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Abstract

Being one of the fundamental phenomena in nonlinear science, synchronization of oscillations has permanently remained
an object of intensive research. Development of many asymptotic methods and numerical simulations has allowed an under:
standing and explanation of various phenomena of self-synchronization. But even in the classical case of coupled van del
Pol oscillators a full description of all possible dynamical regimes, their mutual transitions and characteristics is still lacking.
We present here a study of the phenomenon of mutual synchronization for two non-scalar-coupled non-identical limit-cycle
oscillators and analyze phase, frequency and amplitude characteristics of synchronization regimes. A series of bifurcation
diagrams that we obtain exhibit various regions of qualitatively different behavior. Among them we find mono-, bi- and mul-
tistability regions, beating and “oscillation death” ones; also a region, where one of the oscillators dominates the other one is
observed. The frequency characteristics that we obtain reveal three qualitatively different types of synchronization: (i) on the
mean frequency (the in-phase synchronization), (ii) with a shift from the mean frequency caused by a conservative coupling
term (the anti-phase synchronization), and (iii) on the frequency of one of the oscillators (when one oscillator dominates
the other).
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since the first observation of synchronization made by Huy@Ehi the 17th century this phenomenon has
attracted much attention of researchers (for a review, see R8). It was mainly caused by the fact that
this phenomenon is characteristic of many processes observed in nature and science. AMdpéatdrnvan der
Pol [5] have shown the possibility of synchronization of triode generator by a weak external periodic signal.
External synchronization of self-oscillatory systems was studied by Andronov anfbMitand Mandelshtam
and Papalekd8]. Mutual synchronization of two quasi-harmonic self-oscillators was first studied by M@alyer
and Gapono\10]. For self-oscillators in relaxation regime externally forced synchronization was investigated
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by Cartwright and Littlewood11,12} mutual synchronization by Bremsen and Feinb@r8] and Teodorchik
[14].

More recent studies show permanent interest in the problem of mutual synchronization of limit-cycle oscillators.
The limits of strong and small (compared to damping in the isolated oscillator) coupling were studied [hR&6.

The appearance of the “oscillator death” effectin ensembles of globally coupled oscillators with randomly distributed
frequencies was investigated in REf7]. In Refs.[18,19] synchronization of (isochronous and non-isochronous

as well) limit-cycle oscillators (in case of coupling being of the same order as damping in the isolated oscillator)
was quite scrupulously studied for some types of coupling. Synchronization phenomena in ensembles of coupled
limit-cycle oscillators have also been intensively studied in recent years, sed®efa?] In Ref.[23] relevant

results were obtained for the complex Ginzburg—Landau equation with spatial non-uniformity of natural frequency.
Nevertheless, new dynamical regimes are still being found even in the classical case of two coupled van der Pol
oscillators.

In the present paper synchronization between two coupled non-identical limit-cycle oscillators will be stud-
ied. We treat a quite general type of coupling that combines dissipative and conservative couplings. The mis-
matches between the interacting systems will also be of different nature (in the frequency and the amplitude
ones). The existence of synchronization regimes and their phase, frequency and amplitude characteristics will
be studied in dependence upon these parameters. The mono-, bi- and multistability properties of synchroniza-
tion between such systems will be investigated in detail and illustrated by bifurcation diagrams in the
parameter space. An interval of optimum coupling parameters, for which synchronization persists for arbi-
trary large mismatches between the systems, is found, and an explanation of this phenomenon will be
presented.

This paper is organized as follows. 8ection 2we describe the model under study.Section 3we shortly
discuss previously obtained results, which include a quite detailed description of well-studied cases of purely dis-
sipative and purely conservative types of couplingSkction 4we present numerical results for the case when
both types of coupling are introduced and only the frequency mismatch exists. The properties of correspondent
synchronization regimes will be discussedSaction 5 In Section 6the combination of frequency and ampli-
tude mismatches is considered and properties of synchronization are studigection 7we summarize our
results.

2. Mathematical model

In our work we study a system of two non-scalar-coupled non-identical van der Pol oscillators, which, when
isolated, differ in frequency and amplitude of stationary regime. In general, the coupling is supposed to contain both
dissipative and conservative terms. This system is described by the following equations:

14 w1 = p(L - xis + pexz — x1) + pBliz — i),
o4 (1+ pA)xg = p(l+y — x5)k2 + pe(x1 — x2) + uplis — x2), @
where we assume <« 1, andp regulate the rate of the conservative and dissipative coupling, respectieeiy,
A define the amplitude and the frequency mismatches. We would like to stress that, in spite of the coupling’s being

of quite general form, it is, at the same tinobaracteristicof van der Pol oscillators anehsy to be organizedy
averaging1l) we obtain

z1=z21(1—z120) + (B — i) (z2 — z1), =221+ y—z2222) +1Az2 + (B — i) (z1 — 22), 2
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z1 andz» being complex amplitudes. Conversion to real amplitudes and phasesR1/2) €191, z, = (R,/2) €712
yields

Ri= Ri(1— B~ 3R%) + Ro(asin(¢1 — ¢2) + Bcos(1 — ¢2)),

Ry = Ro(1+y — B — 1R3) + Ri(—asin(p1 — ¢2) + BCOS(d1 — ¢2)),

R1p1 = —aR1 + Ra(xcos(g1 — ¢2) — BSin(p1 — ¢2)),

Raog2 = —(at + A)R2 + Ru(a cOS(d1 — ¢2) + BSiN(d1 — $2)). ®3)

Writing this system in terms of the phase differegice: ¢1 — ¢, we get the system that we are going to deal with
in order to study synchronization processes in the original sy&lgm

Ri=Ri(1—B— 3R + Ro(asing + fcosp), Rp = Ro(1+y—p— 1R3) + Ri(—asing + Bcosy),
R, Rp R1

b= A Re in 4
¢= +“<R—1‘R—2)"°S¢‘ﬁ(ze—1+a—z)s . )

As long as non-zero rest states(4j, which are solutions of
Ril— B — 1R} + Ra(asing + Bcosp) =0,  Ra(l+y — B — LR3) + Ru(—asing + Bcosp) =0,
R2 R - Ry  Ri\ . -

“(Rl Rz) % ’3<R1 Rz) ¢ ©
correspond to synchronization regimeqbf we focus our attention on analyzing these rest staté4)ofinding
bifurcation curves, where the rest states change their stability, emerge or disappear allows us to obtain regions
of qualitatively different behavior in théw, 8, y, A) parameter space. Besides, we get the boundaries, where
limit cycles of (4) that correspond to quasi-periodic solutions(df (i.e. beating regimes) appear, and investi-
gate the stability of the zero rest state (which is evidently not capturéd)mnd (5) performing linear analysis
in (2).

3. Previousresultsand general description

Various special cases ¢f) have been analyzed by many authors. Here we state their results briefly as we are
going to address them later.

Purely dissipative couplingd complete analysis dfl) in case of a purely dissipative coupling £ 0) and zero
amplitude mismatchy( = 0) is reported in Ref18]. In this case the following symmetry property takes plgdé:
is invariant under the transformatidh — R, R, — R;. The bifurcation diagram in thgs, A) plane is presented
in Fig. 1

Throughout the present paper the following symbols are us‘}ade@otes the region in whichis the total number
of the rest states (including zero rest state), atie number of the stable ones. S§ E&vrresponds to the region
where no stable steady state exists, i.e. the beating regime takes pIaE_;dndeIy stationary (and stable) solution
of (1) is the zero rest stata{2> = x12 = 0), and the oscillator death takes place. In every other region the only
stable solution possesses the constant phase diffepeRcether we are going to classify a solution as the in-phase
one if|¢| < m/2 and otherwise as the anti-phase one (it is justified by the fact that almost in the whole region of
their existence these solutions do satigfy < 7/2 or|¢p — 7| < 7/2).

These designations allow to avoid an extensive and tedious description of bifurcations that occur in transition
from one region to another one. Nevertheless, we would like to go over the details in interesting special cases, which
were studied before. This also allows us to clear up our designation scheme.
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Fig. 1. Bifurcation diagram foox = 0,y = 0. In D% D%, D% the in-phase synchronization exist§ Benotes the beating regime an@ D

corresponds to the “oscillator death” regime.

In the (8, A) parameter pland={g. 1) the following bifurcations are observed:

If we move from IZ% to DY, a stable and a saddle rest state¢4dfmerge and disappear through a saddle-node
bifurcation. In general, if we cross the line between regioﬁsahd DJZ2 and the number of stable rest states
changes on 1if = i1 ¥ 1) and the total number of rest staggs changes on 2j6 = j1 F 2), then asaddle-node
bifurcationtakes place. Nevertheless, there is a notable exception irvcas8, which we are going to discuss

a bit later.

If we move from I% to D%, then two saddle rest states(d) (one with dimws = 1, dimW" = 2 and another

with dim WS = 2, dimW" = 1) merge and disappear through a saddle-saddle bifurcation. In general, if we move
from region Djll to D’j"; and the number of stable rest states does not changej = i1) and the total number

of rest stateg » changes on 2j6 = j1 F 2), then asaddle-saddle bifurcatioaccurs.

If we move from G to Dj (or from D} to D) then a stable (or saddle) rest statg4)fmerges with the origin,
which is always a solution ofl) and (2)(in (1) a stable (or saddle) limit cycle merges with the origin in a
supercritical Andronov—Hopf bifurcatign

At last, if we move from [@ to D% two saddle limit cycleanda stable torusnerge simultaneously witie origin

in system(1), and the last one becomes stable. This bifurcation takes place only due to the symmetry property of
the system, mentioned above, and does not exist if atdegs0 ory # 0.

To conclude the treatment of this case, we underline that one synchronization regime exists in the %e@éns D
and B and it is an in-phase one.

Purely conservative coupling he results reported in RgR4] refer to the case of purely conservative coupling
(B = 0) and zero amplitude mismatcp & 0). The bifurcation diagram in the parameter plémeA) is presented

in Fig. 2 In this casd4) is invariant under the transformatidy — R, R, — R1, ¢ — ¢ — 7 that gives pairs of
symmetric solutions.

The following bifurcations are observed:

e Atthe transition from I3 to Dg two saddle-saddle bifurcations occur simultaneously. In general, if we move from
region Djll to D’fz and the number of stable rest statgs does not changeA = i1) and the total number of rest
statesji 2 changes on 4j6 = j1 F 4), thentwo saddle-saddle bifurcatioreccur simultaneously.



12

M.V. lvanchenko et al./ Physica D 189 (2004) 8-30

0.45}
0.4f
0.35} 3
0.3f

<]0.25-

0.15- 3
0.1f D2

0.05f

Fig. 2. Bifurcation diagram fop = 0 andy = 0. Here Ij and I% are regions of bistability. @corresponds to the beating regime.

At the transition from E?) to Dg two saddle-node bifurcations occur simultaneously. In general, if we move
from region Djll to D’fz and the number of stable rest staigs changes on 2if = i1 ¥ 2) and the to-

tal number of rest stateg » changes on 4j6 = j1 F 4), thentwo saddle-node bifurcationsccur simul-
taneously.

At the transition from Ié to D0 two supercritical Andronov—Hopf bifurcations occur simultaneously. In general,
if we move from region E? to D’2 and the number of stable rest statgs changes on 2i§ = i1  2) and the
total number of rest states » does not changej{ = j1), thentwo supercritical Andronov—Hopf bifurcations
occur simultaneously.

In this case we observe bistability of synchronization regimes in the reg@asnﬂ)[%.
To complete the list of bifurcation types, which take place in our system, we should add the following ones, which

do not occur in the cases described above:

If by crossing a bifurcation curve between the regio(fls and Djzz the number of stable rest staigs changes
on1 {2 = i1 — 1) and the total number of rest statge does not changej{ = j1), then a stable focus ¢#)
becomes unstable througtsapercritical Andronov—Hopf bifurcatioand a stable limit cycle appears (e.g., the
transition § — D (Figs. 3, 4, 6 and 12.

Inthe cased = 0, j» = j1 F2 andiz> = i1 F 1 corresponds tpitchfork bifurcationin system(4). Consequently,

in system(1) Dg — Dg and D;E — D% (Figs. 5 and pcorrespond teymmetry breaking bifurcations in which
stable and two saddle limit cycles are involved

Following this scheme one can easily identify which bifurcation each curve corresponds to.
In the casesr = 0, @, B8 <« 1 an analytical approach has proved to be succefbilil As the rest states near the

unperturbedd = 8 = 0) values of amplitudeg?9 = R0 = 2 are sought, let

R1=2+r1, R2=2+r2, (6)
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Fig. 3. (a) Bifurcation diagram fax = 0.1, y = 0; (b) bifurcation diagram fo& = 0.27,y = 0; (c) bifurcation diagram fo& = 0.33,y = 0;

(d) bifurcation diagram fox = 0.5, y = 0 (regions framed with rectangle are presented enlargedjird(a), (c) and (d), respectively). In the
regions with the upper index “2” bistability takes place. Except for the cés(etﬁ “oscillator death”), the upper index “1” means monostable
synchronization. As before,g):orresponds to the beating regime.

wherer, rp < 2. Then

r1 = asing + p(cosp — 1), rp = —asing + B(cosp — 1), (7)
gives the reduction di) to O(a?, o, p2):
A —o?sin2p — 28sing = 0. (8)

According to Ref[16], (8) can have four, two, or no solutions at all. These solutions correspond to the rest states
of (4), and among them one or two may be stable.
According to Ref[16], the region of bistability of the in-phase (= 0) and the anti-phase (~ =) solutions
appears neapo, 0) in the (B8, A) parameter pland={gs. 3(a) and 4(3)when« is slightly increasing from zero.
Besides, an analytical approach R@®] allows to show the appearance of a bistability regime iear 1/4
whena = 1/4 and its further expansion down = 1/6 (which gives the maximum of the bifurcation curve
a? = B — 382 shown inFig. 4b)) as« is increasedKig. 4(b)) in caseA = 0, y = 0 (the symmetry provides exact
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Fig. 4. (a) Part of the bifurcation diagram fer= 0.1, y = 0; (b) bifurcation curves for = 0, y = 0 (barred region is presented enlarged
in Fig. 5), in ™S the exact anti-phase rest stape=£{ ) is stable, inU it is unstable; a curve with quadratic form corresponds to the pitchfork
bifurcation, the line8 = 1/4 denotes the Andronov—Hopf bifurcation; (c) part of the bifurcation diagram fer0.27,y = 0 (barred region is
presented enlarged Fig. 6); (d) part of the bifurcation diagram far = 0.33, = 0. In the regions with the upper index “2” bistability takes
place. The upper index “1” means monostable synchronization. As befgam)rt'bsponds to the beating regime.

in- and anti-phase solutiong & 0 andg = x)) that agree with Ref24] for 8 = 0, A = 0 andy = 0. By crossing
the curven® = B — 342, the anti-phase solution becomes involved in the pitchfork bifurcatiar?. it g — 382.
Then by crossingg = 1/4, a supercritical Andronov—Hopf bifurcation occurs.

In Ref.[19] the equations of a form similar 1) were analyzed. However, the assumptions were made that
a = 0, y is not necessarily zero, coupling is direct and not diffusional. The authors were particular about studying
effects caused by the non-isochronity of oscillators. In contrast, wetitnake arisolatedsystem possesemplex
dynamicsbut considercoupling of a good deal of generality

In our studies we analyze the present system in detail far gllyy andA. Having numerically found the solutions
of (5) (i.e. rest states q#)), we determine their stability computing the correspondent eigenvalues(d$inlus
deriving, which type of the region the concrete parameter values correspond to. Moreover, we focus our attention
on the dependence of thphase, frequency and amplitude concerning synchronizatiothe parameter values.
These characteristics are apparently very important ones, all the while they have not been considered in Refs
[15-19]
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Fig. 5. Part of the bifurcation diagram on the right to the maximum of the axfve 8 — 382 (Fig. 4b)), hereA = 0,y = 0. The upper indexes
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Fig. 6. Part of bifurcation diagram far = 0.27,y = QO illustrating the changes in multistability regimes non-zarieads to. The upper indexes
“1”, “2" and “3" correspond to the number of stable synchronization regimes.

4, The case of non-zero frequency mismatch

To begin with, we assume that= 0 and gradually increase conservative couptirffgpm zero. We illustrate the
dynamics of the studied system by plotting bifurcation diagrams that we derive using numerical algorithms, in the
(B, A)-plane for a sequence af
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Appearance of bistability and Andronov—Hopf bifurcatioemoval of degeneratiorThe region of bistability
appears neatr = 0, 8 = 0 and has the very form and size it should possess according tflBEfFig. 4(a)). The
global picture also changes qualitativelid. 3(a)). Now the degenerated poifit= 1, A = 2 vanishes and the
direct transition from the beating regim§ » the oscillator death regime (At= 1, A > 2) becomes impossible.
The new way is Ig — D% — D% — D% and it requires this sequence of bifurcations to happen. Besides, if
dissipative couplingf) is strong enough, the transition from the in-phase synchronization regime to the beating
one is realized through a supercritical Andronov—Hopf bifurcatiob:—E) DY; for weak dissipative couplingsj a
saddle-node bifurcation happens; B> DJ.

Enhancing of bistability propertiespecial types of bistabilityAs said before, whem exceeds the threshold 1/4
a new region of bistability appearsi¢. 4(c), region @). Whena is increased further, the region§, Bnd @ extent
and finally mergeKig. 4(d)). The principal result of this is that now the stability of the anti-phase synchronization
regime can be lost not only through a saddle-node bifurcation but also as a result of a supercritical Andronov—Hopf
bifurcation. It reveals the existence of qualitatively new effects, namely the bistability of a rest state and a limit
cycle or that of two limit cycles ofd).

Andronov—Hopf bifurcation takes over the systEmally, when the conservative coupliagurns strong enough,
the bifurcation diagram becomes far less compkag.(3(d)). We would like to note especially that the saddle-node
bifurcation does not govern the system any more; each change occurring due to the supercritical Andronov—Hopf
bifurcation in (4) (D3 — D3,D} — DY) orin (1) (D} — D3, D} — D}. D — D} leads to the coex-
isting of a stable rest state and a stable limit cyclé, B Dg leads to bistability of limit cycles (or beating
regimes in(1)).

Multistability regimes Let us now turn back t&ig. 4(b) and increas¢@ gradually, whilex remains constant,
1/4 < a < 1/24/3 andA = 0. According to Ref[18], transitions across the parabolic lii§ <> 7U (in ”S the
exact anti-phase rest stafie< ) is stable, iff U itis unstable) correspond to pitchfork bifurcation that involves the
anti-phase synchronization regime. Obviously, it is in perfect agreemenkigitd(c) when the anti-phase solution
loses its stability as ®— D, but a direct transition P— D3 through the pitchfork bifurcation is impossible. A
detailed analysis reveals utterly amazing results. The part of the bifurcation diagram on the right to the maximum of
the curvex® = B — 382 (Fig. 4b)) is presented iffig. 5. As long as two simultaneous Andronov—Hopf bifurcations
occur in transitions @—> D3, D2 — D3, regions, where three and four stable solutions coexist, appear (new stable
solutions are anti-phase). Apparently, going backwa@SeDDé or D4 — D2 we find ourselves in the regions of a
special kind of multistability: two limit cycles and one or two rest states, respectively, are simultaneously stable. Our
results show thatt # 0 makes these regions vanishing rapidly and violates simultaneousness two Andronov—Hopf
bifurcations Fig. 6).

As long as stable non-zero rest states are of special interest in applications, we would like to summarize the results
described above and present synchronization regions for different values of conservative eo(fiting). There,
the evolution of the in-phase synchronization and bistability regimes regions is shown. The region, where at least
one synchronization regime exists, is marked-1§.(7(a)) and lies beneath the bifurcation curves that separate it
from the beating regime region B (to the left) and the oscillator death region OD (to the right). This comparison
clearly shows that the increase of the strength of conservative coupling makes the synchronization region growing
at the expanse of the oscillator death and the beating ones. According to the presented results, an optimal strength ¢
dissipative coupling can be claimed to exist. Here synchronization holds for an arbitrary large frequency mismatch
and the “channel” around the asympt@te= 1 broadens as conservative coupling is increased. At the same time,
the region, where only one stable (in-phase) synchronization regime &88t§ig. 7(b)), is partially substituted
by the region of bistability 3 The latter is situated under the bifurcation curves (for diffetentespectively)
that divide it from the former one. Note that while the height 8fgBadually increases, its width cannot exceed

B =1/4.
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Fig. 7. (a) Boundaries of the regions of synchronization (marked by S, for each valtleefegion lies under the bifurcation curves) the beating
regime region is marked by B, the “oscillator death” region is marked by OD. (b) Boundaries of the bistability regime (for eachwahee of
bistability region lies under the bifurcation curves and is mark&dt® region of monostability is marked Bg! (the left upper index refers to
the in-phase regimég| ~ 0)).

5. Characteristics of synchronization regimes

Now we study the frequency and the amplitude characteristics of the synchronization regimes existing in our

system.
If «, B < 1, then using propositions discussediaction 3 one can easily get the frequency synchronization

. A -
ws=—¢1=—5 — a(1— cosp) )

(the frequency, observed in the systéhhis s = 1 + pws/2) neglecting terms of @f).
According to(9), the in-phase solution implies synchronization has the mean frequency

. . A
ws=—P1 = —P2 X > (10)
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and that of the anti-phase solution the synchronization frequency is
. . A
ws = —¢1 = —P2 ~ 200 + 5 (11)

Numerical simulations show that there is no qualitative difference in the casewdretps are not smallffig. 8@a)—
(d)). This leads to the conclusion that the phase, frequency and amplitude of synchronization remain qualitatively the
same in a broad range of parameter values, and show deviations only near a saddle-node bifurcation. In particular
the synchronization frequency is also in a quite good quantitative agreemerfi@jitand (11)

It turns out that additional synchronization regimes that prowdétistabilityin the system (see region% and
D‘71r in Figs. 5 and B do not contribute qualitatively new frequency valuegy( Ya) and (b)). In fact, they remain
stable only in a narrow region, when they are situated near anti-phase solution, as considered above. Being in this
vicinity, they posses some identical characteristics, namely, they are also anti-phase solutions, although, the change
in the amplitude values are quite distinct and give an illustration of the pitchfork bifurcation, taking place in the
system(4) (symmetry breaking bifurcation of stable limit cycle in the original sys{&in

Frequency asymmetrilow let us turn to the area between the beating regime and the oscillator death regions
with characteristic value of near 1 Fig. 7(a)) that we have described before as an optimal coupling value. The
correspondent boundary curves have an asymptetel, the width of this region decreases to zero for~ oc.
Increasing gradually\, we get the following numerical result: the synchronization properties change dramatically
and a new regime appears. The frequency of synchronization deviates from the mean frequency and approache
that of the first oscillatorKig. 1Q(c)), which equals

ws = a. (12)

At the same time its amplitude exceeds the amplitude of the second one substantially, showing finally an almost
complete dominancery > R») (seeFig. 10a)). Besides the phase difference of synchronization seems to approach
some limit value Fig. 1Qb)). The comparison shows that the difference of the synchronization frequency from that
of the isolated first oscillatojws — «| and the rate of the amplitudeg”A = Ro/R; are equally small, while
approaching limit valuesHig. 10(d)).

This result deserves a detailed consideration as it claims the existence of a principle frequency asymmetry inducec
by a non-zeraA. In spite of the fact that A is always small, which naturally leads to the assumption of oscillator’s
equality with respect to frequency values, the following situation takes place: the smaller frequency turns to be
preferred for a large frequency mismatdh wheng is too big to allow the beating regime exist, though not big
enough to cause oscillator death.

In order to prove this result, we seek the solutiorf%fin the form

Ro=—, (13)

wherer >> 1 (i.e. R1 > R»). Then, neglecting terms of @/ r?), we simplify (5) to the following system:
Ri(1— B — %R3) + Ro(asing + pcosp) = 0, Ro(1— B — R3) + Ri(—asing + pcosg) =0,

A — (acosgp + Bsing)r = 0. (14)
Using(13)we get

r(l— B — 3R} +asing + pcosp =0, 1-8— % + r(—asing + Bcosp) = 0,

A (15)

«Ccosp + Bsing
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Let 8 = 1, then from the first equationR%/4) < Vo2 + 1, consequentyR?/4r? « 1. This yields

Ry =2, r= tang = (W2)s = —@2 = (16)
- _2“’ — —A, — _1, Wo)e = —0o = a.
1 ‘ /—2 2)s 2

Evidently, the biggera, the more precisely > 1 is obtained, and the better our approximate solution fits the
original system and the closerdahe frequency of synchronization is.

Transition to the beating regiménother important characteristic of interacting systems, where synchronization
can take place, is the averaged beating frequency. Its definition is
r. . 9D — ¢(0)

—

: 1
wp = lim — ¢dt = lim
T—o0 0 T—o0

(17)

Three types of qualitatively different behavior may be observed in this system:

e ¢ = 1 — @2 = const corresponds to the synchronization regimg~= O.

e |p| = |p1— 2| < const means that a stable limit cycle exists, and changes in the phase difference of the solution
are limited (it is called “phase entrainmeti24] or “phase trapping[18]); wy, still equals zero.

e Finally, if |¢| = |¢1 — ¢2| grows unboundedyy, # 0 now, then a stable limit cycle (also called a “libration orbit”
[24]) corresponds to a phase drift regime.

The transition between the second and the third types of behavior was the subject of studj2a]|Rafthe special
casew #0,A #£0,6=y=0.

In the general case, which we are dealing with in the present paper, each of the possible transitions has been
analyzed. We have investigated the ways of losing synchronization that appear in this system obtaining numerically
(performing simulation of the original syste¢h) for © = 0.1) the averaged beating frequeney for y = 0,
changingA, a fixeda, and a sequence @f(Fig. 11(a)) and vice versaHig. 11(b)). These diagrams present visual
information about the behavior of the system. Indeed, when a stable rest state disappears through a saddle-node
bifurcation, a stable limit cycle with a phase difference growing unbounded is born instead. As long as the flow slows
down near the location of the former rest state, the period of this cycle is very big near the bifurcation point, making
the averaged beating frequency increasing continuo&gy {1(a)), i.e. a “soft” transition to synchronization takes
place. Nevertheless, the biggérthe sharper the slope of the frequency curve is. Quite the opposite scenario is

25 25—
— B=0.1 — a=0.1
---0a=0.3
2H a=0.5
-- a=0.7
—— a=0.9

Fig. 11. Averaged beating frequency calculated in original sygierfor © = 0.1 in casey = 0 illustrates soft and hard transitions from the
synchronous to the beating regime: (a) fixee: 0; (b) fixedg = 0.5.



22 M.V. lvanchenko et al./ Physica D 189 (2004) 8-30

observed, when an Andronov—Hopf bifurcation takes place. A limit cycle with a bounded variation of the phase
difference appears and it requires bigger frequency mismattheshow a non-zero frequenckig. 11(b)), i.e.

a “hard” transition is observed. When the phase of the solution becomes eventually drifting, the period is far from
being infinitely big. Consequently, the discontinuity of the frequency characteristic corresponds to a manifold in
the parameter space. By crossing of that the beating regime distinctively changes its properties giving rise to the
limit cycle with unbounded phase growth (drift).

6. Oscillatorswith frequency and amplitude mismatches and their response characteristics

In contrast to the previous sections we do not separate description of bifurcations that take place in the system
and that of the amplitude, phase difference and synchronization frequency characteristics. The reason is that in the
case we are dealing with now, these characteristics provide a better understanding of bifurcations in the system, an
sometimes they are absolutely necessary for it.

So, we remove the assumption thrat 0 and study changes in the bifurcation portraits and effects which follow.

Monostability of the anti-phase synchronization regiffike first effect we have found is the appearance of the
region where the only stable solution is the anti-phase rest stage 12, regions”D%, ”D%) that enlarges at the
expense of the beating and the bistability regiong &sincreased.

Fora, 8 <« 1 andy « 1 this result can be derived analytically by using the same technique as ifilBEf.

We would not go into details here and instead present numerical results which show the region of the anti-phase
synchronization for different values of conservative couplifig(12).

Disappearance of bi- and multistabilityVheny is increased further, the region of bistability§(,EID2, Fig. 12a)
and (b)) diminishes and finally disappears. After that no further qualitative change in this part of the bifurcation
diagramis observedr{g. 13a)). In addition we have found all multistability regimes reported above to vanish rapidly
asy becomes non-zero. Henge# 0 tends to eliminate every bi- and multistability, which otherwise is possible.

Unusual loss of synchronization and further reentityis important to note that as long asis not small,
synchronizatiorthanges its characteristic from anti-phase to in-phase continupuslyt undergoes no bifurcation

1
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< Ml 5 < 05y
001 | 5 04t
0.3 {
0.005 | D2 0.2}
’ 0.1t
0 : : : : : : 0 : : : : : :
@) 0 0.002 0004 0006 0008 001 0012 () O 01 02 03 04 05 06

B

Fig. 12. (a) Part of bifurcation diagram far= 0.1,y = 0.1 (D% and D} are not shown here); (b) part of the bifurcation diagramofet 0.5,
y = 0.1 (D1 is not shown here). In the regions with the right upper indexes “1” and “2” mono- and bistability takes place, respectively. The left
upper index #” refers to the anti-phase synchronization. As befo@c@rresponds to the beating regime.
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as the parameters are being chanded.(13a) and (c)). This is in contrast to the caseyof= 0 (Sections 4
and 5. Besides, one can easily notice another peculiarity introduced b% 0: when A belongs to a certain
range, an increase of each of the coupling parameters (3) makes synchronization disappear%(D» DY,
Fig. 13a) and § — D3, Fig. 13b)) and then after a while appear agairf (B D}, Fig. 13a) and B, — D3,
Fig. 13b)). This seems most unusual as increasing liability to synchronization in the system used to be firmly
associated with the increase @fand 8. It may either be followed by qualitative change in the phase difference
(from the anti-phase to the in-phasefas changedkig. 13c)) or not (remaining the in-phase onevais changed,
Fig. 13d)).

“Oscillator death and frequency pull-in effect analolget us turn now to the stable origin region and its neighbor
regions. We mainly show that the effect of “oscillator death” still remains, in case of nonyz&uwt the region
D%, where the non-zero steady statd4fis stable and the zero rest state is unstabiégrgesat the expense of the
“oscillator death” region and forms an additional regiing( 14, compare withFig. 7(a)). The latter was found to
exist for arbitrarye andy. The bigger andy, the broader along this region is and the smaller is the minimum
value ofA for this region to begin. I < 2« there exists a degenerated point A that belongs to the bifurcation curves
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between the regionsiDD% and @ (Fig. 14 solid lines), otherwise for a certain rangefathis regime persists for
arbitrary A (Fig. 14 dashed lines). In addition we study the changes in the bifurcation curves for negative values of
A and find no qualitative difference in that case except the following one: the degenerated point mentioned above
(Fig. 14 solid lines) does not exist for ary and 8 and the bifurcation diagram is equivalent to thatig. 14
marked with dashed lines.

As existence and position of this degenerated point defines the configuration of the regions in the parameter plane
it is reasonable to carry out a linear stability analysis of the zero rest sté2g of

Evidently, the degenerated point corresponds to a bifurcation, whose codimension is 2, namely, two limit cycles,
the stable and the saddle ones, which merge with the origin simultaneously (in §¥$teéxs long as two conjugated
eigenvalues must have zero real parts in case of the Andronov—Hopf bifurcation, in our case all four eigenvalues
of our four dimensional system must have their real parts also zero and be two conjugated pairs. Linearization of
system(2) near the origin gives the following matrix:

1-8 -« B o

p=| * °F P (18)
B o l1+y—-8 —-A—a«
—a B A+a 14y-—8

On completing tedious algebraic manipulations (searching the eigenvalues of the Bjatsi® obtain conditions
for the existence of degenerated point and its coordinates i(8th®) parameter plane, respectively,

2 >y, ﬂ=1+g, A=2a<1+§). (19)
One can easily see that these results are in perfect agreement with the numerical ones. The simplicity of the form is
the advantage one cannot underestimate, as these terms clearly show that the height of the degenerated point, whi
is the lower boundary of the additional region, turns to infinityyas- 0 and that wherr > 2« this point does not
exist.

In order to understand this effect better, we have studied changes in the oscillators amplitudes and frequency
of synchronization for, 8, y fixed andA being increased from zero. The following has been revealeda fioig
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Fig. 15. (a) AmplitudesR; (solid line), R, (dashed line); (b) synchronization frequengy vs. A for fixeda = 1,y = 2,8 = 23 il-
lustrate the dominance of the second oscillator. Note that synchronization frequency id feémean frequency value), when oscilla-
tors demonstrate equality with respect to interaction and geédominating oscillator frequency value), when one of them dominates the
other.

enough, the oscillators become qualitatively unequal and one of them (the amplitude of which when being isolated
is bigger, however, may be just a little bigger) dominates the other one by lowering its amplitude down to zero
asA — oo, providing that synchronization lastBi¢. 15a) and (b)), and making the synchronization frequency
close to the value that it demonstrates when isolated. The specialty of this effect is that the width of the region,
where it persists, remains non-zero for arbitrary Bign contrast to the case we observed in the previous section
(y = 0) and now the second oscillator (that of the higher frequency) dominates, which was impossible before.
So far, the effect that takes place in case- 0 should by no means be regarded as some singular, non-robust
one.

We would like to specially stress that to obtain prevalence of the second oscillator and, consequently, synchro-
nization frequency being close to that of the isolated second oscillator the following has to be taken into account:
there is no need for the amplitude of the first oscillator in case of uncoupled systems to be far smaller than that of
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Fig. 16. Fore = 1 we show typical cases of dominance of the first oscillator (under the degeneratio(l89)jisind of the second one (above
the degeneration poiif19)).
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the second one, i.e. the limit of unidirectionally coupling is not necessary to provide it. Furthermore, according to
considerations presented above, this effect takes place for gvgr®, whatever small it is, in other words, for
oscillators with arbitrary small difference in amplitude values when isolated.

The relation between the amplitud®s/ R, vs. frequency mismatch is shown inFig. 16for different values
of the amplitude mismatch and dissipative coupling. One can see that for smalleach oscillator can dominate
the other one. In the region under the degenerated point A the first oscillator wins and impose its frequency on the
second one (as it was fer= 0). Above point A the latter dominates and in its turn impose its own frequency on
the former. For biggey only the latter regime remains.

Concerning the shape of the region, where this regime takes pléde (Bg. 14, our results show that it has
two asymptotesg = 1 andg = 1+ y, consequently the width of this region is simply

To summarize the evolution of the regions, where different synchronization regimes take place, we present
synchronization regions for different valuesah Fig. 17. As before, the region, where at least one synchronization
regime exists, is marked by §ifj. 17a), (c) and (e)) and either has two separate p&its (1a)) (if0 < y < 2a)
or forms one continuous are&ig. 171e)) (if y > 2«), which has a branch between beating regime (B) and
“oscillator death” (OD) regions. A comparison clearly shows that an increase of the amplitude migmaedies
the synchronization region expand greatly. The width of it for fixeid close toy for A — oco. At the same time,
the region of bistability 3is gradually substituted by the region, where the only stable rest state is the anti-phase
one™S! (Fig. 17b) and (d)). This eventually merges with the region of the in-phase synchronization Rsliianed
forms the region § where the only stable rest state vary its phase difference characteristic from in- to anti-phase
continuously Fig. 17f)).

Transition to the beating regim@s before, we investigate changes in the averaged beating frequgribgat
follow the loss of synchronization. Comparing the results presenteig)iriga) with those obtained in cage= 0,
we observe two qualitatively new features: For fixeg= 0 (Fig. 1§a)) the smooth and the sharp transitions to
phase drift alternate g8 is increased, i.e., an Andronov—Hopf bifurcation substitutes a saddle-node bifurcation
for a while. The other notable feature of the case of non-zero amplitude mismatch is revealed on the neighbor
diagramFig. 18b). When the coupling coefficients are no longer zero, increasing of one of them may lead to
a synchronization break, even if every other parameter, including frequency mismatch, is fixed. This result is the
consequence of the non-monotonous dependence of the synchronization threshold upon the coupling strength, which
was already discussed in this section.
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7. Conclusions

In the present work we have performed analytical treatment and numerical simulatibBgs.dfl)—(5)o find
and elucidate the effects that take place in the system of two non-identical van der Pol oscillators with diffusive
non-scalar coupling, which combines conservative with dissipative terms.

We have studied two types of parameter mismatch and have found the following main results:

() Non-zero frequency mismatch, zero amplitude mismatch:

e We have found the existence of the regions of varinusind multistability of synchronization and beating
regimesin case when the oscillators differ only in the frequencies. According to our results, these complex
regimes appear due fandronov—Hopf bifurcationthat govern the system.

e The effect of oscillator death remains existing in case of non-scalar coupling.

e Studying phase difference, frequency and amplitude characteristics of synchronization, we have found them
to change substantially. Almost in the whole region, where each synchronization regime exists, its frequency
remains approximately constant. Thus we are able to mark out three frequency values associated with the
in- (ws = A/2) and anti-phasdws = A/2 + 2«) regimesand synchronizatiomear frequency of the
first oscillator (ws = «). The latter regime has not been observed before and occurs due to the frequency
asymmetry of the system, which appears when a conservative coupling is introauge@)(This unusual
regime may also be regarded as the analog of the frequency pull-in effect in the case of synchronization by
the external signal.

e Studying the beating frequency, we have observed two qualitatively different types of synchronization
break-up: “soft” and “hard”. For increasing from zero (synchronization regime) to its limit value, the
beating frequency demonstra@her discontinuity or a smooth transitiomhe former is associated with
a transformation of a limit cycle with bounded changes of the phase difference to one with its unbounded
growth. Besides our results show thia¢ larger are the coupling parametetie sharper is the continuous
transitionto the beating regime.

e Ingeneral, the region where synchronization takes @at@rges monotonously as the conservative coupling
is strengthened

(ii) Non-zero frequency and amplitude mismatches:

e A small amplitude mismatcl leads to the appearance of a regiormmafnostability of the anti-phase syn-
chronization

e The bi- and multistability regions decrease and disapp®abehalf of the monostability region.

e A peculiar effect appears that for a certain range/adnd A the increase ofe or § makesthe unique
synchronization regime cease existfinga while, in contrast to the fact that it hakvaysled to the reverse
effect ofgaining synchronizatiobefore.

e We have also observed a continuous transition from the in- to the anti-phase regime (follows the increase
of B) that takes place for quite big. The frequency of synchronization changes substantially inside the
synchronization regime region, not only near the bifurcation, in contrast to the case 6f The bigger is
y, the more distinct this tendency is.

¢ We have found an unusual effect that under certain conditf@sscillators become qualitatively uneqiral
course of interaction and the second dieeninateghe first one, all the while being ongfightly “stronger”
in the amplitude value, when isolated. Then, in spite of coupling coefficients and amplitude mismatch
being fixed,synchronization persisia this system as the frequency mismaigigradually increaseét the
expense of the “weaker” oscillator, its amplitude response being almost tatgihressednd thefrequency
of synchronization approachéise value the isolated second oscillator demonstrai€kat is impressive
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about this effect, comparing to the one that takes place fonzeasdhe fact that it exist for evergt, whatever

large it is, not only for fixed3 = 1, but for a range of the values of the latter, whose width has been shown

to bey. The values of coupling parameters that belong to the named interval should also be considered as
optimal ones with respect to synchronization between non-identical systems

e The beating frequency characteristics show two qualitatively new features comparing to the case of zero
The first is the non-monotonous dependence of the synchronization threshold upon the coupling strength.
The second is the alteration between continuous and discontinuous dependencies of the averaged beating
frequency upon the frequency mismatch value, as the coupling pargsristeronotonously changed.

e Generally, the region of synchronization enlarges as the amplitude mismatch increases. The shape of this
region acquires a new feature, specifically, there appears a branch between the beating regime and the
oscillator death regions, which broadens following the increase of the amplitude mismatch (the width of it
was shown to be).

The results we have obtained in course of our studies seem to be most interesting and reveal qualitatively new
and unexpected properties of the system of coupled limit-cycle oscillators. As they are present in a classical system,
we expect them to be characteristic of a wide class of interacting systems and they should be found in various
experiments, too. The extension of these results to chains and lattices of coupled limit-cycle oscillators is a subject

of future studies.
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