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Abstract

Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained
an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an under-
standing and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van der
Pol oscillators a full description of all possible dynamical regimes, their mutual transitions and characteristics is still lacking.
We present here a study of the phenomenon of mutual synchronization for two non-scalar-coupled non-identical limit-cycle
oscillators and analyze phase, frequency and amplitude characteristics of synchronization regimes. A series of bifurcation
diagrams that we obtain exhibit various regions of qualitatively different behavior. Among them we find mono-, bi- and mul-
tistability regions, beating and “oscillation death” ones; also a region, where one of the oscillators dominates the other one is
observed. The frequency characteristics that we obtain reveal three qualitatively different types of synchronization: (i) on the
mean frequency (the in-phase synchronization), (ii) with a shift from the mean frequency caused by a conservative coupling
term (the anti-phase synchronization), and (iii) on the frequency of one of the oscillators (when one oscillator dominates
the other).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the first observation of synchronization made by Huygens[1] in the 17th century this phenomenon has
attracted much attention of researchers (for a review, see Refs.[2,3]). It was mainly caused by the fact that
this phenomenon is characteristic of many processes observed in nature and science. Appleton[4] and van der
Pol [5] have shown the possibility of synchronization of triode generator by a weak external periodic signal.
External synchronization of self-oscillatory systems was studied by Andronov and Vitt[6,7] and Mandelshtam
and Papaleksi[8]. Mutual synchronization of two quasi-harmonic self-oscillators was first studied by Mayer[9]
and Gaponov[10]. For self-oscillators in relaxation regime externally forced synchronization was investigated

∗ Corresponding author. Tel.:+83-126-56242; fax:+83-126-56416.
E-mail address:ivanchenko@mail.nnov.ru (M.V. Ivanchenko).

0167-2789/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.physd.2003.09.035



M.V. Ivanchenko et al. / Physica D 189 (2004) 8–30 9

by Cartwright and Littlewood[11,12]; mutual synchronization by Bremsen and Feinberg[13] and Teodorchik
[14].

More recent studies show permanent interest in the problem of mutual synchronization of limit-cycle oscillators.
The limits of strong and small (compared to damping in the isolated oscillator) coupling were studied in Refs.[15,16].
The appearance of the “oscillator death” effect in ensembles of globally coupled oscillators with randomly distributed
frequencies was investigated in Ref.[17]. In Refs.[18,19] synchronization of (isochronous and non-isochronous
as well) limit-cycle oscillators (in case of coupling being of the same order as damping in the isolated oscillator)
was quite scrupulously studied for some types of coupling. Synchronization phenomena in ensembles of coupled
limit-cycle oscillators have also been intensively studied in recent years, see Refs.[20–22]. In Ref. [23] relevant
results were obtained for the complex Ginzburg–Landau equation with spatial non-uniformity of natural frequency.
Nevertheless, new dynamical regimes are still being found even in the classical case of two coupled van der Pol
oscillators.

In the present paper synchronization between two coupled non-identical limit-cycle oscillators will be stud-
ied. We treat a quite general type of coupling that combines dissipative and conservative couplings. The mis-
matches between the interacting systems will also be of different nature (in the frequency and the amplitude
ones). The existence of synchronization regimes and their phase, frequency and amplitude characteristics will
be studied in dependence upon these parameters. The mono-, bi- and multistability properties of synchroniza-
tion between such systems will be investigated in detail and illustrated by bifurcation diagrams in the
parameter space. An interval of optimum coupling parameters, for which synchronization persists for arbi-
trary large mismatches between the systems, is found, and an explanation of this phenomenon will be
presented.

This paper is organized as follows. InSection 2we describe the model under study. InSection 3we shortly
discuss previously obtained results, which include a quite detailed description of well-studied cases of purely dis-
sipative and purely conservative types of coupling. InSection 4we present numerical results for the case when
both types of coupling are introduced and only the frequency mismatch exists. The properties of correspondent
synchronization regimes will be discussed inSection 5. In Section 6the combination of frequency and ampli-
tude mismatches is considered and properties of synchronization are studied. InSection 7we summarize our
results.

2. Mathematical model

In our work we study a system of two non-scalar-coupled non-identical van der Pol oscillators, which, when
isolated, differ in frequency and amplitude of stationary regime. In general, the coupling is supposed to contain both
dissipative and conservative terms. This system is described by the following equations:

ẍ1 + x1 = µ(1 − x2
1)ẋ1 + µα(x2 − x1) + µβ(ẋ2 − ẋ1),

ẍ2 + (1 + µ∆)x2 = µ(1 + γ − x2
2)ẋ2 + µα(x1 − x2) + µβ(ẋ1 − ẋ2), (1)

where we assumeµ � 1,α andβ regulate the rate of the conservative and dissipative coupling, respectively,γ and
∆ define the amplitude and the frequency mismatches. We would like to stress that, in spite of the coupling’s being
of quite general form, it is, at the same time,characteristicof van der Pol oscillators andeasy to be organized. By
averaging(1) we obtain

ż1 = z1(1 − z1z̄1) + (β − iα)(z2 − z1), ż2 = z2(1 + γ − z2z̄2) + i∆z2 + (β − iα)(z1 − z2), (2)
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z1 andz2 being complex amplitudes. Conversion to real amplitudes and phasesz1 = (R1/2) e−iφ1,z2 = (R2/2) e−iφ2

yields

Ṙ1 = R1(1 − β − 1
4R2

1) + R2(α sin(φ1 − φ2) + β cos(φ1 − φ2)),

Ṙ2 = R2(1 + γ − β − 1
4R2

2) + R1(−α sin(φ1 − φ2) + β cos(φ1 − φ2)),

R1φ̇1 = −αR1 + R2(α cos(φ1 − φ2) − β sin(φ1 − φ2)),

R2φ̇2 = −(α + ∆)R2 + R1(α cos(φ1 − φ2) + β sin(φ1 − φ2)). (3)

Writing this system in terms of the phase differenceφ = φ1 − φ2, we get the system that we are going to deal with
in order to study synchronization processes in the original system(1):

Ṙ1 = R1(1 − β − 1
4R2

1) + R2(α sinφ + β cosφ), Ṙ2 = R2(1 + γ − β − 1
4R2

2) + R1(−α sinφ + β cosφ),

φ̇ = ∆ + α

(
R2

R1
− R1

R2

)
cosφ − β

(
R2

R1
+ R1

R2

)
sinφ. (4)

As long as non-zero rest states of(4), which are solutions of

R̄1(1 − β − 1
4R̄2

1) + R̄2(α sinφ̄ + β cosφ̄) = 0, R̄2(1 + γ − β − 1
4R̄2

2) + R̄1(−α sinφ̄ + β cosφ̄) = 0,

∆ + α

(
R̄2

R̄1
− R̄1

R̄2

)
cosφ̄ − β

(
R̄2

R̄1
+ R̄1

R̄2

)
sinφ̄ = 0, (5)

correspond to synchronization regimes of(1) we focus our attention on analyzing these rest states of(4). Finding
bifurcation curves, where the rest states change their stability, emerge or disappear allows us to obtain regions
of qualitatively different behavior in the(α, β, γ, ∆) parameter space. Besides, we get the boundaries, where
limit cycles of (4) that correspond to quasi-periodic solutions of(1) (i.e. beating regimes) appear, and investi-
gate the stability of the zero rest state (which is evidently not captured by(4) and (5)) performing linear analysis
in (2).

3. Previous results and general description

Various special cases of(1) have been analyzed by many authors. Here we state their results briefly as we are
going to address them later.

Purely dissipative coupling. A complete analysis of(1) in case of a purely dissipative coupling (α = 0) and zero
amplitude mismatch (γ = 0) is reported in Ref.[18]. In this case the following symmetry property takes place:(4)
is invariant under the transformationR̄1 → R̄2, R̄2 → R̄1. The bifurcation diagram in the(β, ∆) plane is presented
in Fig. 1.

Throughout the present paper the following symbols are used: Di
j denotes the region in whichj is the total number

of the rest states (including zero rest state), andi the number of the stable ones. So D0
3 corresponds to the region

where no stable steady state exists, i.e. the beating regime takes place. In D1
1 the only stationary (and stable) solution

of (1) is the zero rest state (x1,2 = ẋ1,2 = 0), and the oscillator death takes place. In every other region the only
stable solution possesses the constant phase differenceφ̄. Further we are going to classify a solution as the in-phase
one if |φ̄| ≤ π/2 and otherwise as the anti-phase one (it is justified by the fact that almost in the whole region of
their existence these solutions do satisfy|φ̄| � π/2 or |φ̄ − π| � π/2).

These designations allow to avoid an extensive and tedious description of bifurcations that occur in transition
from one region to another one. Nevertheless, we would like to go over the details in interesting special cases, which
were studied before. This also allows us to clear up our designation scheme.
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Fig. 1. Bifurcation diagram forα = 0, γ = 0. In D1
5, D1

3, D1
2 the in-phase synchronization exists. D0

3 denotes the beating regime and D1
1

corresponds to the “oscillator death” regime.

In the(β, ∆) parameter plane (Fig. 1) the following bifurcations are observed:

• If we move from D1
5 to D0

3, a stable and a saddle rest states of(4) merge and disappear through a saddle-node

bifurcation. In general, if we cross the line between regions Di1
j1

and Di2
j2

and the number of stable rest statesi1,2

changes on 1 (i2 = i1 ∓ 1) and the total number of rest statesj1,2 changes on 2 (j2 = j1 ∓ 2), then asaddle-node
bifurcation takes place. Nevertheless, there is a notable exception in case∆ = 0, which we are going to discuss
a bit later.

• If we move from D1
5 to D1

3, then two saddle rest states of(4) (one with dimWs = 1, dimWu = 2 and another
with dimWs = 2, dimWu = 1) merge and disappear through a saddle-saddle bifurcation. In general, if we move
from region Di1

j1
to Di2

j2
and the number of stable rest statesi1,2 does not change (i2 = i1) and the total number

of rest statesj1,2 changes on 2 (j2 = j1 ∓ 2), then asaddle-saddle bifurcationoccurs.
• If we move from D1

2 to D1
1 (or from D1

3 to D1
2) then a stable (or saddle) rest state of(4) merges with the origin,

which is always a solution of(1) and (2)(in (1) a stable (or saddle) limit cycle merges with the origin in a
supercritical Andronov–Hopf bifurcation).

• At last, if we move from D03 to D1
1 two saddle limit cyclesanda stable torusmerge simultaneously withthe origin

in system(1), and the last one becomes stable. This bifurcation takes place only due to the symmetry property of
the system, mentioned above, and does not exist if at leastα �= 0 orγ �= 0.

To conclude the treatment of this case, we underline that one synchronization regime exists in the regions D1
5, D1

3
and D1

2 and it is an in-phase one.
Purely conservative coupling. The results reported in Ref.[24] refer to the case of purely conservative coupling

(β = 0) and zero amplitude mismatch (γ = 0). The bifurcation diagram in the parameter plane(α, ∆) is presented
in Fig. 2. In this case(4) is invariant under the transformation̄R1 → R̄2, R̄2 → R̄1, φ̄ → φ̄ − π that gives pairs of
symmetric solutions.

The following bifurcations are observed:

• At the transition from D27 to D2
3 two saddle-saddle bifurcations occur simultaneously. In general, if we move from

region Di1
j1

to Di2
j2

and the number of stable rest statesi1,2 does not change (i2 = i1) and the total number of rest
statesj1,2 changes on 4 (j2 = j1 ∓ 4), thentwo saddle-saddle bifurcationsoccur simultaneously.
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Fig. 2. Bifurcation diagram forβ = 0 andγ = 0. Here D2
7 and D2

3 are regions of bistability. D03 corresponds to the beating regime.

• At the transition from D27 to D0
3 two saddle-node bifurcations occur simultaneously. In general, if we move

from region Di1
j1

to Di2
j2

and the number of stable rest statesi1,2 changes on 2 (i2 = i1 ∓ 2) and the to-
tal number of rest statesj1,2 changes on 4 (j2 = j1 ∓ 4), thentwo saddle-node bifurcationsoccur simul-
taneously.

• At the transition from D23 to D0
3 two supercritical Andronov–Hopf bifurcations occur simultaneously. In general,

if we move from region Di1j1
to Di2

j2
and the number of stable rest statesi1,2 changes on 2 (i2 = i1 ∓ 2) and the

total number of rest statesj1,2 does not change (j2 = j1), thentwo supercritical Andronov–Hopf bifurcations
occur simultaneously.

In this case we observe bistability of synchronization regimes in the regions D2
3 and D2

7.
To complete the list of bifurcation types, which take place in our system, we should add the following ones, which

do not occur in the cases described above:

• If by crossing a bifurcation curve between the regions Di1
j1

and Di2
j2

the number of stable rest statesi1,2 changes
on 1 (i2 = i1 − 1) and the total number of rest statesj1,2 does not change (j2 = j1), then a stable focus of(4)
becomes unstable through asupercritical Andronov–Hopf bifurcationand a stable limit cycle appears (e.g., the
transition D2

3 → D1
3 (Figs. 3, 4, 6 and 12)).

• In the case∆ = 0, j2 = j1 ∓ 2 andi2 = i1 ∓ 1 corresponds topitchfork bifurcationin system(4). Consequently,
in system(1) D2

3 → D3
5 and D1

5 → D2
7 (Figs. 5 and 6) correspond tosymmetry breaking bifurcations in which

stable and two saddle limit cycles are involved.

Following this scheme one can easily identify which bifurcation each curve corresponds to.
In the caseγ = 0, α, β � 1 an analytical approach has proved to be successful[16]. As the rest states near the

unperturbed (α = β = 0) values of amplitudes̄R0
1 = R̄0

2 = 2 are sought, let

R̄1 = 2 + r1, R̄2 = 2 + r2, (6)
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Fig. 3. (a) Bifurcation diagram forα = 0.1, γ = 0; (b) bifurcation diagram forα = 0.27,γ = 0; (c) bifurcation diagram forα = 0.33,γ = 0;
(d) bifurcation diagram forα = 0.5, γ = 0 (regions framed with rectangle are presented enlarged inFig. 4(a), (c) and (d), respectively). In the
regions with the upper index “2” bistability takes place. Except for the case D1

1 (the “oscillator death”), the upper index “1” means monostable
synchronization. As before, D03 corresponds to the beating regime.

wherer1, r2 � 2. Then

r1 = α sinφ̄ + β( cosφ̄ − 1), r2 = −α sinφ̄ + β( cosφ̄ − 1), (7)

gives the reduction of(4) to O(α2, αβ, β2):

∆ − α2 sin 2φ̄ − 2β sinφ̄ = 0. (8)

According to Ref.[16], (8) can have four, two, or no solutions at all. These solutions correspond to the rest states
of (4), and among them one or two may be stable.

According to Ref.[16], the region of bistability of the in-phase (φ̄ ≈ 0) and the anti-phase (φ̄ ≈ π) solutions
appears near(0, 0) in the(β, ∆) parameter plane (Figs. 3(a) and 4(a)), whenα is slightly increasing from zero.

Besides, an analytical approach Ref.[18] allows to show the appearance of a bistability regime nearβ = 1/4
whenα = 1/4 and its further expansion down toβ = 1/6 (which gives the maximum of the bifurcation curve
α2 = β − 3β2 shown inFig. 4(b)) asα is increased (Fig. 4(b)) in case∆ = 0, γ = 0 (the symmetry provides exact
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Fig. 4. (a) Part of the bifurcation diagram forα = 0.1, γ = 0; (b) bifurcation curves for∆ = 0, γ = 0 (barred region is presented enlarged
in Fig. 5), in πS the exact anti-phase rest state (φ̄ = π) is stable, inπU it is unstable; a curve with quadratic form corresponds to the pitchfork
bifurcation, the lineβ = 1/4 denotes the Andronov–Hopf bifurcation; (c) part of the bifurcation diagram forα = 0.27,γ = 0 (barred region is
presented enlarged inFig. 6); (d) part of the bifurcation diagram forα = 0.33,γ = 0. In the regions with the upper index “2” bistability takes
place. The upper index “1” means monostable synchronization. As before, D0

3 corresponds to the beating regime.

in- and anti-phase solutions (φ̄ = 0 andφ̄ = π)) that agree with Ref.[24] for β = 0,∆ = 0 andγ = 0. By crossing
the curveα2 = β − 3β2, the anti-phase solution becomes involved in the pitchfork bifurcation; ifα2 > β − 3β2.
Then by crossingβ = 1/4, a supercritical Andronov–Hopf bifurcation occurs.

In Ref. [19] the equations of a form similar to(1) were analyzed. However, the assumptions were made that
α = 0, γ is not necessarily zero, coupling is direct and not diffusional. The authors were particular about studying
effects caused by the non-isochronity of oscillators. In contrast, we donotmake anisolatedsystem possesscomplex
dynamicsbut considercoupling of a good deal of generality.

In our studies we analyze the present system in detail for allα, β, γ and∆. Having numerically found the solutions
of (5) (i.e. rest states of(4)), we determine their stability computing the correspondent eigenvalues using(4), thus
deriving, which type of the region the concrete parameter values correspond to. Moreover, we focus our attention
on the dependence of thephase, frequency and amplitude concerning synchronizationon the parameter values.
These characteristics are apparently very important ones, all the while they have not been considered in Refs.
[15–19].
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Fig. 6. Part of bifurcation diagram forα = 0.27,γ = 0 illustrating the changes in multistability regimes non-zero∆ leads to. The upper indexes
“1”, “2” and “3” correspond to the number of stable synchronization regimes.

4. The case of non-zero frequency mismatch

To begin with, we assume thatγ = 0 and gradually increase conservative couplingα from zero. We illustrate the
dynamics of the studied system by plotting bifurcation diagrams that we derive using numerical algorithms, in the
(β, ∆)-plane for a sequence ofα.
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Appearance of bistability and Andronov–Hopf bifurcation: removal of degeneration. The region of bistability
appears near∆ = 0, β = 0 and has the very form and size it should possess according to Ref.[16] (Fig. 4(a)). The
global picture also changes qualitatively (Fig. 3(a)). Now the degenerated pointβ = 1, ∆ = 2 vanishes and the
direct transition from the beating regime D0

3 to the oscillator death regime (atβ = 1, ∆ ≥ 2) becomes impossible.
The new way is D03 → D1

3 → D1
2 → D1

1 and it requires this sequence of bifurcations to happen. Besides, if
dissipative coupling (β) is strong enough, the transition from the in-phase synchronization regime to the beating
one is realized through a supercritical Andronov–Hopf bifurcation: D1

3 → D0
3; for weak dissipative coupling (β) a

saddle-node bifurcation happens: D1
5 → D0

3.
Enhancing of bistability properties: special types of bistability. As said before, whenα exceeds the threshold 1/4

a new region of bistability appears (Fig. 4(c), region D2
3). Whenα is increased further, the regions D2

7 and D2
3 extent

and finally merge (Fig. 4(d)). The principal result of this is that now the stability of the anti-phase synchronization
regime can be lost not only through a saddle-node bifurcation but also as a result of a supercritical Andronov–Hopf
bifurcation. It reveals the existence of qualitatively new effects, namely the bistability of a rest state and a limit
cycle or that of two limit cycles of(1).

Andronov–Hopf bifurcation takes over the system. Finally, when the conservative couplingα turns strong enough,
the bifurcation diagram becomes far less complex (Fig. 3(d)). We would like to note especially that the saddle-node
bifurcation does not govern the system any more; each change occurring due to the supercritical Andronov–Hopf
bifurcation in (4) (D2

3 → D1
3, D1

3 → D0
3) or in (1) (D1

3 → D1
2, D1

2 → D1
1). D2

3 → D1
3 leads to the coex-

isting of a stable rest state and a stable limit cycle, D1
3 → D0

3 leads to bistability of limit cycles (or beating
regimes in(1)).

Multistability regimes. Let us now turn back toFig. 4(b) and increaseβ gradually, whileα remains constant,
1/4 < α < 1/2

√
3 and∆ = 0. According to Ref.[18], transitions across the parabolic lineπS ↔ πU (in πS the

exact anti-phase rest state (φ̄ = π) is stable, inπU it is unstable) correspond to pitchfork bifurcation that involves the
anti-phase synchronization regime. Obviously, it is in perfect agreement withFig. 4(c) when the anti-phase solution
loses its stability as D27 → D1

5, but a direct transition D15 → D2
3 through the pitchfork bifurcation is impossible. A

detailed analysis reveals utterly amazing results. The part of the bifurcation diagram on the right to the maximum of
the curveα2 = β−3β2 (Fig. 4(b)) is presented inFig. 5. As long as two simultaneous Andronov–Hopf bifurcations
occur in transitions D15 → D3

5, D2
7 → D4

7, regions, where three and four stable solutions coexist, appear (new stable
solutions are anti-phase). Apparently, going backwards D3

5 → D1
5 or D4

7 → D2
7 we find ourselves in the regions of a

special kind of multistability: two limit cycles and one or two rest states, respectively, are simultaneously stable. Our
results show that∆ �= 0 makes these regions vanishing rapidly and violates simultaneousness two Andronov–Hopf
bifurcations (Fig. 6).

As long as stable non-zero rest states are of special interest in applications, we would like to summarize the results,
described above and present synchronization regions for different values of conservative couplingα (Fig. 7). There,
the evolution of the in-phase synchronization and bistability regimes regions is shown. The region, where at least
one synchronization regime exists, is marked S (Fig. 7(a)) and lies beneath the bifurcation curves that separate it
from the beating regime region B (to the left) and the oscillator death region OD (to the right). This comparison
clearly shows that the increase of the strength of conservative coupling makes the synchronization region growing
at the expanse of the oscillator death and the beating ones. According to the presented results, an optimal strength of
dissipative coupling can be claimed to exist. Here synchronization holds for an arbitrary large frequency mismatch
and the “channel” around the asymptoteβ = 1 broadens as conservative coupling is increased. At the same time,
the region, where only one stable (in-phase) synchronization regime exists (0S1, Fig. 7(b)), is partially substituted
by the region of bistability S2. The latter is situated under the bifurcation curves (for differentα, respectively)
that divide it from the former one. Note that while the height of S2 gradually increases, its width cannot exceed
β = 1/4.
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regime region is marked by B, the “oscillator death” region is marked by OD. (b) Boundaries of the bistability regime (for each value ofα the
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5. Characteristics of synchronization regimes

Now we study the frequency and the amplitude characteristics of the synchronization regimes existing in our
system.

If α, β � 1, then using propositions discussed inSection 3, one can easily get the frequency synchronization

ωs = −φ̇1 = −∆

2
− α(1 − cosφ̄) (9)

(the frequency, observed in the system(1) is ω̃s = 1 + µωs/2) neglecting terms of O(αβ).
According to(9), the in-phase solution implies synchronization has the mean frequency

ωs = −φ̇1 = −φ̇2 ≈ ∆

2
(10)
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and that of the anti-phase solution the synchronization frequency is

ωs = −φ̇1 = −φ̇2 ≈ 2α + ∆

2
. (11)

Numerical simulations show that there is no qualitative difference in the case whenα andβ are not small (Fig. 8(a)–
(d)). This leads to the conclusion that the phase, frequency and amplitude of synchronization remain qualitatively the
same in a broad range of parameter values, and show deviations only near a saddle-node bifurcation. In particular,
the synchronization frequency is also in a quite good quantitative agreement with(10) and (11).

It turns out that additional synchronization regimes that providemultistability in the system (see regions D3
5 and

D4
7 in Figs. 5 and 6), do not contribute qualitatively new frequency values (Fig. 9(a) and (b)). In fact, they remain

stable only in a narrow region, when they are situated near anti-phase solution, as considered above. Being in this
vicinity, they posses some identical characteristics, namely, they are also anti-phase solutions, although, the changes
in the amplitude values are quite distinct and give an illustration of the pitchfork bifurcation, taking place in the
system(4) (symmetry breaking bifurcation of stable limit cycle in the original system(1)).

Frequency asymmetry. Now let us turn to the area between the beating regime and the oscillator death regions
with characteristic value ofβ near 1 (Fig. 7(a)) that we have described before as an optimal coupling value. The
correspondent boundary curves have an asymptoteβ = 1, the width of this region decreases to zero for∆ → ∞.
Increasing gradually∆, we get the following numerical result: the synchronization properties change dramatically
and a new regime appears. The frequency of synchronization deviates from the mean frequency and approaches
that of the first oscillator (Fig. 10(c)), which equals

ωs = α. (12)

At the same time its amplitude exceeds the amplitude of the second one substantially, showing finally an almost
complete dominance (R̄1 � R̄2) (seeFig. 10(a)). Besides the phase difference of synchronization seems to approach
some limit value (Fig. 10(b)). The comparison shows that the difference of the synchronization frequency from that
of the isolated first oscillator|ωs − α| and the rate of the amplitudes 1/r = R2/R1 are equally small, while
approaching limit values (Fig. 10(d)).

This result deserves a detailed consideration as it claims the existence of a principle frequency asymmetry induced
by a non-zero∆. In spite of the fact thatµ∆ is always small, which naturally leads to the assumption of oscillator’s
equality with respect to frequency values, the following situation takes place: the smaller frequency turns to be
preferred for a large frequency mismatch∆, whenβ is too big to allow the beating regime exist, though not big
enough to cause oscillator death.

In order to prove this result, we seek the solution of(5) in the form

R̄2 = R̄1

r
, (13)

wherer � 1 (i.e.R̄1 � R̄2). Then, neglecting terms of O(1/r2), we simplify (5) to the following system:

R̄1(1 − β − 1
4R̄2

1) + R̄2(α sinφ̄ + β cosφ̄) = 0, R̄2(1 − β − 1
4R̄2

2) + R̄1(−α sinφ̄ + β cosφ̄) = 0,

∆ − (α cosφ̄ + β sinφ̄)r = 0. (14)

Using(13)we get

r(1 − β − 1
4R̄2

1) + α sinφ̄ + β cosφ̄ = 0, 1 − β − R̄2
1

4r2
+ r(−α sinφ̄ + β cosφ̄) = 0,

r = ∆

α cosφ̄ + β sinφ̄
. (15)
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Fig. 8. Phase difference, synchronization frequency and amplitude characteristics of the in- and anti-phase solutions: (a) and (c) stable in-phase
solution for fixed∆ = 1; (b) and (d) stable anti-phase solution, typical amplitude values for: (e) the in-phase (α = 0.5, ∆ = 1); (f) anti-phase
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Let β = 1, then from the first equationr(R̄2
1/4) ≤ √

α2 + 1, consequentlȳR2
1/4r2 � 1. This yields

R̄1 = 2

√
2α

∆
, r = ∆√

α2 + 1
, tanφ̄ = 1

α
, (ω2)s = −ϕ̇2 = α. (16)

Evidently, the bigger∆, the more preciselyr � 1 is obtained, and the better our approximate solution fits the
original system and the closer toα the frequency of synchronization is.

Transition to the beating regime. Another important characteristic of interacting systems, where synchronization
can take place, is the averaged beating frequency. Its definition is

ωb = lim
T→∞

1

T

∫ T

0
φ̇ dt = lim

T→∞
φ(T) − φ(0)

T
. (17)

Three types of qualitatively different behavior may be observed in this system:

• φ = ϕ1 − ϕ2 = const. corresponds to the synchronization regime,ωb = 0.
• |φ| = |ϕ1−ϕ2| ≤ const. means that a stable limit cycle exists, and changes in the phase difference of the solution

are limited (it is called “phase entrainment”[24] or “phase trapping”[18]); ωb still equals zero.
• Finally, if |φ| = |ϕ1 −ϕ2| grows unbounded,ωb �= 0 now, then a stable limit cycle (also called a “libration orbit”

[24]) corresponds to a phase drift regime.

The transition between the second and the third types of behavior was the subject of study in Ref.[24] for the special
caseα �= 0, ∆ �= 0, β = γ = 0.

In the general case, which we are dealing with in the present paper, each of the possible transitions has been
analyzed. We have investigated the ways of losing synchronization that appear in this system obtaining numerically
(performing simulation of the original system(1) for µ = 0.1) the averaged beating frequencyωb for γ = 0,
changing∆, a fixedα, and a sequence ofβ (Fig. 11(a)) and vice versa (Fig. 11(b)). These diagrams present visual
information about the behavior of the system. Indeed, when a stable rest state disappears through a saddle-node
bifurcation, a stable limit cycle with a phase difference growing unbounded is born instead. As long as the flow slows
down near the location of the former rest state, the period of this cycle is very big near the bifurcation point, making
the averaged beating frequency increasing continuously (Fig. 11(a)), i.e. a “soft” transition to synchronization takes
place. Nevertheless, the biggerβ, the sharper the slope of the frequency curve is. Quite the opposite scenario is
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Fig. 11. Averaged beating frequency calculated in original system(1) for µ = 0.1 in caseγ = 0 illustrates soft and hard transitions from the
synchronous to the beating regime: (a) fixedα = 0; (b) fixedβ = 0.5.



22 M.V. Ivanchenko et al. / Physica D 189 (2004) 8–30

observed, when an Andronov–Hopf bifurcation takes place. A limit cycle with a bounded variation of the phase
difference appears and it requires bigger frequency mismatches∆ to show a non-zero frequency (Fig. 11(b)), i.e.
a “hard” transition is observed. When the phase of the solution becomes eventually drifting, the period is far from
being infinitely big. Consequently, the discontinuity of the frequency characteristic corresponds to a manifold in
the parameter space. By crossing of that the beating regime distinctively changes its properties giving rise to the
limit cycle with unbounded phase growth (drift).

6. Oscillators with frequency and amplitude mismatches and their response characteristics

In contrast to the previous sections we do not separate description of bifurcations that take place in the system
and that of the amplitude, phase difference and synchronization frequency characteristics. The reason is that in the
case we are dealing with now, these characteristics provide a better understanding of bifurcations in the system, and
sometimes they are absolutely necessary for it.

So, we remove the assumption thatγ = 0 and study changes in the bifurcation portraits and effects which follow.
Monostability of the anti-phase synchronization regime. The first effect we have found is the appearance of the

region where the only stable solution is the anti-phase rest state (Fig. 12, regionsπD1
5, πD1

3) that enlarges at the
expense of the beating and the bistability regions asγ is increased.

For α, β � 1 andγ � 1 this result can be derived analytically by using the same technique as in Ref.[16].
We would not go into details here and instead present numerical results which show the region of the anti-phase
synchronization for different values of conservative coupling (Fig. 12).

Disappearance of bi- and multistability. Whenγ is increased further, the region of bistability (D2
7, D2

3, Fig. 12(a)
and (b)) diminishes and finally disappears. After that no further qualitative change in this part of the bifurcation
diagram is observed (Fig. 13(a)). In addition we have found all multistability regimes reported above to vanish rapidly
asγ becomes non-zero. Hence,γ �= 0 tends to eliminate every bi- and multistability, which otherwise is possible.

Unusual loss of synchronization and further reentry. It is important to note that as long asγ is not small,
synchronizationchanges its characteristic from anti-phase to in-phase continuously, i.e. it undergoes no bifurcation
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as the parameters are being changed (Fig. 13(a) and (c)). This is in contrast to the case ofγ = 0 (Sections 4
and 5). Besides, one can easily notice another peculiarity introduced byγ �= 0: when∆ belongs to a certain
range, an increase of each of the coupling parameters (α or β) makes synchronization disappear (D1

5 → D0
3,

Fig. 13(a) and D1
3 → D0

3, Fig. 13(b)) and then after a while appear again (D0
3 → D1

5, Fig. 13(a) and D0
3 → D1

3,
Fig. 13(b)). This seems most unusual as increasing liability to synchronization in the system used to be firmly
associated with the increase ofα andβ. It may either be followed by qualitative change in the phase difference
(from the anti-phase to the in-phase asβ is changed,Fig. 13(c)) or not (remaining the in-phase one asα is changed,
Fig. 13(d)).

“Oscillator death” and frequency pull-in effect analog. Let us turn now to the stable origin region and its neighbor
regions. We mainly show that the effect of “oscillator death” still remains, in case of non-zeroγ. But the region
D1

2, where the non-zero steady state of(4) is stable and the zero rest state is unstable,enlargesat the expense of the
“oscillator death” region and forms an additional region (Fig. 14, compare withFig. 7(a)). The latter was found to
exist for arbitraryα andγ. The biggerα andγ, the broader alongβ this region is and the smaller is the minimum
value of∆ for this region to begin. Ifγ ≤ 2α there exists a degenerated point A that belongs to the bifurcation curves
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Fig. 14. Bifurcation diagrams forα = 1, γ = 2 (solid lines), andγ = 2.2 (dashed lines).

between the regions D11, D1
2 and D1

3 (Fig. 14, solid lines), otherwise for a certain range ofβ this regime persists for
arbitrary∆ (Fig. 14, dashed lines). In addition we study the changes in the bifurcation curves for negative values of
∆ and find no qualitative difference in that case except the following one: the degenerated point mentioned above
(Fig. 14, solid lines) does not exist for anyα andβ and the bifurcation diagram is equivalent to that inFig. 14
marked with dashed lines.

As existence and position of this degenerated point defines the configuration of the regions in the parameter plane,
it is reasonable to carry out a linear stability analysis of the zero rest state of(2).

Evidently, the degenerated point corresponds to a bifurcation, whose codimension is 2, namely, two limit cycles,
the stable and the saddle ones, which merge with the origin simultaneously (in system(1)). As long as two conjugated
eigenvalues must have zero real parts in case of the Andronov–Hopf bifurcation, in our case all four eigenvalues
of our four dimensional system must have their real parts also zero and be two conjugated pairs. Linearization of
system(2) near the origin gives the following matrix:

D =

∥∥∥∥∥∥∥∥∥∥

1 − β −α β α

α 1 − β −α β

β α 1 + γ − β −∆ − α

−α β ∆ + α 1 + γ − β

∥∥∥∥∥∥∥∥∥∥
. (18)

On completing tedious algebraic manipulations (searching the eigenvalues of the matrixD), we obtain conditions
for the existence of degenerated point and its coordinates in the(β, ∆) parameter plane, respectively,

2α > γ, β = 1 + γ

2
, ∆ = 2α

(
1 + 2

γ

)
. (19)

One can easily see that these results are in perfect agreement with the numerical ones. The simplicity of the form is
the advantage one cannot underestimate, as these terms clearly show that the height of the degenerated point, which
is the lower boundary of the additional region, turns to infinity asγ → 0 and that whenγ > 2α this point does not
exist.

In order to understand this effect better, we have studied changes in the oscillators amplitudes and frequency
of synchronization forα, β, γ fixed and∆ being increased from zero. The following has been revealed: for∆ big
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Fig. 15. (a) AmplitudesR̄1 (solid line), R̄2 (dashed line); (b) synchronization frequencyωs vs. ∆ for fixed α = 1, γ = 2, β = 2.3 il-
lustrate the dominance of the second oscillator. Note that synchronization frequency is near∆/2 (mean frequency value), when oscilla-
tors demonstrate equality with respect to interaction and near∆ (dominating oscillator frequency value), when one of them dominates the
other.

enough, the oscillators become qualitatively unequal and one of them (the amplitude of which when being isolated
is bigger, however, may be just a little bigger) dominates the other one by lowering its amplitude down to zero
as∆ → ∞, providing that synchronization lasts (Fig. 15(a) and (b)), and making the synchronization frequency
close to the value that it demonstrates when isolated. The specialty of this effect is that the width of the region,
where it persists, remains non-zero for arbitrary big∆, in contrast to the case we observed in the previous section
(γ = 0) and now the second oscillator (that of the higher frequency) dominates, which was impossible before.
So far, the effect that takes place in caseγ > 0 should by no means be regarded as some singular, non-robust
one.

We would like to specially stress that to obtain prevalence of the second oscillator and, consequently, synchro-
nization frequency being close to that of the isolated second oscillator the following has to be taken into account:
there is no need for the amplitude of the first oscillator in case of uncoupled systems to be far smaller than that of
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Fig. 16. Forα = 1 we show typical cases of dominance of the first oscillator (under the degeneration point(19)) and of the second one (above
the degeneration point(19)).
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marked by B, the “oscillator death” regron is marked by OD. In (f) the symbol S1 denotes the region of the monostable synchronization.
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the second one, i.e. the limit of unidirectionally coupling is not necessary to provide it. Furthermore, according to
considerations presented above, this effect takes place for everyγ �= 0, whatever small it is, in other words, for
oscillators with arbitrary small difference in amplitude values when isolated.

The relation between the amplitudesR̄1/R̄2 vs. frequency mismatch∆ is shown inFig. 16for different values
of the amplitude mismatchγ and dissipative couplingβ. One can see that for smallγ each oscillator can dominate
the other one. In the region under the degenerated point A the first oscillator wins and impose its frequency on the
second one (as it was forγ = 0). Above point A the latter dominates and in its turn impose its own frequency on
the former. For biggerγ only the latter regime remains.

Concerning the shape of the region, where this regime takes place (D1
2 in Fig. 14), our results show that it has

two asymptotes:β = 1 andβ = 1 + γ, consequently the width of this region is simplyγ.
To summarize the evolution of the regions, where different synchronization regimes take place, we present

synchronization regions for different values ofγ in Fig. 17. As before, the region, where at least one synchronization
regime exists, is marked by S (Fig. 17(a), (c) and (e)) and either has two separate parts (Fig. 17(a)) (if 0 < γ ≤ 2α)
or forms one continuous area (Fig. 17(e)) (if γ > 2α), which has a branch between beating regime (B) and
“oscillator death” (OD) regions. A comparison clearly shows that an increase of the amplitude mismatchγ makes
the synchronization region expand greatly. The width of it for fixed∆ is close toγ for ∆ → ∞. At the same time,
the region of bistability S2 is gradually substituted by the region, where the only stable rest state is the anti-phase
oneπS1 (Fig. 17(b) and (d)). This eventually merges with the region of the in-phase synchronization regime0S1 and
forms the region S1, where the only stable rest state vary its phase difference characteristic from in- to anti-phase
continuously (Fig. 17(f)).

Transition to the beating regime. As before, we investigate changes in the averaged beating frequencyωb that
follow the loss of synchronization. Comparing the results presented inFig. 18(a) with those obtained in caseγ = 0,
we observe two qualitatively new features: For fixedα = 0 (Fig. 18(a)) the smooth and the sharp transitions to
phase drift alternate asβ is increased, i.e., an Andronov–Hopf bifurcation substitutes a saddle-node bifurcation
for a while. The other notable feature of the case of non-zero amplitude mismatch is revealed on the neighbor
diagramFig. 18(b). When the coupling coefficients are no longer zero, increasing of one of them may lead to
a synchronization break, even if every other parameter, including frequency mismatch, is fixed. This result is the
consequence of the non-monotonous dependence of the synchronization threshold upon the coupling strength, which
was already discussed in this section.
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7. Conclusions

In the present work we have performed analytical treatment and numerical simulations ofEqs. (1)–(5)to find
and elucidate the effects that take place in the system of two non-identical van der Pol oscillators with diffusive
non-scalar coupling, which combines conservative with dissipative terms.

We have studied two types of parameter mismatch and have found the following main results:

(i) Non-zero frequency mismatch, zero amplitude mismatch:
• We have found the existence of the regions of variousbi- and multistability of synchronization and beating

regimesin case when the oscillators differ only in the frequencies. According to our results, these complex
regimes appear due toAndronov–Hopf bifurcationsthat govern the system.

• The effect of oscillator death remains existing in case of non-scalar coupling.
• Studying phase difference, frequency and amplitude characteristics of synchronization, we have found them

to change substantially. Almost in the whole region, where each synchronization regime exists, its frequency
remains approximately constant. Thus we are able to mark out three frequency values associated with the
in- (ωs = ∆/2) and anti-phase(ωs = ∆/2 + 2α) regimesand synchronizationnear frequency of the
first oscillator (ωs = α). The latter regime has not been observed before and occurs due to the frequency
asymmetry of the system, which appears when a conservative coupling is introduced (α �= 0). This unusual
regime may also be regarded as the analog of the frequency pull-in effect in the case of synchronization by
the external signal.

• Studying the beating frequency, we have observed two qualitatively different types of synchronization
break-up: “soft” and “hard”. For increasing∆ from zero (synchronization regime) to its limit value, the
beating frequency demonstrateeither discontinuity or a smooth transition. The former is associated with
a transformation of a limit cycle with bounded changes of the phase difference to one with its unbounded
growth. Besides our results show thatthe larger are the coupling parameters, the sharper is the continuous
transitionto the beating regime.

• In general, the region where synchronization takes placeenlarges monotonously as the conservative coupling
is strengthened.

(ii) Non-zero frequency and amplitude mismatches:
• A small amplitude mismatchγ leads to the appearance of a region ofmonostability of the anti-phase syn-

chronization.
• The bi- and multistability regions decrease and disappearon behalf of the monostability region.
• A peculiar effect appears that for a certain range ofγ and ∆ the increase ofα or β makesthe unique

synchronization regime cease existingfor a while, in contrast to the fact that it hasalwaysled to the reverse
effect ofgaining synchronizationbefore.

• We have also observed a continuous transition from the in- to the anti-phase regime (follows the increase
of β) that takes place for quite bigγ. The frequency of synchronization changes substantially inside the
synchronization regime region, not only near the bifurcation, in contrast to the case ofγ = 0. The bigger is
γ, the more distinct this tendency is.

• We have found an unusual effect that under certain conditionsthe oscillators become qualitatively unequalin
course of interaction and the second onedominatesthe first one, all the while being onlyslightly “stronger”
in the amplitude value, when isolated. Then, in spite of coupling coefficients and amplitude mismatch
being fixed,synchronization persistsin this system as the frequency mismatchis gradually increasedat the
expense of the “weaker” oscillator, its amplitude response being almost totallysuppressedand thefrequency
of synchronization approachesthe value the isolated second oscillator demonstrates. What is impressive
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about this effect, comparing to the one that takes place for zeroγ, is the fact that it exist for every∆, whatever
large it is, not only for fixedβ = 1, but for a range of the values of the latter, whose width has been shown
to beγ. The values of coupling parameters that belong to the named interval should also be considered as
optimal ones with respect to synchronization between non-identical systems.

• The beating frequency characteristics show two qualitatively new features comparing to the case of zeroγ.
The first is the non-monotonous dependence of the synchronization threshold upon the coupling strength.
The second is the alteration between continuous and discontinuous dependencies of the averaged beating
frequency upon the frequency mismatch value, as the coupling parameterβ is monotonously changed.

• Generally, the region of synchronization enlarges as the amplitude mismatch increases. The shape of this
region acquires a new feature, specifically, there appears a branch between the beating regime and the
oscillator death regions, which broadens following the increase of the amplitude mismatch (the width of it
was shown to beγ).

The results we have obtained in course of our studies seem to be most interesting and reveal qualitatively new
and unexpected properties of the system of coupled limit-cycle oscillators. As they are present in a classical system,
we expect them to be characteristic of a wide class of interacting systems and they should be found in various
experiments, too. The extension of these results to chains and lattices of coupled limit-cycle oscillators is a subject
of future studies.
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