fluctuation 

intensity at t < t* is constant and equals 2
0 , so that the factor of the fluctuation amplification 

yields : K=1. 
Naturally, for t > t* ,  we will observe an exponential growth of the fluctuations due to 

a stability loss of the equilibrium state x=0, but this will have no effect on the  fluctuations for 
t < t*. 

6. NUMERICAL SIMULATIONS 

The nonlinear oscillator described above was numerically tested for A=0.5, and 
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values of B ranging from 1000 B  to 810fB , that is almost reaching zero. Changes of В 

were slow enough (quasi-stationary mode).  The damping index  was taken equal to 0.1. So, 
to satisfy the quasi-stationary requirement, we needed characteristic change time of В to be 
small compared to 0.1.  

The specified range of parameter B allows to determine the fluctuation variance both 
in the immediate vicinity of the bifurcation point Bc=0 and far away from it (let us remind, 
that far from the bifurcation point, each value of B corresponds to the oscillation frequency 

B0 ). For B>0, when the system has only one stable solution (see bifurcation diagram in 

Fig. 3), this stable point 0)0( x was taken as the initial value, and the initial value of the 
derivative )0('x  was taken equal to 0. 

A random number generator produced normally distributed values of )(t  with zero 

mean, 0)( t , and a mean square deviation   ranging from 10-6 to 10-1. The auto-

correlation function of the random process has characteristic time   in the interval from 10-2 

to 10-3, being small compared to 
0

2




. In this case, the results do not depend on the shape of 

the auto-correlation function  ; as it must be for processes close to white noise. The use of 

other random number generators producing, for example, uniformly distributed values of 
)(t , gave results qualitatively similar to those obtained for normally distributed noise. 

Numerical solution for (5) was obtained using a fourth-order Runge-Kutta method with a 
fixed step.  

Results of the numerical simulations are presented in Fig. 4, where crosses show the 
dependence of the fluctuation variance 2

x  on B. We used a slow change of the parameter B 

(quasi-stationary mode) and fluctuation variance 2
 =10-8. The dash-and-dot line corresponds 

to the fluctuation variance 2
0  estimated in the linear mode (13) describing a fluctuation 

growth in the direction to the bifurcation threshold. The figure shows that numerical results 
correspond well the linear estimate for В > Вmin, which is in line with (18). With a closer 
approach to the bifurcation point B=0, the fluctuation variance reaches saturation at 2

max  

marked by a horizontal dashed line obtained from the estimate (19). 
For the considered quasi-stationary mode, at noise variance 82 10 , the 

fluctuation amplification factor maxK  (20) was 1.55106. This value agrees by magnitude with 

the theoretical estimate 6
max 1017.6 teorK . 

The desribed results  are in qualitative agreement with data obtained earlier for 
period doubling bifurcation [6]: in both cases, the fluctuation mean square 2

x  is proportional 

to the mean square noise deviation  , whereas the amplification factor maxK  is inversely 

proportional to  . 

7. NOISE-DEPENDENT HYSTERESIS IN THE VICINITY OF THE BIFURCATION 
POINT  

Next we study the phenomenon of noise-dependent hysteresis in our system. Such a  
hysteresis occurs when after passing through the bifurcation point, the system for a 
considerable time remains on the unstable branch and only after some time makes a rather 
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quick transition to another stable state [11]- [12]. The higher is the control parameter change 
speed, the more distinct is the hysteretic phenomenon. 

In a quasi-stationary mode, when the parameter В changes slowly, the bifurcation in 
the system occurs at the critical value В = В*= 0. Under a fast change of В, bifurcation of 
stable state doubling happens only some time after the critical value B*=0 is passed, the delay 
time being dependent on the speed of change of the parameter β. 

Fig. 5, а presents results of numerical simulations of bifurcation transition in the 
nonlinear oscillator when В varies via eq. (3). For illustrative purposes, the Fig. 5 combines 
the bifurcation diagram of the model, that is stable for constant B, but shows a hysteresis of 
x(B) for varying B. With the change of B, the system having passed the value B=B*, still 
resides for some time in the vicinity of the unstable branch (this time depends considerably on 
speed β), and only after that switches to one of the two stable states of the equilibrium. At a 
high transition speed β=300 (plot 3), delay time 3t  is considerably greater than delay time 

2t  at β=0.3 (curve 2) and delay time 1t  under a very slow transition with the speed β=0.03 
(plot 1).  

Under both forward and backward transitions through the bifurcation point, the 
system is known to slow down in the vicinity of the former stable points. This delay 
phenomenon causes the emergence of a hysteretic loop. Note, that under a forward transition 
through the bifurcation point, the system is more sensitive to noise than under backward 
transition. Fig. 5, b illustrates the phenomenon of hysteresis for the nonlinear oscillator at β 
=3 (forward sweep) and β = - 3 (backward sweep). As is clearly seen from this figure, 
hysteretic loop diminishes with noise. This effect can be used to measure weak noise in 
nonlinear systems as suggested earlier for systems with period doubling bifurcations [12]. 

8. PROBABILITY SYMMETRY BREAKING IN NONLINEAR OSCILLATOR 
UNDER BIFURCATION OF STABLE STATE DOUBLING 

As is shown in [13], [14] for period doubling bifurcations, dynamic bifurcations 
under low noise are characterized by a probability symmetry breaking. Under considerable 
noise, the probabilities of the transition into two equitable final states are the same, each 
equaling 50%, while in the absence of noise, the final state of the system is fully predictable 
and depends only on the initial conditions and the speed of change of the control parameter.  
The phenomenon of probability symmetry breaking is also observed in bifurcations of 
spontaneous symmetry breaking. In the absence of noise, the system transits with a 100% 
probability into one of the two possible final states determined by the speed of the transition 
and the initial conditions. Under the impact of noise, the probabilities of transition of a 
nonlinear oscillator with varying parameters into either of the two final states tend to become 
equal.  

Fig. 6 illustrates the phenomenon of probability symmetry breaking in the nonlinear 
oscillator. In the absence of noise, for the initial value x0 = 0 and the initial derivative value 
x’(0)=1, for the speed β=3, the dependence of  x on B is shown in plot 1 (Fig. 6а). Under the 
impact of noise, the system may transit as into the “upper” state (plot 2), as into the “lower” 
state (plot 3), and it will happen considerably earlier than in the absence of noise (for 
numerical tests, we took noise variance 2

 =1.87·10-6). 

Fig. 6 b shows the dependence of final state probabilities on the initial values x0. As 
seen in this figure, at noise variance 2

 =1.87·10-7, the limits of the final state attraction 

zones are smeared by noise. In contrast to discrete maps [14], the pattern of the final state 
attraction zones for a nonlinear oscillator depends not only on initial values and the 
bifurcation transition speed, but on the initial value of the derivative as well. In the case of 
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low speeds, the attraction zones are split up resulting in even greater system sensitivity to 
noise.  

When the transition through a bifurcation point slows down, the pre-bifurcation noise 
amplification pushes the final state probabilities to become equal. Meanwhile, under fast 
bifurcation transitions, the fluctuations in the vicinity of the bifurcation point decrease and the 
predictability of the final state rises.  

9. CONCLUSION 
This work investigates fluctuations in a nonlinear oscillator subject to bifurcations of 

spontaneous symmetry breaking. Analytical estimates of pre-bifurcation noise amplification 
are obtained both for linear and nonlinear approximation. It is shown, that the variance of the 
forced fluctuations 2

x  in the saturation mode (near the bifurcation point) is proportional to 

the mean square of the noise forcing  :  2
x , whereas in the linear mode (far from the 

bifurcation threshold), it is proportional to the noise variance 2
 : 22

 x . Analytical 

estimates are in good agreement with numerical results.  
The pre-bifurcation fluctuation amplification is shown to facilitate the establishment 

of probability symmetry of final equilibrium states. Under a slow change of the oscillator 
parameter, the impact of weak noise results in equalizing the probabilities of the two possible 
final states. Under a fast bifurcation transition, the effect of pre-bifurcation noise 
amplification weakens, the system becomes less sensitive to noise and the final states become 
more predictable (probability symmetry breaking). 

Finally, it is demonstrated, that the bifurcation of spontaneous symmetry breaking in 
a nonlinear oscillator with varying control parameter is accompanied by a delay phenomenon, 
whose parameters strongly depend on the level of noise, a noise-dependent hysteresis. 
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Figure captions for a paper by E.D. Surovyatkina and Ju. Kurths 

Fluctuation growth and saturation in nonlinear oscillator on the threshold 
of bifurcation of spontaneous symmetry breaking 

 
FIG. 1. Model law for parameter В in accordance with (3). 

FIG. 2. Nonlinear estimate of the fluctuation variance.  

FIG. 3. Bifurcation diagram of the nonlinear oscillator (Eq. 5) 

FIG. 4. Pre-bifurcation noise amplification for a bifurcation of spontaneous symmetry 
breaking. Fluctuation variance 2

x  versus parameter В in a quasi-stationary mode 

( 2
 =10-8,  =3.5·10-3,  =0.1, A=0.5). 

FIG. 5. Bifurcation diagram and solutions for the differential equation (1): а) – slow transition 
through the bifurcation point, β = 0.03 (plot 1); fast transition, β = 0.3 (plot 2); very 
fast transition, β = 300 (plot 3);  
b) – forward and backward transition through the bifurcation point at speeds  β = 3 
(plot 1) and  β = – 3 (plot 2); the impact of noise 72 1087.1   at β=3 (plot 3). 

FIG 6. Probability symmetry breaking in the nonlinear oscillator. 
a) – bifurcation diagram and solution for equation (1) at β=3 (plot 1), solutions in the 
presence of noise with variance 72 1087.1   (plots 2 and 3);   

б) – final state attraction zones – solid lines; smearing of attraction zone limits by 
noise with variance 72 1087.1   at β=3 – dots.  
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