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Abstract. – Heterogeneity in the degree (connectivity) distribution has been shown to sup-
press synchronization in networks of symmetrically coupled oscillators with uniform coupling
strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in
weighted networks with asymmetric coupling. We show that, in the optimum regime, synchro-
nizability is solely determined by the average degree and does not depend on the system size
and the details of the degree distribution. In scale-free networks, where the average degree
may increase with heterogeneity, synchronizability is drastically enhanced and may become
positively correlated with heterogeneity, while the overall cost involved in the network coupling
is significantly reduced as compared to the case of unweighted coupling.

Networks of dynamical elements serve as natural models for a variety of systems, with
examples ranging from cell biology to epidemiology to the Internet [1]. Many of these com-
plex networks display common structural features, such as the small-world [2] and scale-free
properties [3]. Small-world networks (SWNs) exhibit short average distance between nodes
and high clustering [2], while scale-free networks (SFNs) are characterized by an algebraic,
highly heterogeneous distribution of degrees (number of links per node) [3]. The interplay be-
tween structure and dynamics has attracted a great deal of attention, especially in connection
with the problem of synchronization of coupled oscillators [4–10]. The ability of a network to
synchronize is generally enhanced in both SWNs and random SFNs as compared to regular
lattices [11]. This enhancement was previously believed to be due to the decrease of the av-
erage distance between oscillators. Recently, it was shown that random networks with strong
heterogeneity in the degree distribution, such as SFNs, are much more difficult to synchro-
nize than random homogeneous networks [7], even though the former display smaller average
path length [12]. This suggests that, although structurally advantageous [13], the scale-free
property may be dynamically detrimental. Here we present a solution to this problem.

A basic assumption of most previous works is that the oscillators are coupled symmetrically
and with the same coupling strength. Under the assumption of symmetric coupling, the max-
imum synchronizability may be indeed achieved when the coupling strength is uniform [14].
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But to get better synchronizability the couplings are not necessarily symmetrical. Many re-
alistic networks are actually directed [1] and weighted [15]. In particular, the communication
capacity of a node is likely to saturate when the degree becomes large.

In this letter, we study the impact that asymmetry and saturation of connection strength
have on the synchronization dynamics on complex networks. As a prime example, we consider
complete synchronization of linearly coupled identical oscillators, namely

ẋi = f(xi) − σ

N∑

j=1

Aij

[
h(xi) − h

(
xj

)]
, i = 1, . . . N, (1)

where f = f(x) describes the dynamics of each individual oscillator, h = h(x) is the output
function, and σ is the overall coupling strength. Matrix A = (Aij) is the adjacency matrix
of the underlying network of couplings, where Aij = wij if there is a link of strength wij > 0
from node j to node i, and 0 otherwise. The network is unweighted (weighted) if all (not all)
the nonzero elements of A are equal to each other, and the network is undirected (directed)
if matrix A is symmetric (asymmetric).

Equation (1) can be written as ẋi = f(xi)−σ
∑N

j=1 Gijh(xj), where Gij = δij

∑N
j=1 Aij −

Aij are the elements of the coupling matrix G = (Gij). In the case of symmetrically coupled
oscillators with uniform coupling strength, A is a symmetric binary matrix and G is the usual
(symmetric) Laplacian matrix L = (Lij) [16]. For Gij = Lij , heterogeneity in the degree
distribution suppresses synchronization in various classes of complex networks [7]. In order
to enhance the synchronizability of heterogeneous networks, we propose to scale the coupling
strength by the degrees of the nodes. For specificity, we consider

Gij = Lij/kβ
i , (2)

where ki is the degree of node i and β is a tunable parameter. The underlying network associ-
ated with the Laplacian matrix L is undirected and unweighted. But with the introduction of
the weights in eq. (2), the network of couplings becomes not only weighted but also directed
because the resulting matrices G and A are in general asymmetric. This is a special kind
of directed network where the number of in-links is equal to the number of out-links in each
node, and the directions are encoded in the strengths of in- and out-links. These networks are,
nevertheless, more general than the unweighted networks considered in refs. [6,7]. (Although
beyond the scope of this work, even more general networks can be considered within the same
framework.) We say that the network or coupling is weighted when β �= 0 and unweighted
when β = 0.

The variational equations governing the linear stability of a synchronized state {xi(t) =
s(t),∀i} can be diagonalized into N blocks of the form η̇ = [Df(s)−αDh(s)]η, where α = σλi,
and λi are the eigenvalues of the coupling matrix G, ordered as 0 = λ1 ≤ λ2 · · · ≤ λN (see
below). The largest Lyapunov exponent Λ(α) of this equation can be regarded as a master
stability function, which determines the linear stability of the synchronized state [17]: the
synchronized state is stable if Λ(σλi) < 0 for i = 2, . . . N . (The eigenvalue λ1 corresponds
to a mode parallel to the synchronization manifold.) For many widely studied oscillatory
systems [6, 17], the master stability function Λ(α) is negative in a finite interval (α1, α2).
Therefore, the network is synchronizable for some σ when the eigenratio R = λN/λ2 satisfies
R < α2/α1. The ratio α2/α1 depends only on the dynamics (f , h, and s), while the eigenratio
R depends only on the coupling matrix G. The problem of synchronization is then reduced to
the analysis of eigenvalues of the coupling matrix [6]: the smaller the eigenratio R the more
synchronizable the network.
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Fig. 1 – Eigenratio R as a function of β: (a) random SFNs with γ = 3 (•), γ = 5 (�), γ = 7 (�), and
γ = ∞ (solid line), for kmin = 10; (b) networks with expected scale-free sequence (�) for γ = 3 and
k̃min = 10, and growing SFNs (�) for γ = 3 and m = 10. Each curve is the result of an average over 50
realizations for N = 1024. The error bars for growing SFNs are smaller than the size of the symbols.

Here we show that, as a function of β, the eigenratio R has a global minimum at β = 1.
In large sufficiently random networks, our analysis shows that the eigenratio at β = 1 is
primarily determined by the average degree k of the network and does not depend on the degree
distribution and system size, in sharp contrast with the case of unweighted coupling (β = 0),
where synchronization is strongly suppressed as the heterogeneity or number of oscillators
is increased. Furthermore, we show that the total cost involved in the network coupling is
significantly reduced for β = 1 when compared to β = 0. As a result, structural robustness [13]
and improved synchronizability can coexist in scale-free and other heterogeneous networks.
We observe that the case β = 1 has been considered previously in the context of pulse-
coupled oscillators because, in the case of pulse oscillators, heterogeneity in the incoming
signal desynchronizes the system [8,9]. However, in the context of this work, where complete
synchronization is always a solution of eq. (1), previous works on the stability of completely
synchronized states have focused on the case of unweighted coupling (see ref. [10] for an
exception). To the best of our knowledge, this is the first systematic study of complete
synchronization as a function of β.

In matrix notation, eq. (2) can be written as G = D−βL, where D = diag{k1, k2, . . . kN} is
the diagonal matrix of degrees. From the identity det(D−βL−λI) = det(D−β/2LD−β/2−λI),
valid for any λ, we have that the spectrum of eigenvalues of matrix G is equal to the spectrum
of a symmetric matrix defined as H = D−β/2LD−β/2. As a result, all the eigenvalues of matrix
G are real. Moreover, because H is positive semidefinite, all the eigenvalues are nonnegative
and, because the rows of G have zero sum, the smallest eigenvalue λ1 is always zero, as
assumed above. If the network is connected, λ2 > 0 for any finite β. For spectral properties
of unweighted complex networks, see refs. [18–21].

We first examine the dependence on β. Physically, we expect the synchronizability to be
strongly influenced by the strength of the input coupling at each oscillator. When β < 1,
oscillators with larger degree are more strongly coupled than oscillators with smaller degree.
When β > 1, the opposite happens. Because (α1, α2) is finite, for the network to synchro-
nize, the overall coupling strength σ must be large enough to synchronize the least coupled
oscillators and small enough to synchronize the most coupled ones (i.e., the synchronizability
of these oscillators is expected to be primarily determined by the modes associated with the
eigenvalues λ2 and λN , respectively). Therefore, for both β < 1 and β > 1, some oscillators
are more strongly coupled than others, and the ability of the network to synchronize is limited
by those oscillators that are least and most strongly coupled. We then expect the network to
achieve maximum synchronizability at β = 1. In fig. 1, we show the numerical verification of
this hypothesis on three different models of SFNs, defined as follows:



A. E. Motter et al.: Enhancing complex-network synchronization 337

A) Random SFNs [22]. Each node is assigned to have a number ki of “half-links” according
to the probability distribution P (k) ∼ k−γ , where γ is a scaling exponent and k ≥
kmin. The network is generated by randomly connecting these half-links to form links,
prohibiting self- and repeated links. In the limit γ = ∞, all the nodes have the same
degree k = kmin.

B) Networks with expected scale-free sequence [20]. The network is generated from a se-
quence k̃1, k̃2, . . . k̃N , where maxi k̃2

i <
∑

i k̃i, so that links are independently assigned
to each pair of nodes (i, j) with probability pij = k̃ik̃j/

∑
i k̃i. When the expected de-

grees k̃i ≥ k̃min follow the distribution P (k̃) ∼ k̃−γ , we have a network with expected
scale-free sequence.

C) Growing SFNs [23]. We start with a fully connected network with m nodes and at each
time step a new node with m links is added to the network. Each new link is connected
to a node i in the network with probability Πi ∼ (1 − p)ki + p, where 0 ≤ p ≤ 1 is a
tunable parameter. For large degrees, the scaling exponent of the resulting network is
γ = 3 + p[m(1 − p)]−1. For p = 0, we recover the Barabási-Albert model [3].

As shown in fig. 1, a pronounced minimum for the eigenratio R at β = 1 is observed in each
case. A similar minimum for R at β = 1 is also observed in many other models of complex
networks, including the Watts-Strogatz model [2] of SWNs. The only exception is the class of
homogeneous networks, where all the nodes have the same degree k. In this case, the weights
can be factored out and R is independent of β, as shown in fig. 1(a) for random homogeneous
networks with k = 10 (solid line).

In heterogeneous networks, the synchronizability is significantly enhanced when the cou-
pling is suitably weighted, as shown in fig. 2 for SFNs with β = 1. In SFNs, the heterogeneity
(variance) of the degree distribution increases as the scaling exponent γ is reduced. When
the coupling is unweighted (β = 0), the eigenratio R increases with heterogeneity, but the
eigenratio does not increase and may even decrease with heterogeneity when the coupling
is weighted (β = 1), as shown in figs. 2(a)-(c). The enhancement is particularly large for
small γ, where the networks are highly heterogeneous (note the logarithmic scale in fig. 2).
The networks become more homogeneous as γ is increased. In the limit γ = ∞, random
SFNs converge to random homogeneous networks with the same degree kmin for all nodes
(fig. 2(a)), while networks with expected scale-free sequence converge to Erdős-Rényi random
networks [24], which have links assigned with the same probability between each pair of nodes
(fig. 2(b)). As one can see from fig. 2(b), the synchronizability is strongly enhanced even in
the relatively homogeneous Erdős-Rényi model; such an enhancement occurs also in growing
networks (fig. 2(c)). (In SWNs of pulse-coupled oscillators, the speed for effective synchro-
nization to be achieved is also enhanced at β = 1 [9].) Surprisingly, for β = 1, the eigenratio
R turns out to be well approximated by the corresponding eigenratio of random homogeneous
networks with the same average degree (figs. 2(a)-(c)). Therefore, for β = 1, the variation of
the eigenratio R with the heterogeneity in figs. 2(a) and (b) is mainly due to the variation
of the average degree of the networks, which increases as the scaling exponent γ is reduced.
Moreover, the eigenratio R appears to be independent of the system size for β = 1 in large
SFNs, in contrast to the unweighted case, where R increases strongly with the number of
oscillators (figs. 2(d)-(f)).

We now present an approximation for the eigenratio R that supports and extends our
numerical observations. In what follows we focus on the case β = 1. Based on results
of ref. [20] for random networks with arbitrary expected degrees, which includes important
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Fig. 2 – (a)-(c) Eigenratio R as a function of the scaling exponent γ: (a) random SFNs, (b) networks
with expected scale-free sequence, and (c) growing SFNs, for β = 1 (•) and β = 0 (◦). The other
parameters are the same as in fig. 1. Also plotted are the bound in eq. (4) (solid line) and R at
γ = ∞ for β = 1 (dashed line) and β = 0 (dot-dashed line). The ♦ symbols correspond to random
homogeneous networks with the same average degree of the corresponding SFNs, as indicated in the
figure. (d)-(f) R as a function of the system size for γ = 3 and the models in (a)-(c), respectively.
The legend is the same as in (a)-(c). The error bars for growing SFNs and for β = 1 are smaller than
the size of the symbols.

SFNs, we get

max{1 − λ2, λN − 1} = [1 + o(1)]
2√
k̃

, (3)

where k̃ is the average expected degree. This result is rigorous for networks with a given
expected degree sequence k̃1, k̃2, . . . k̃N , as defined in the model B) above. The assumption
for this result is k̃min ≡ mini k̃i to be large as compared to

√
k̃ ln3 N , but our numerical simu-

lations suggest that this assumption can be released considerably because eq. (3) is observed
to hold for k̃min as small as 2

√
k̃. Having released this assumption, from eq. (3) we have the

following explicit upper bound for the eigenratio in large networks:

R ≤ 1 + 2/
√

k̃

1 − 2/
√

k̃
. (4)

Therefore, the eigenratio is bounded by a function of the average degree, which does not
depend on the system size, in agreement with the results in figs. 2(d)-(f). (This also agrees
with the apparent size independence of the synchronization threshold observed in ref. [10]
for simulations on SFNs of coupled quadratic maps.) Moreover, we expect R to approach
the upper bound in eq. (4) because the semicircle law holds and the spectrum is symmetric
around 1 for k̃min �

√
k̃ in the thermodynamical limit [20, 21]. This prediction is confirmed
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Fig. 3 – Normalized cost as a function of the scaling exponent γ for random SFNs with β = 1 (•)
and β = 0 (◦), and for random homogeneous networks with the same average degree (♦). The solid
line corresponds to γ = ∞. Inset: ratio r = C0/C1 of the cost for β = 0 (C0) and β = 1 (C1) as a
function of γ. The other parameters are the same as in fig. 1. The error bars are smaller than the
size of the symbols.

numerically under much weaker conditions, as shown in figs. 2(a)-(c), where one can see a
remarkable agreement between the approximate and exact values of R for all three models of
SFNs. Since the bound in eq. (4) does not depend on the degree distribution, this result also
explains the agreement between the eigenratio for weighted SFNs (figs. 2(a)-(c), •) and the
eigenratio for random homogeneous networks with the same average degree (figs. 2(a)-(c), ♦).
A similar agreement is observed in many other complex networks.

We also consider the influence of degree correlation and clustering. Our extensive numerical
computation on the models of refs. [25, 26] shows that the eigenratio R generally increases
with increasing clustering and assortativity in correlated networks. However, a pronounced
global minimum for R as a function of β is always observed at β = 1. In addition, weighted
networks at β = 1 are much more insensitive to the effects of correlation than their unweighted
counterparts. The same tendency is observed in the growing model with aging of ref. [27],
which has nontrivial clustering and correlation. All together, these suggest that our results
are quite robust and expected to hold on real-world networks as well.

Now we address the important problem of the cost involved in the connections of the
network. The cost C is naturally defined as the total strength of all directed links, i.e., C =
σmin

∑
i k1−β

i , where σmin = α1/λ2 is the minimum overall coupling strength for the network to
synchronize. Strikingly, in heterogeneous networks, the cost for β = 1 is considerably smaller
than the cost for β = 0 (fig. 3). Therefore, cost reduction is another important advantage of the
weighted coupling. Moreover, the cost for β = 1 is well approximated by the cost for random
homogeneous networks with the same average degree k, as indicated in fig. 3. In this case, for
large k we have C/(Nα1) = 1/λ2 ≈ 1/(1 − 2/

√
k) and the cost is reduced as k is increased.

In summary, we have introduced a model of weighted networks with asymmetric coupling
which, we believe, can serve as a paradigm to address various issues regarding dynamics on
complex networks. Within this model, we have shown that suitably weighted networks display
significantly improved synchronizability and lower cost. As compared to the unweighted case
(β = 0), synchronizability is significantly enhanced not only for β = 1 but also for a wide inter-
val around β = 1 where the eigenratio R is nearly constant (see fig. 1). Similar enhancement is
expected for networks with some degree of random heterogeneity in the connection strengths
and, in particular, for networks where different nodes are normalized at different values of β
according to a bounded distribution concentrated around β = 1. An important implication of
our findings is that weighted SFNs can exhibit enhanced complete synchronization.
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