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Abstract

We present different tests for phase synchronization which improve the pro-
cedures currently used in the literature. This is accomplished by using a two-
samples test setup and by utilizing insights and methods from directional statis-
tics and bootstrap theory. The tests differ in the generality of the situation in
which they can be applied as well as in their complexity, including compu-
tational cost. A modification of the resampling technique of the bootstrap is
introduced, making it possible to fully utilize data from time series.
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1 Introduction

Synchronization of coupled or forced chaotic systems has received much attention
recently (cf. Pikovsky et al. [2001] and Boccaletti et al. [2002] for a review and ref-
erences therein). Four basic types of such a complex behavior have been found:
complete [Pecora & Carroll, 1990; Fujisaka & Yamada, 1983; Afraimovich et al.,
1986; Pikovsky, 1984], generalized [Rulkov et al., 1995], phase [Rosenblum et al.,
1996], and lag synchronization [Rosenblum et al., 1997]. Phase synchronization has
found various applications in laboratory experiments [Parlitz et al., 1996; Taherion
& Lai, 2000; Allaria et al., 2001; DeShazer et al., 2001; Ticos et al., 2000; Kiss &
Hudson, 2001] as well as in natural systems, such as cardiorespiratory interaction
[Schäfer et al., 1998; Stefanovska et al., 2000; Anishchenko et al., 2000], brain activ-
ity of Parkinsonian patients [Tass et al., 1998], EEG measurements from patients
with temporal lobe epilepsy [Mormann et al., 2000] and early seizure detection
[Jerger et al., 2001], ecology [Blasius et al., 1999], and climate systems [Lunkeit,
2001]. A technique to reconstruct the synchronization diagram from bivariate data
has been proposed by Tokuda et al. [2002].

In noisy systems or where the acquisition of empirical data includes a large
amount of noise [Tass et al., 1998], as well as in chaotic systems on the borderline
of synchronization or with imperfect phase synchronization [Zaks et al., 1999], the
basic concept of phase synchronization as boundedness of the phase difference of
two oscillators has to be replaced by a quantitative statistical definition. In this
perspective, phase synchronization is a gradual phenomenon whose strength cor-
responds to the “peakedness” of the distribution of the phase difference. Since
such a statistical measure is in itself a random variable, a deviation of its empiri-
cal value from zero (corresponding to no synchronization) doesn’t suffice to state
an effect of phase synchronization and this means that a statistical test has to be
applied.

There are some approaches in the literature to test for the significance of a cer-
tain synchronization level, but they are mainly based on surrogate data and the
corresponding null hypothesis is that the oscillators are unsynchronized [Bhat-
tacharya et al., 2001; Lachaux et al., 1999; Rodriguez et al., 1999; Mormann et al.,
2000; Tass et al., 1998; Paluš, 1997; Paluš & Hoyer, 1998].1 In practice, this null
hypothesis often proves to be too weak, because there is a base level of synchro-
nization which is always present in the system and therefore the test is not able to
distinguish between different system states.

In this paper, we present a number of tests improving this situation in three
respects. 1) We use a measure known from the context of directional statistics
[Mardia & Jupp, 2000; Mardia, 1972] and utilize its simple and defined statistical
properties. 2) We use a two-sample approach and test against the null hypothesis
that the synchronization strength is the same in the two samples. 3) We use testing
procedures based on proven statistical theory; in the nonparametric case, they rely
mainly on bootstrap techniques [Efron & Tibshirani, 1993]. The different tests are
presented in a sequence of increasing generality and precision, but also increas-
ing computational complexity; they are graded with respect to their applicability
and usefulness in a given situation and their correctness is checked in numerical
simulations.

1Furthermore, for some of the standard procedures of surrogate data generation like phase random-
ization, their statistic validity in the context of phase synchronization is doubtful.
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1.1 The measure of phase synchronization

The system we are concerned with consists of two autonomous oscillators, A and
B. For each of them a phase ϕA, ϕB is defined; the details of this definition are
not important, but it should be done in a way that there is no preferred value of
the phase. The oscillators are bi- or unidirectionally coupled such that depend-
ing on the strength of coupling, there is a more or less strong dynamical depen-
dence between the phases which leads to a preferred value of the phase difference
θ = ϕB − ϕA.2 If the process of phase synchronization is regarded as a stochastic
one (in the deterministic case the randomness belongs to the initial conditions),
the phase difference is a random variable characterized by a probability distribu-
tion, which is empirically accessible in the form of a number of realizations θ j.
The strength of phase synchronization which corresponds to the peakedness of
the phase difference distribution may be quantified in different ways (cf. Tass et al.
[1998]); in this paper, we follow the approach of directional statistics.

Directional statistics [Mardia, 1972; Mardia & Jupp, 2000] deals with a spe-
cial case of random variable which is defined on a circular scale, such that values
whose difference is an integral multiple of a certain period (in general 2π) are re-
garded the same, and for convenience all values are wrapped into a single period.
The phase difference is an example of such a circular random variable θ; another
example are directions in space, which are a common object of investigations in sci-
ence, for instance the directions of the flight of birds in biology or that of geologic
formations. To a circular random variable, standard (linear) statistical measures
and moments like mean and variance are not applicable, because they yield dif-
ferent values if the period is added to or subtracted from some values, though the
physical meaning of these changed values is the same.

Instead of these classical moments, directional statistics studies the statistical
properties of the values of trigonometric functions applied to the circular variable
θ, the trignometric moments of order p (p = 1,2, . . .) of its distribution

αp = 〈cos p θ〉 and βp = 〈sin p θ〉. (1)

The combined complex form of cosine and sine moments χp = αp + iβp is equiv-
alent to the characteristic function of the distribution (its Fourier transform). Its
first element is of special importance, because the polar components µ = argχ1
and ρ = |χ1| can be regarded as indices of the mean direction of the distribution
and of its concentration onto this mean direction.

The corresponding quantities on a sample θ j ( j = 1 . . . n) are ap = 1
n ∑ cos p θ j

and bp = 1
n ∑ sin p θ j, which are estimators of the moments αp and βp. The compo-

nents of the first empirical moment are

C̄ =
1
n ∑ cos θ j and S̄ =

1
n ∑ sin θ j (2)

or, in polar representation,

R̄ =
√

C̄2 + S̄2 and θ̄ = arctan
S̄
C̄

. (3)

Since R̄ is the length of the mean of the unit vectors corresponding to the sample
values, it is called mean resultant length. It is an estimator of the population mo-
ment ρ and as such an empirical measure of the concentration of the underlying
distribution. Applied to a distribution of phase differences θ = ϕB −ϕA, we use it
as a measure of synchronization strength. R̄ takes on values in the range from 0 to
1, describing a continuum between no and perfect phase synchronization.

2Or in the general case of m : n synchronization, of the generalized phase difference mϕB − nϕA.
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An advantage of this measure is that it is possible to derive some useful facts
about its sampling distribution. Because C̄ and S̄ are sums of identically dis-
tributed contributions, due to the central limit theorem their asymptotic joint dis-
tribution is two-dimensional normal. The moments of this distribution depend on
the trigonometric moments of θ:

〈C̄〉 = α1

n var(C̄) = 1
2 (1 + α2 − 2α2

1)
〈S̄〉 = β1

n var(S̄) = 1
2 (1− α2 − 2β2

1 )
n cov(C̄, S̄) = 1

2 (β2 − 2α1β1)
(4)

For ρ > 0, the transformation from (C̄, S̄) to (R̄, θ̄) is locally linear, and so R̄ is
asymptotically normally distributed, too.

1.2 The two-samples test setup

R̄ is a measure of phase synchronization based on a sample of size n of the phase
difference θ of the coupled oscillators. It reflects the synchronization strength in a
certain state of the system of two oscillators. Since only in special cases it makes
sense to compare against a state of unsynchronized behavior, it is necessary to
obtain a reference level of synchronization. This is given by a second sample of the
phase difference from another state of the system of two oscillators. For each of the
samples θ1, j, θ2, j the value of the measure R̄1, R̄2 is calculated, and the question to
be answered by the test is whether the difference of these two values is significant.

The corresponding null hypothesis is that the population values of the synchro-
nization measure are equal: H0 : ρ1 = ρ2. The test decides if this hypothesis is to be
rejected or accepted based on the given information (the samples), and the impor-
tant part of the test design is to ensure that the probability for erroneous rejection
of the null hypothesis, the so-called error of the first kind, is equal to (or below) a
chosen value, the significance level of the test.

In the following, several different tests are presented. In the given form, all
of them assume that the size of the two samples is the same, but they are easily
generalized to different sample sizes n1 and n2. Initially, all of them assume that the
samples consist of independent values, that is they are obtained from independent
realizations of the process of phase synchronization. In this way the number of
samples is also the number of degrees of freedom inherent in the data (in total
2n). Since phase synchronization is a dynamical process in time this is a strong
constraint, and so in the last part of the paper some of the tests are generalized to
the case of partly dependent samples, so that the data from the underlying time
series can be fully utilized.

1.3 Accuracy and power of the tests

In several respects, the quality of the different tests going to be presented in the fol-
lowing sections will be judged on theoretical grounds. But in most cases, the per-
formance of a test cannot be theoretically deduced. Therefore, the tests have been
checked in a numerical simulation using random numbers generated according to
the wrapped normal distribution with the specified ρ.3 The essential parameter to
be calculated is the probability for the rejection of the null hypothesis. If the null

3For a definition of the wrapped normal distribution, see below Sec. 2.1. It is important to note that
except for the parametric test there is nothing in the derivation of the test procedures that relies on the
specific properties of this distribution. For the numerical simulation it has been necessary to choose
a specific distribution family, and the wrapped normal has been chosen because random numbers are
easily obtained and because it can be considered as a typical circular random distribution. Calculations
based on the von Mises distribution produced equivalent results.
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hypothesis ρ1 = ρ2 is true, this probability is called error of the first kind, which
has to be equal to or at least smaller than the significance level. For the general
case in which both ρs are arbitrarily chosen it is called the power function, because
the power of the test to recognize a situation not conforming to the null hypothesis
corresponds to this probability for ρ1 6= ρ2.

Figure 1 presents the results of the simulations. Two samples of size n = 100
from the wrapped normal distribution for the given values of ρ1 and ρ2 have been
generated, the respective test for a significance level of 5% has been performed
and the relative frequency of rejection as an estimator of the probabilty has been
calculated in 4,000 repetitions. Panel a) shows the rejection probability depending
on ρ with ρ1 = ρ2 = ρ (error of the first kind), panel b) depending on ρ1 with
ρ2 = 0, and panel c) the same for ρ2 = 0.4 and ρ2 = 0.8 (three sections through
the two-dimensional power function). Since the scale is much smaller in panel a),
the randomness of the probability estimation appears stronger here; the horizontal
black lines mark the mean ± s.d. to be expected from a binomial distribution.

In Fig. 1 a) it can be seen that all of the tests are valid for all values of ρ in the
sense that the chosen significance level is not exceeded. On the other hand, four of
the tests show errors that in the vicinity of ρ = 0 lie strongly below the upper limit.
This leads to a decreased power of these tests for testing against ρ2 = 0, as can
be seen in panel b). For higher values of ρ2, this weakness is no longer relevant;
the different lines are almost indistinguishable. What also can be seen in panel
c) is that the power of the tests increases (the valley of the power function gets
narrower) for those higher values. We will refer to these results in more detail in
the following sections.

2 Parametric Tests

A direct way to obtain a test is to assume that the distribution of θ belongs to a
certain family which can be described by a small number of parameters, of which
the concentration moment ρ is the most important. This is the approach taken by
Mardia in his monographs on directional statistics [Mardia & Jupp, 2000; Mardia,
1972]; it is mathematically justified, but we will see that its applicability is rather
limited.

2.1 Distributions of directional statistics

In directional statistics, instead of the normal distribution which is central to linear
statistics, there are two similar but different distributions, each of which shares
some of the special properties of the normal distribution. The first is the von Mises
distribution M(µ,κ), defined by the probability density function

pM(θ;µ,κ) =
1

2πI0(κ)
eκ cos(θ−µ). (5)

Ip denotes the modified Bessel function of the first kind of order p. µ specifies the
mean direction of the distribution and κ > 0 its concentration; the moments are
χp = Ip(κ)/I0(κ) exp(i pµ) and especially ρ = A(κ) ≡ I1(κ)/I0(κ). Main properties
of this distribution in analogy to the normal are that it is the one with maximum
entropy for fixed moments ρ and µ and the one under which the sample moment
θ̄ is the maximum likelihood estimator of a shifting parameter like µ. For our
application it is of special importance that the stationary solution of the Fokker
Planck equation of the simplest stochastic model of phase synchronization ϕ̇A,B =
ω0 + k sin(ϕ2,1 − ϕA,B) + ξA,B (where ξA,B is standard normal white noise) is a von
Mises distribution: θ ∼ M(0,4k).
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Figure 1: Investigation of the properties of the presented tests in a numerical simu-
lation based on wrapped normally distributed samples of size n = 100. a) Empiri-
cal error of the first kind in samples conforming to the null hypothesis ρ1 = ρ2 = ρ.
b) Power function for testing against a sample with ρ2 = 0. c) Power functions for
testing against a sample with ρ2 = 0.4 and ρ2 = 0.8, respectively. Each probability
has been estimated based on 4,000 simulations of the test for a significance level
of 5%.
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The other distribution corresponding to the linear normal one is the wrapped
normal distribution W(µ,σ) with the probability density

pW(θ;µ,σ) =
1√
2πσ

k=∞

∑
k=−∞

e−
1
2

(θ−µ+2πk)2

σ2 . (6)

µ specifies again the mean direction of the distribution and σ its dispersion. The
moments are χp = ρp2

exp(i pµ) with ρ = exp(− 1
2σ2). Main properties correspond-

ing to those of the normal distribution are that it is additive and that there exists
a central limit theorem which describes convergence to the wrapped normal dis-
tribution. The von Mises and the wrapped normal distribution can be related by
equating their concentration moments A(κ) = ρ = exp(− 1

2σ2). For extreme values
ρ → 0 or ρ → 1 they converge to each other and to the uniform or delta distri-
bution, respectively; however, for intermediate values the peak of the von Mises
distribution is sharper.

Since the von Mises and the wrapped normal distribution are closely related to
basic statistical properties of circular random variables, there is some possibility
that empirical distributions like that of the phase difference of coupled oscillators
may be described sufficiently well by one of them.

2.2 The variance-stabilizing transformation test

We have seen that for ρ > 0, R̄ is asymptotically normally distributed. Based on
the assumption that θ follows one of the two standard circular distributions, the
moments of the corresponding distributions of R̄ can be calculated. For the von
Mises distribution, they are

〈R̄〉 ∼= A(κ), n var(R̄) ∼= 1−A(κ)2 − A(κ)
κ

(7)

with A(κ) as above and for the wrapped normal distribution we get

〈R̄〉 ∼= ρ, n var(R̄) ∼=
1
2

(1− ρ2)2 (8)

with ρ as above, plus terms of order 1/n.
Following Mardia & Jupp [2000], we apply a variance-stabilizing transforma-

tion to obtain a suitable test statistic. Such a transformation can be defined for
a statistic Z on a sample of a random variable which follows a distribution with
a parameter a; then the moments of the statistic are functions of this parameter:
〈Z〉 = f (a), n var(Z) = g(a). If the transformation h(x) =

∫ x
0 1/

√
g( f−1(x)) dx is ap-

plied to the statistic, we get an approximately constant variance n var(h(Z)) ∼= 1.
In the case of the statistic R̄ on a von Mises or a wrapped normal distribution, the
corresponding transformations are

hM(x) =
∫ A−1(x)

0

√
A′(κ) dκ and hW(x) =

√
2 artanh x, (9)

respectively.4 Interestingly, the latter is up to a factor identical to the variance-
stabilizing transformation of the linear correlation coefficient, the well-known Fisher
Z transform [Sheskin, 1997].

The result of these transformations is now used to perform a test for a signifi-
cant difference of the concentration of two distributions. If we calculate the value

4The first integral can not be written in a closed form, but can be calculated numerically.
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of the concentration measure on each of the two samples, then under the null hy-
pothesis ρ1 = ρ2 the statistic

√ n
2 (h(R̄2)− h(R̄1)) follows asymptotically a standard

normal distribution. The hypothesis of equal concentration in the two samples has
to be rejected if the modulus of this quantity exceeds a certain value, which is given
by the percentiles of the normal distribution for a chosen significance level (i.e., a
Gauss test is to be performed).

The test is applicable if both samples follow the supposed distribution and
if the sample size is large enough so that the asymptotic approximation can be
applied. An additional restriction follows from the presupposition ρ > 0 in the
derivation of the sampling distribution of R̄; for a finite sample size it is necessary
that circa ρ1,2 > 3/

√
2n. For smaller values, the asymptotic distribution assump-

tion as well as the variance estimation implicit in the test are no longer correct.
In Fig. 1 (blue lines) it can be seen that this leads to a decrease of the error of the
first kind below the significance level and a corresponding suboptimal power for
testing against ρ2 = 0; still, the test seems to be valid in all cases.

2.3 Comparison with simulated phase synchronization distribu-
tions

As a classic example of a system exhibiting phase synchronization, we consider
two coupled chaotic Rössler oscillators [Rosenblum et al., 1996],

ẋA,B = −ωA,B yA,B − zA,B + ε (xB,A − xA,B),
ẏA,B = ωA,B xA,B + a yA,B, (10)
żA,B = f + zA,B (xA,B − c),

where a = 0.15, f = 0.2, c = 10, with a small frequency mismatch ωA,B = 1∓ 0.01.
Phases are defined to be ϕA,B = arctan yA,B/xA,B and the phase difference θ = ϕB −
ϕA.

Figure 2 shows the distribution of the phase difference in a numerical simula-
tion, which depends on the strength of the coupling. For a small value of ε = 0.005,
the resulting distribution may be well described by a fitted von Mises as well as a
wrapped normal distribution (a). If the coupling is increased to ε = 0.015, the peak
of the distribution is sharper than both of the fitted distributions (b). To make the
simulation more realistic for empirical data, artificial measurement noise in phase
space has been added (two-dimensional normal in the (x, y)-plane with s.d. σ = 5).
As a result, the distribution for the stronger coupling may again be described by
a fitted von Mises distribution, but not as well by a wrapped normal distribution
(c). It seems that measurement noise may increase the applicability of the standard
distributions in phase synchronization systems.

As can be seen from this, there surely are synchronization phase differences
which can be described by one of the standard normal distributions, but this is not
always the case. Not only that the parametric test may be not applicable; to be
precise, one would have to perform a separate test for goodness of fit in each case.
Though the parametric approach of Mardia is elegant and simple, it is therefore
necessary to look for a nonparametric means to test for phase synchronization.

3 A Simple Nonparametric Test

There is a classic nonparametric approach in statistics which is designed to test for
a significant difference of the means of two samples. Mean values and variances
are calculated from the sample and the difference of the means is divided by the
standard deviation of its estimation, resulting in the t statistic. If the sample values
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Figure 2: Histograms of the phase difference distribution of two coupled Röss-
ler oscillators in a numerical simulation, with fitted von Mises and wrapped nor-
mal distributions. a) Weak coupling ε = 0.005. b) Stronger coupling ε = 0.015. c)
Stronger coupling with additional measurement noise σ = 5.

are normally distributed, t is distributed according to a Student distribution with
f = 2 (n− 1) degrees of freedom [Sheskin, 1997].

Formally, it is possible to write the equation for R̄ in the form of a mean value,

R̄ =
1
n ∑ cos(θ j − θ̄), (11)

and correspondingly, the variance of the estimation can be directly calculated,

s2
R̄
∼=

1
n(n− 1) ∑

(
cos(θ j − θ̄)− R̄

)2
. (12)

With this, a t-like statistic is defined as

t =
R̄1 − R̄2√
s2

R̄,1 + s2
R̄,2

. (13)

This approach has two faults: The randomness of the mean phase difference θ̄ is
neglected, which leads to deviations especially for small values of ρ and therefore
inaccuracies in the calculation of the variance s2

R̄; and the distribution of cos(θ j − θ̄)
is certainly not normal.

However, the t-test proves to be very robust against deviations from the distri-
bution assumption for large samples, and so one can approximately assume that
the given statistic is distributed like a standard t random variable. Based on this,
the hypothesis of equal concentration has to be rejected if the modulus of this quan-
tity exceeds a certain value, which is given by the percentiles of the t f distribution
for a chosen significance level. In this approximation, the test is applicable for a
sufficiently large sample size.

The advantage of this approach is that it is generally applicable, but at the ex-
pense of theoretical accuracy. Despite of this, in the simulation (Fig. 1, green lines)
the test proves to have properties very similar to those of the parametric test for
the wrapped normal distribution. The tests presented in the following are non-
parametric with increasing accuracy, but also increasing computational demands,
and so the simple t test may be an option where precision is not that important.
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4 Bootstrap Techniques

The basis of the two testing approaches presented so far is the theoretical deriva-
tion of statistical properties of the used measure. This is also the cause for their
limitations, because either the specific distribution of θ has to be known or the ap-
plied approximations are not generally valid. There is a group of computational
techniques introduced by Efron & Tibshirani [1993] under the name bootstrap that
make it possible to investigate those statistical properties empirically, replacing
theory by the use of computer power. In the following, we will use some of these
techniques, and we will do this in a way that additionally includes theoretical
knowledge about R̄ to reduce the computational expense.

The basic idea is to generate “bootstrap replications” of the statistic of interest,
and to calculate its variance and other properties on the set of these replications.
To compute the sampling distribution of the statistic R̄, it is necessary to somehow
estimate the underlying distribution of the sample values, the population distribu-
tion of the random variable θ. The best knowledge we have about this distribution
is the sample θ j itself, and so the best (nonparametric) estimate of the population is
a discrete distribution with probability 1/n for each of the sample values. To gen-
erate new samples according to this estimate, one simply has to draw values from
the original sample with replacement. Formally, if k j ( j = 1 . . . n) are uniformly
distributed independent integer random numbers in the range 1 . . . n, then θk j

is a
bootstrap replication of the sample, and the statistic calculated on this sample is a
bootstrap replication of R̄. This technique is called resampling.

As a variant of the bootstrap, it is also possible to use a parametric estimate
of the distribution of θ. The parameters of the distribution are estimated from the
sample, and the replications of the sample are taken from random numbers follow-
ing the distribution with those parameter values. For our application, this would
not be a relevant improvement over the parametric approach explained above; it
would increase the complexity of the computations but only marginally improve
the accuracy of the test. But the special form of our statistic of interest, R̄, makes it
possible to perform a “parametric” bootstrap at an intermediate level. As we have
seen above, the asymptotic joint distribution of (C̄, S̄) is two-dimensional normal,
and the parameters of this distribution depend on the first and second trigonomet-
ric moments of the distribution of θ (see Sec. 1.1). This description is an approx-
imation based on the central limit theorem, but it is very good also for relatively
small sample sizes (about n ≥ 30); it is valid for every distribution of θ and for all
values of ρ. With this, it is possible to generate “parametric” bootstrap replications
of R̄ in a very direct way: The moments α1, α2, β1, and β2 are estimated from
the sample by the empirical moments, replications of (C̄, S̄) are generated accord-
ing to the corresponding two-dimensional normal distribution (see Eq. 4), and the
replication of R̄ is calculated as R̄ =

√
C̄2 + S̄2. In this way, it is not necessary to

generate replications of the sample itself, which drastically reduces the computa-
tion time (in our calculations, up to a factor 40). This is especially important if the
percentiles of the sampling distribution are to be calculated.5

4.1 Bootstrap t-test

A very straightforward application of these techniques is to modify the t-test (Sec. 3)
by replacing the direct variance estimation by the variance estimated from boot-
strap replications. About 200 “parametric” replications are generated for R̄1 and

5In the following we present tests based on bootstrap variance estimation and H0 simulation, as
well as the related permutation test. It is also possible to perform a test based on bootstrap confidence
intervals; these methods proved to be unreliable in the simulation and therefore have been left out.
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R̄2 each, and the variance of these replications is used as s2
R̄,1 and s2

R̄,2, respectively,
in Eq. (13). In this way, the inaccuracy of the direct variance estimation is removed.

The consequence of this becomes visible in the simulation (Fig. 1, red line). The
threshold for ρ below which the error of the first kind is smaller than necessary
gets nearer to 0, and therefore the power of the test is increased. But the theoretical
objections to the application of the t-test remain valid, and this improved version
is still just a low-precision approximation.

4.2 Bootstrap H0 simulation

Another approach is to use the bootstrap techniques to simulate the distribution
of the test statistic R̄1 − R̄2 under the null hypothesis. The underlying assumption
is that if ρ1 = ρ2, then the distributions of θ1 and θ2 are also the same. This same
distribution gets estimated by the distribution of the combined sample θ0,k, k =
1 . . .2n, where

θ0,k =
{

θ1,k for k ≤ n
θ2,(k−n) for k > n . (14)

Bootstrap H0 “replications” for R̄1 and R̄2 are generated by resampling or via
the “parametric” approach from this combined sample (but with sample size n),
and the replication of |R̄1 − R̄2| is calculated. About 200/significance level values
(4,000 for 5%) are generated, and the 200th largest of them is used as the rejection
threshold of the test. That is, the null hypothesis is to be rejected if the actual value
of |R̄1 − R̄2| exceeds this threshold.

It is important to see that the generated R̄ values are not replications of the
value on the original sample, but that they correspond to a distribution according
to the null hypothesis, which is simulated by the union of the two samples. The
theoretical basis of this test is much better than that of the bootstrap t-test, because
there is no assumption for the distribution of the test statistic, but this distribution
is simulated explicitely. However, in the simulation (Fig. 1, cyan line) their perfor-
mances seem to be essentially the same, and this at a much higher computational
expense. Like before, there is a range of small ρ values for which the error of the
first kind is smaller than necessary, decreasing the power of the test. The cause for
this is that the bootstrap H0 simulation is not exact. This is improved in the next
section.

4.3 The permutation test

According to Efron & Tibshirani [1993], the bootstrap simulation of the null hy-
pothesis distribution of R̄1 − R̄2 is not exact, because the properties of the original
sample are not preserved. In the general bootstrap case that cannot achieved, be-
cause to preserve them exactly would make the random variation impossible that
is necessary to estimate the sampling distribution. But in the two-samples situa-
tion it is possible to introduce random variation and still preserve the statistical
properties of the combined sample representing the null hypothesis distribution.
The trick is to generate new samples θ1, j and θ2, j by randomly exchanging sample
values between them. That is, the new samples are the first and second half of a
random permutation of the combined sample θ0,k. Formally, if k` is a random per-
mutation of the integers 1 . . .2n, then the “replication” of R̄1 is calculated on θ0,k`

with ` = 1 . . . n and of R̄2 on θ0,k`
with ` = (n + 1) . . .2n. The following calculation

is the same as for the bootstrap H0. Such a testing procedure for the comparison of
two samples is called a permutation test; it is very similar to the standard bootstrap
approach, but is much older than bootstrap theory.
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The theoretical accuracy of this test reflects itself in the simulation results (Fig. 1,
magenta line). The permutation test is the only one that perfectly adheres to the
chosen significance level for all values of ρ. Accordingly, its power for testing
against ρ2 = 0 is the highest of all tests presented, which is especially important
for small differences in ρ. The price of this superior performance is the high com-
putational cost. Since every two simulated samples as well as the sample values
in them are not independent of each other because of the permutation underlying
their selection, the computation cannot be abbreviated by the “parametric” ap-
proach introduced above for the bootstrap computations. The permutations have
really to be carried out and the “replications” of the test statistic have to be calcu-
lated directly from the generated samples.

5 Data from Time Series

As has been explained in Sec. 1.2, in the form presented above all the tests as-
sume that the sample values in every sample are independent of each other, and
that means they have to be obtained from independent realizations of the process
of phase synchronization. The phase difference in a given realization is a func-
tion of time, θ(t). There are a number of different realizations of the process, θ j(t),
j = 1 . . . n, and each of the sample values has to be obtained from another realiza-
tion, typically corresponding to the same time point t0: θ j = θ j(t0). This is necessary
because in this way the sample size n is also the number of degrees of freedom in-
herent in the data. If one would use time series data from consecutive time points,
the amount of statistical dependency reducing the number of degrees of freedom
below the sample size would not be known. In the case of the parametric tests, the
simple t-Test, and the “parametric” bootstrap tests this number directly enters into
the equations, determining the variance of the test statistic.

In the case of the resampling-based version of the bootstrap tests, the situation
is a little bit different. Here, the aim is to produce replications of the sample that
have the same statistical properties as the original. Since resampling works by
drawing with replacement, the new sample values are statistically independent,
and by making the size of the new samples equal to n, the equivalence is granted.
This would no longer work if one would simply put partly dependent data into
the original samples and use that for resampling, because the structure of those
dependencies would be destroyed in the resampling process.

But there is a version of resampling which takes this into account. If the real-
ization of the process θ j(t) is sampled at certain time points tm, then the original
sample gets a two-dimensional structure: θ jm = θ j(tm). The resampling now has
to be performed in a way that does not destroy the dependency structure within
the rows (constant j). This is accomplished by simply treating each row as a single
vector-valued sample value ~θ j = (θ j•), and to perform the resampling by drawing
from the set of these row vectors in the original sample. The same method can be
used to adapt the permutation test to partly dependent data.

In this way, the full information from time series data can be utilized in the test,
increasing its power. But it is important to see that one still needs multiple inde-
pendent realizations of the process; if the sample just contains one vector sample
value, there is nothing to resample or to permute. It will just be the case that the
number of realizations needed to distinguish two states in a test is decreased be-
cause of the increased statistical power inherent in each sample value.

Since in this case the “parametric” bootstrap can no longer be used, but the
resampling has actually to be performed, the advantage in terms of computational
expense of the bootstrap H0 simulation versus the permutation test gets lost, and
so practically the latter is the method of choice because of its superior accuracy.
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Eventually, the bootstrap t-test may still be an alternative, if it is known in advance
that all ρ values are sufficiently different from zero.

6 Conclusion

We have presented several different tests for phase synchronization, improving
the procedures currently used in the literature. The improvements have been ac-
complished by using a test setup in which two samples of phase differences are
compared and by applying insights and methods from directional statistics and
bootstrap theory.

The presentation of the tests has been started with parametric procedures which
derive from the assumption of a specific family of phase difference distributions.
These are mathematically elegant and simple but have been shown to be applicable
only in special cases of phase synchronization. A first attempt at a nonparametric
procedure that relies on the robustness of the t-test has given the impression to
perform reasonably well but has a weak theoretical basis. Following this, mathe-
matically valid nonparametric test procedures have been obtained using bootstrap
techniques; here we were able to strongly reduce their high computational cost by
introducing a “parametrization” at an intermediate level. As a step beyond the
bootstrap, the permutation test has been described as a perfectly exact but com-
putationally intensive nonparametric test method. We have closed the paper with
instructions how bootstrap-based and permutation tests are correctly applied to
partly dependent samples like time series data.

In summary, the paper has presented a variety of testing procedures and high-
lighted their specific advantages and drawbacks.
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