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PACS. 82.40.Bj – Oscillations, chaos, and bifurcations.

PACS. 83.85.Ns – Data analysis (interconversion of data computation of relaxation and retar-
dation spectra; time-temperature superposition, etc.).

Abstract. – We present a new method to detect phase as well as generalized synchronization in
a wide class of complex systems. It is based on the recurrences of the system’s trajectory to the
neighborhood of a former state in phase space. We illustrate the applicability of the algorithm
for the paradigmatic chaotic Rössler system in the funnel regime and for noisy data, where other
methods to detect phase synchronization fail. Furthermore, we demonstrate for electrochemical
experiments that the method can easily detect phase and generalized synchronization in non-
phase-coherent and even non-stationary time series.

Introduction. – Synchronization of chaotic systems has been extensively studied in the
last years. There are three main types: complete synchronization (CS) [1], generalized syn-
chronization (GS) [2–4] and phase synchronization (PS) [5, 6] (and lag synchronization (LS)
as a special case of GS [7, 8]). All have applications in many different fields [9–12]. In this
paper we concentrate on the detection of PS and GS in time series. Two systems are said to
be phase synchronized when the difference of their respective phases is bounded. If the system
has a dominant peak in the power spectrum, there are several methods to define the phase.
One possibility is to project the trajectory on an appropriate plane, so that the projection
looks like a smeared limit cycle with well-defined rotations around a center. Then the phase is
identified with the angle of rotation [5,6]. Another possibility is to apply the analytical signal
approach [5,6]. But a pre-requisite for the appropriate application of these techniques is that
the trajectories in the projection plane go around an origin. This may be violated if the signal
has a broad-band spectrum, which is typical for non-coherent signals [5,6,13]. For some chaotic
systems it is possible to choose a Poincaré surface that is crossed transversally by all trajecto-
ries. Then, the phase is defined as a linear function of time, which increases by 2π with each
return to the surface of section. But for rather complex signals it is very hard or even impossi-
ble to find a section surface that is crossed transversally by each trajectory embedded in the at-
tractor [5,6]. Recently, another definition of the phase, based on the general idea of curvature,
has been proposed to treat such systems, e.g., the Rössler system in the non-coherent funnel
regime [14]. However, this approach is in general limited to lower-dimensional systems. Hence,
the open question is how to detect PS in the case of general non-coherent or complex signals.
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In this letter we propose an approach to detect PS as well as GS based on the recurrences of
the trajectory of a dissipative chaotic system in phase space, which is applicable to a wide class
of chaotic systems and even for time series corrupted by noise, where other methods proposed
so far fail. The concept of recurrences in dynamical systems goes back to Poincaré [15], when
he proved that after a sufficiently long time interval, the trajectory of a dynamical system
will return arbitrarily close to each former point of its route with probability one. Much
later, recurrence plots (RPs) were introduced to yield a visual representation of recurrences
in phase space [16]. We have recently shown that all relevant topological information about
the underlying system is contained in the RP [17, 18]. RPs are defined for a given trajectory
{xi}N

i=1, with xi ∈ Rn of a dynamical system and are based on the matrix

R
(ε)
i,j = Θ(ε − ||xi − xj ||), i, j = 1, . . . , N, (1)

where ε is a predefined threshold and Θ(·) is the Heaviside function. Then the value “1” is
coded as a black dot and the value “0” as a white dot in the plot. Hence, one obtains an
N × N matrix which provides a visual impression of the system behavior.

Detection of PS. – Using eq. (1) we define the phase Φ: in periodic systems, the phase
increases by 2π when the trajectory completes one rotation around the center or, equivalently,
when ||x(t+T )−x(t)|| = 0, where T is the period. For complex systems we assign an increment
of 2π to the phase when ||x(t+τ)−x(t)|| ∼ 0, or here when ||x(t+τ)−x(t)|| < ε. That means
a black point in the RP at the coordinates (t, t+ τ) can be interpreted as an increment of 2π
for the phase in the time interval τ (of course, τ must be greater than the correlation time
of the system, or, equivalently, greater than the Theiler window [19]). In this way, we do not
need to define a plane, onto which the trajectory is projected. We avoid the problem present
in the analysis of non-coherent oscillators of finding an origin around which all points of the
projected trajectory oscillate. Another problem linked to the definition of the phase based on
a projection on a plane, is the appearance of false neighbors. For example, projecting a purely
periodic trajectory lying in a 3-dimensional Cartesian space, can lead to intersections of the
projected trajectory, and hence to ambiguity in the choice of the origin. Using the recurrence
approach we avoid this problem as well because we consider the trajectories of the untangled
attractor and hence we have no false neighbors. Note that the RP approach is different from
the Poincaré section approach because no section surface has to be defined. We define a
recurrence as the return of the trajectory to a former visited neighborhood and not as the
transversal cross of a predefined plane. Furthermore, a chaotic trajectory switches from one
unstable periodic orbit (UPO) to another and we find a recurrence every time the trajectory
has completed a turn around one UPO. Such a recurrence corresponds to an increment of 2π
for Φ in the original phase space, but not necessarily on the projection. When two chaotic
oscillators are in PS their UPOs are locked [5, 6]. Hence, using the RP-based phase, there
exists a ni : mi relationship between the phases, where i denotes a time index. This is because
the UPOs that synchronize have in general different periods. However, it is cumbersome to
compute a statistic that quantifies the instantaneous niΦ1 = miΦ2 relationship between the
phases, because ni and mi depend on time and the RP-based phase depends on ε. This
drawback can be overcome by computing a statistical measure on how often Φ1 and Φ2

increase by 2π or multiples of 2π within the time interval τ . If two systems are in PS, the
“RPs-phases” of both systems increase in average 2πk, with k a natural number, within the
same time interval τ . Therefore, looking at the probability P (ε)(τ) that the system returns to
the ε-neighborhood of a former point xi of the trajectory after τ time steps and comparing
P (ε)(τ) for both systems allows to detect and quantify PS properly. P (ε)(τ) can be estimated
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directly from the RP as follows:

P̂ (ε)(τ) =
∑N−τ

i=1 Θ(ε − ||xi − xi+τ ||)
N − τ

=

∑N−τ
i=1 R

(ε)
i,i+τ

N − τ
. (2)

P̂ (ε)(τ) is a generalized autocorrelation function, as it also describes higher-order correlations
between the points of the trajectory in dependence on τ . A further advantage with respect to
the linear autocorrelation function is that P̂ (ε)(τ) is determined for a trajectory in phase space
and not only for a single observable of the system’s trajectory. (From now on, we omit (ε) and
·̂ in P̂ (ε)(τ) to simplify the notation.) In contrast to a periodic system, for chaotic oscillators,
the probability that the trajectory recurs after one oscillation is less than 1. For example,
for two coupled Rössler oscillators(1) in phase-coherent regime, strong local maxima occur
at multiples of the mean period of the chaotic system. One also observes in the periodically
driven Lorenz system [20] local maxima in P (τ) in the phase-synchronized case. However,
these local maxima are smaller and broader than in the case of two coupled Rössler systems.
This reflects the effective noise intrinsic in the Lorenz system, i.e. the switchings between
the two lobes of the attractor which occur rather irregularly. Thus, we have imperfect phase
synchronization [20] and an exact frequency locking between the periodic forcing and the
Lorenz system cannot be observed. As we consider PS in a statistical sense by means of
P (τ), we can detect synchronization also in this case without making a projection of the
attractor beforehand. Looking at the coincidence of the positions of the maxima of P (τ) for
both coupled systems, we can quantitatively identify PS. Therefore, we introduce the cross
correlation coefficient between P1(τ) and P2(τ) to quantify PS:

CPR = 〈P̄1(τ)P̄2(τ)〉/(σ1σ2), (3)

where P̄1,2 means that the mean value has been subtracted and σ1 and σ2 are the standard
deviations of P1(τ), respectively P2(τ). If both systems are in PS, the probability of recurrence
is maximal at the same time and CPR ∼ 1. In contrast, if the systems are not in PS, the
maxima of the probability of recurrence do not occur simultaneously. Then we observe a drift
and hence expect low values of CPR. This method yields good results even for non-phase-
coherent oscillators, such as the two mutually coupled Rössler systems in the funnel regime
(figs. 1a, b), where the direct application of the conventional methods is not appropriate [14].
In this case, the peaks in P (τ) are now not as well pronounced as in the phase-coherent case
(figs. 1c, d). This reflects the different time scales that come into play or the broad-band power
spectrum in the funnel system. However, we see that for non-PS (µ = 0.05) the positions of
the local maxima do not coincide (fig. 1c), whereas for PS (µ = 0.2) the locations of the local
maxima coincide for both oscillators (fig. 1d). Furthermore, we can detect PS even in time
series corrupted by noise. We consider two coupled Rössler systems in phase-coherent regime.
We add a realization of colored noise with a very high noise amplitude to each component
of the first system and another realization of colored noise with a smaller noise amplitude
to each component of the second system (figs. 1e, f). The method presented in [14] is not
appropriate to estimate the phase in this case, because it requires the computation of the
derivative of the time series, and due to the large level of noise, this is not possible. But by
means of P (τ) we can distinguish PS from non-PS even in this case (figs. 1g, h). Additionally,
the RP-based synchronization index indicates clearly the onset of PS. In the coherent case,
the CPR index increases strongly at µ = 0.037, indicating the transition to PS (fig. 2a),

(1)The equations are the following: ẋ1,2 = −ω1,2y1,2 − z1,2, ẏ1,2 = ω1,2x1,2 + ay1,2 + µ(y2,1 − y1,2), ż1,2 =
0.1 + z1,2(x1,2 − 8.5).
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Fig. 1 – (a), (b) Segments of the x-components of the trajectories of two mutually coupled Rössler
systems in non-phase-coherent (funnel) regime (a = 0.2925); (a) for µ = 0.05 (non-PS), (b) for
µ = 0.2 (PS). (c) P (τ) for the two funnel Rössler for µ = 0.05 (non-PS). (d) P (τ) for the two funnel
Rössler for µ = 0.2 (PS). (e), (f) Segments of the x-components of the trajectories of two mutually
coupled Rössler systems in phase-coherent regime (a = 0.16) strongly contaminated by colored noise.
A realization of rt+1 = 0.99rt + 10ηt and st+1 = 0.982st + ξt were, respectively, added to each
component of the Rössler systems. (e) non-PS (µ = 0.02). (f) PS (µ = 0.05). (g) P (τ) for the two
noisy Rössler for µ = 0.02 (non-PS), (h) P (τ) for the two noisy Rössler for µ = 0.05 (PS). Solid line:
system 1, dashed line: system 2.

which coincides with the transition of the fourth Lyapunov exponent λ4 to negative values
(fig. 2e), as expected. In the non-coherent case, λ4 has already passed to negative values
for µ > 0.02 (fig. 2f). However, CPR (fig. 2b) is still rather low: it does not reveal the
transition to PS until approximately µ = 0.18. This coincides with the transition of λ2 from
positive values to zero (fig. 2f), indicating the establishment of a strong correlation between
both oscillators. Because of the non-coherency of the oscillators, a higher coupling strength
is needed to synchronize them [14].

Fig. 2 Fig. 3

Fig. 2 – CPR index, JPR index and λ2 and λ4 as functions of the coupling strength µ for two
mutually coupled Rössler systems in phase-coherent regime (a,c,e) and in funnel regime (b,d,f). The
dotted zero line in (e) and (f) is plotted to guide the eye. Here, we choose ε corresponding to 10%
recurrence points in each RP.

Fig. 3 – a) Current of two non-coherent electrochemical oscillators in dependence on time for coupling
strength µ = 0. b) XC index for PS, c) JPR index for GS, d) P̄−1 index for GS (method of mutual
false nearest neighbors). All these indices are represented in dependence on the coupling strength for
the non-phase-coherent electrochemical oscillators.
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The results obtained with CPR are very robust with respect to the choice of the threshold
ε. Simulations show that the outcomes are almost independent of the choices of ε correspond-
ing to a percentage of black points in the RP between 1% and 90%, even for non-coherent
oscillators. The details of the recurrence structures in the RP are of course dependent on the
choice of ε. Choosing ε for both interacting oscillators, in such a way that the percentage
of black points in both RPs is the same, the relationship between their respective recurrence
structures does not change for a broad range of values of ε.

Detection of GS. – Now we show that it is also possible to detect GS by means of the
RP method. Two systems x and y are said to be generalized synchronized if a relationship
y(t) = f(x(t)) holds [2–4]. When the system equations are known, GS can be characterized
by the conditional stability of the driven chaotic oscillator [3]. However, dealing with mea-
sured time series, the model equations are usually not known. Hence, several methods based
on the technique of delay embedding and on the conditional neighbors have been developed
to characterize GS, such as the method of mutual false nearest neighbors (MFNN) [2,4, 21].
But systems exhibiting non-invertibility and/or wrinkling hamper the detection of GS by such
techniques [22]. Further techniques, such as the δp and δp,q method, have been developed to
overcome these problems [23]. We define an index for GS based on RPs that also overcomes
these problems. It is based on the result presented in [17, 18]: only considering the recur-
rence matrix of a trajectory, is it possible to reconstruct topologically the trajectory in phase
space. Hence, two systems connected by a functional relationship have the same recurrence
matrix. Let us consider the average probability of recurrence over time, which is given by
RRx = 1

N2

∑N
i,j=1 Θ(εx−||xi−xj ||) (analogously for y). Then, the average probability of joint

recurrence over time [24] is given by RRx,y = 1
N2

∑N
i,j=1 Θ(εx −||xi −xj ||)Θ(εy −||yi −yj ||).

If both systems x and y are independent of each other, the average probability of a joint recur-
rence is given by RRx,y = RRxRRy. If the oscillators are, on the other hand, in GS, we expect
an approximate identity of their respective recurrences, and hence RRx,y � RRx = RRy.
For the computation of the recurrence matrices in the case of essentially different systems
that undergo GS, it is more appropriate to use a fixed number of nearest neighbors NN

for each column in the matrix [21] than using a fixed threshold. Hence, the εi are dif-
ferent for each column in their respective RPs, but subjected to the following condition:∑N

j=1 Θ(εi
x − ||xi − xj ||) = NN ∀i (analogously for y). RRx and RRy are then equal

and fixed by NN , because RRx = RRy = NN/N . We call RR = NN/N . Hence, the
coefficient S = RRx,y

RR is an index for GS that varies from RR (independent) to 1 (GS).
However, S does not indicate LS. For this reason, we include a time lag in the similarity

S(τ) =
1

N2

∑N

i,j
Θ(εi

x−||xi−xj ||)Θ(εi
y−||yi+τ−yj+τ ||)

RR , where the thresholds εi
x and εi

y are chosen
in such a way that the number of nearest neighbors for each column is equal to NN . Then,
we choose the maximum value of S(τ) and normalize:

JPR = max
τ

S(τ)− RR

1− RR
, (4)

which is based on the average joint probability of recurrence. JPR ranges from 0 to 1. RR
is a free parameter. However, simulations show that the JPR index is rather independent of
the choice of RR. In the simulations shown here we use RR = 0.1. Now we apply JPR to
two Rössler oscillators in coherent and non-coherent regime. In the coherent case, the index
JPR in dependence on the coupling strength µ shows three plateaus (fig. 2c). The beginning
of the third plateau indicates the onset of LS because it becomes nearly one at approximately
µ = 0.1. This occurs shortly after the zero crossing of λ2, at µ = 0.08 (fig. 2e). Between
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µ = 0.08 and µ = 0.1 the values of JPR have large fluctuations. This reflects the intermittent
LS, where LS is interrupted by intermittent bursts [7,8]. In the non-coherent case JPR reaches
rather high values at µ ∼ 0.17 (fig. 2d), indicating the onset of GS. This coincides with the
zero crossing of λ2 (fig. 2f). Note that we have detected GS almost simultaneously with PS
(fig. 2b), which is a typical characteristic for non-coherent oscillators [14]. Furthermore, we
have analyzed by JPR the non-invertible and wrinkling maps presented in [22, 23]. In these
cases, we have found that embedding both the driver and response signals before computing
the index JPR facilitates the detection of GS, as proposed in [23]. Using an embedding
dimension of 8 for both the driver and response signal, we could detect GS in all cases.

Application to chaotic electrochemical data. – In order to test the applicability of the
method to experimental data, we analyze time series from two coupled electrochemical os-
cillators (fig. 3d). The experiments were done with electro-dissolution of iron in sulfuric
acid in which non-phase-coherent chaotic signals can be obtained and in which coupling
strength can be varied [25]. From computing CPR and JPR for different coupling strengths
µ = {0.0, 0.2, 0.4, 0.6, 0.8, 1.0}, we detect the transition to PS and GS simultaneously at the
coupling strength µ = 0.6 (fig. 3), in accordance with theoretical results [14]. In contrast,
the method of mutual false nearest-neighbors (MFNN) [2–4] does not yield plausible results
in this case. The index P̄−1 is the inverse of the mean value of the MFNN parameter. This
index is zero for systems that are not in GS, and approximately one for systems in GS [2–4].
We observe in fig. 3d that for no coupling (µ = 0) the index P̄−1 indicates GS, and for cou-
pling strength µ = 0.6, where the other two indices CPR and JPR indicate synchronization
(figs. 3b, c), P̄−1 does not. Hence, in the case of non-coherent oscillators the method of MFNN
does not yield reliable results(2).

Now we regard the more complicated case of non-stationary data, where the non-stationarity
is imposed through a linear continuous change of a controllable parameter, the applied po-
tential. In this case we consider two different values of the coupling strength: µ = 0.0 and
µ = 0.6. The recurrence-based method does not demand stationarity to the data set to be
analyzed [16]. Hence, we can apply both indices for PS and GS to the whole data set with-
out preprocessing the time series. For coupling strength µ = 0, we get CRP = 0.0946 and
JPR = 0.0121, indicating the absence of PS, respectively GS, as expected. For coupling
strength µ = 0.6 we obtain CPR = 0.846, which is a strong indication for the presence of PS.
Additionally, we yield JPR = 0.202 for this µ, which is one order of magnitude larger than
the value obtained for µ = 0. This is an indication for the presence of GS.

Furthermore, we have performed numerical simulations, where we have added different
trends (linear, periodic and non-linear) to one of the oscillators in the models considered
above. In all these cases one can clearly discern by means of P (τ) between PS, GS and no
synchronization at all. This is due to the fact that there is no need to choose an origin,
around which the system oscillates. Hence, it does not matter if the “origin” wanders with
time (by the definition of the phase based on the Hilbert transformation, difficulties appear
with non-stationary time series, as the center of rotation varies with time [5, 6]). Also by
adding large amounts of observational noise to the oscillators, it is still possible to detect PS
with the proposed statistical measure. This robustness against noise is due to the fact that
we do not consider the coincidence of local recurrence patterns, but average ones.

Conclusions. – In conclusion, we have presented a new method to detect PS and GS (in-
cluding LS) of chaotic systems based on the idea of recurrences in phase space, as demonstrated

(2)We used a total of 25000 data points, Tr = Td = 0.035 s (the sampling rate was 2 kHz), dr = 5 and dd = 12.
We computed P (n, dr, dd) at 10000 different locations on the attractor and used them to evaluate the average
values P̄ (dr, dd).
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for model systems and experimental data. This technique has several advantages with respect
to other methods proposed so far: i) it enables the detection of PS and GS even for rather com-
plex and non-phase-coherent cases and in experimental data, even when they are subjected to
non-stationarities; ii) it is possible to detect and quantify PS and GS with the same method.
Applications of this approach seem to be very promising to experimental data in which the ex-
plicit computation of the phase is controversial and where non-stationarity is often a concern,
e.g., physiological or geophysical data. The generation of appropriate surrogates to test the
significance of the obtained results is still an important open problem, that has to be addressed.
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