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In the last decade, there has been an increasing interest in compensating thermally induced errors to
improve the manufacturing accuracy of modular tool systems. These modular tool systems are
interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their
thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature

of this behavior the so far used linear regression between the temperatures and the displacements is
insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such
thermal displacements via nonlinear temperature-displacement regression functions. These
functions are estimated first from learning measurements using the alternating conditional
expectation(ACE) algorithm and then tested on independent data sets. First, we analyze data that
were generated by a finite element spindle model. We find that our approach is a powerful tool to
describe the relation between temperatures and displacements for simulated data. Next, we analyze
the temperature-displacement relationship in a silent real experimental setup, where the tool system
is thermally forced. Again, the ACE algorithm is powerful to estimate the deformation with high
precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold
lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal
behavior of a modular tool system in a working milling machine and again get promising results.
The thermally induced errors can be estimated with 18 accuracy using this nonlinear
regression analysis. Therefore, this approach seems to be very useful for the development of new
modular tool systems. @004 American Institute of Physic§DOI: 10.1063/1.1622351

Manufacturing processes are highly complex systems—
predicting, controlling and optimizing of such processes
is rather difficult. A major challenge is an optimum de-

sign of the manufacturing processes to consistently
achieve quality targets. Here we investigate especially
thermal influences on machine tools which are essential
to get stabilized manufacturing processes with tolerances
in the micrometer range. The modular tool systems, con-
sidered in this study, are interfaces between spindle and
workpiece and consist of several complicatedly formed
parts. Their thermal behavior is dominated by nonlin-

earities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoreti-

temperature-displacement regression functions, which
are estimated using the alternating conditional expecta-
tion algorithm, a recently developed approach of nonlin-
ear time series analysis. The practical applicability of this
method was proven on a working milling machine—the
thermally induced errors could be estimated with -2
pm accuracy. Therefore, this approach seems to be very
useful not only for the development of new modular tool
systems but also for other interdisciplinary applications.

I. INTRODUCTION

In the recent decade, much attention has been devoted to
the investigation of the thermal influence on complete ma-
chine tools to get thermally stabilized processes with toler-
ances in the micrometer ran§e> Modular tool systems as
interfaces between spindle and workpiece, however, affect to
a great extent the accuracy of machining. Therefore, the ther-
mal behavior of modular tool systems has to be thoroughly
investigated, especially using nonlinear-dynamical ap-
proaches, which turned out to be very promising in
engineering>*

Economic and ecological reasons lead to so-called “dry

cally. Due to the dominant nonlinear nature of this be-
havior the so far used linear regression between the tem-
peratures and the displacements is insufficient.
Therefore, we introduce a concept of maximal correlation
which is a very powerful criterion to measure the depen-
dence of two especially nonlinear related variables. In
this study, we show that we can significantly improve the
prediction of thermal displacements via nonlinear
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processing” without the use of any lubricants and coolantsand apply the alternating conditional expectatidAsCE)
However, the stronger thermal influence in dry processinglgorithm?! described below, as a nonparametric approach to
due to friction causes displacements up to 1@0. Over the estimate the transformatior ; and ¢; in Eq. (2).
past few decades, the compensation for defects due to a ther- The concept of maximal correlation is a very powerful
mal impact has attracted steadily increasing interest. Thesgriterion to measure the dependence of two especially non-
investigations comprise a wide range of methods rangindinear related variable€. The main idea of this approach is
from computer simulatiorts and internal monitoring in neu- to measure the maximized correlation of properly trans-
ral network$®’ to thermal error modeling®"*>'819The  formed variables.
relation between temperatures and displacements is very Given a real variable5; and ann;-dimensional vector
complex even in simple toofSA modular machine tool con- T=(T, ... ,Tni) in the additive mode(2). Then, the maxi-
sists of several complicatedly formed interfaces. Therefore, ifnal correlation is defined by
is difficult to describe thermal displacements theoretically. . .
The state of the art in the description of thermal displace-  Vi(Si»T) =[p(67 (S)), &7 (T)=maxp(6(S), s(T))|,
ments is represented today by a linear regression between the 09 3
temperatures and the displaceméfit®ne disadvantage of
this approach is that it cannot describe hysteresis behavioftherep denotes the correlation coefficient. The functiatis
especially for very fast heating or cooling. In that case the2nd ¢} , which fulfill the maximal condition(3), are called
temperatures measured on the surface of the modular togptimal transformation and represent an estimation of the
systems are different from the real temperatures inside th&0del (2). To estimate them nonparametrically, we use the
system, which leads to time delays in the temperature prop>CE @algorithm?* This iterative procedure is nonparametric
gation. because the optimal transformations are estimated by local

The purpose of this paper is, therefore, to use nonlinea#moothing of the data using kernel estimators. We use a
regression methods to model the relation between temper&dodified algorithm in which the data are rank-ordered before
tures and inelastic displacements and finally to predict thdhe optimal transformations are estimated. This makes the
thermal displacements quantitatively in a high precision. Théesult less sensitive to the data distribution. For more details
paper is organized as follows. In Sec. Il we shortly describes€€ Appendix A.
the nonlinear regression approach we are using. In Sec. Il The maximal correlation and optimal transformation ap-
we present the application of this approach to data that werBroach have been recently applied to nonlinear dynamical
generated by a finite element spindle model. Section IV conSystems especially to identify a delay in lasémnd partial
tains the application to a silent real experimental setupdifferential equations in fluid dynamic8.The ACE algo-
where the tool system was thermally forced. In Sec. V wdithm turned out to be a very efficient tool for nonlinear data
. . . . 123,25,26
investigated the thermal behavior of a modular tool system irRnalysis’
a working milling machine and, finally, in Sec. VI we discuss
our results. Ill. RECONSTRUCTION OF THERMALLY INDUCED

DISPLACEMENTS IN A FINITE ELEMENT
SPINDLE MODEL

Il. MAXIMAL CORRELATION AND OPTIMAL _ _ , ,
TRANSFORMATIONS To investigate whether the nonlinear regression approach

described above is appropriate also for modular tool systems,
We generally assume that there are measurenignts which are used in milling and drilling machines, we first
i=1,...,n; of the temperature an§;, j=1,...,n; ofthe  analyze simulated data from finite element mod&EM).
axial displacement at;, resp.,n; points (e.g., Fig. 2. We  The tool system is the connecting part between the main
use these different measurement points, e.g., at the cuttirgpindle and the milling tool. Its main target is the production
edge, to describe the thermal process in the whole modulasf clamping forces for an accurate machining. There are dif-
tool system. The main aim is then to reconstruct the displaceferent types of clamping systems; in this work we focus on
mentsS; on the basis of manufacturing parameters, espepower shrinking and hydraulic chucks tools. These data sets
cially the temperatures;. Because of well-known hyster- obtained with the FEM model are used to find an optimal
esis effects, it is necessary to consider a responsenumber and optimal locations of measurement points and to
transformation model, which is of the type study the influence of the controlling parameters. In the FEM
_ . model, a given regime of rotations leads to the temperatures
61(S)=¢i(Te - Tn)s J=10; @) T, and the displacement at several measurement points.
The regression functiong; are high dimensional surfaces In the following, we are investigating a main spindle tool
and cannot be displayed for dimensions greater than 2iesign(Fig. 1) with two different simulations. We use the
Moreover, they do not provide a geometrical description offirst measurement as a learning S€6 j}i-1, . 5.

the regression relationship between the temperatures and the'1,. .., nj, {T¢i}=1,.. 5, i=1,..., n; to compute the
displacements. To overcome this problem, we consider theptimal transformations and the second as a test series
following models: {S{jt=1,...0 J=1 o {T{ =g, psi=1,...,nj tO
n, check how well the optimal transformations obtained by the
0,—(8,—):2 $ii(T), i=1,...n;, ) r_eference series describe the temperature-_dlsplac_ement _rela-
i=1 tion. The only difference between both series is given with
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FIG. 1. Design of the main spindle mod@utput of the commercial FE-

)
modeling program ANSYS 1 o

different manufacturing schemes, especially with different-
time scales and regimes of rotations. We apply a two stefz;

0.04

strategy. \
S
(i)  Computation of the optimal transformatiom% and 1}- /' SRR O
@] in the model A
6i(S)=bj(Tei_) , : ‘ :
(4) 20 40 60 80 100
. 2 0.2
1=1,...,nj:i:12 (T,
from the training serie$S; j}i=1,.  n, j=1,...,n;,

{Tt,i}t:L...,n! i:l’. sy N

Reconstruction of the displacemer8g;, j=1,...,

n; of the test series using the temperatufgs,
i=1,...,n; of the test series and the optimal trans-
formationsé} and ¢} of the training series computed

in (i),
s',,:br*(g &;i(T{p), i=1,...n;, (5)

and a comparison of the re§f; with the estimated
S/, displacements.

(i)

50

FIG. 2. Simulated data for the model of Fig.(& Training time seriegtop:
temperaturel,, T3, T,, bottom: axial displacemens;, S,); (b) optimal
transformationgarbitrary unit$ for S, with respect to the model E¢): (i)

03 (Sta), (i) $3ATe2), (i) #74Tea)s (V) d44Tra), (v) plotting 6} ver-
SuSZ ¢y ; (vi) plotting the residual® —3 ¢y, .

should be close to linear. The graph on the lower left corner
2(b)(v) shows 6;(S;4) versus Ei“:2¢2’i(Tt,i) which

The hat overd and ¢» denotes a nonparametric estimation should be the identity in the optimal case. In Figb)2vi)
for these functions. Practically, we use a nearest-neighboen the lower right side, we plot the residuals
estimation withk=2 nearest neighbdtSto estimate these 02(8[,4)—2f‘:2¢j’i(Tt'i). Assuming the existence of func-
functions. We have tested different numbers of nearest neighions # and ¢ in the model, the residuals should vanish and in
borsk=1,..,10, however, there are only slight differences infact, the high value obtained for the maximal correlation
the estimates. W¥'=0.9994 indicates a very good estimation. Furthermore,

For two different regimes of rotations we have a simu-this value is quite high in comparison with the maximal cor-
lated data set with values of temperaturés;(i=2,3,4) and  relation in other applications of the ACE algoritHAes
displacements & ; ,j = 3,4) belonging to different parts of Next, we compute the estimation of displacements of the
the tool. Each series consists of 199 points with a sam- test data set using the optimal transformations estimated
pling time of At=100 s. The reference series, which is usedabove and the temperatures from the test data set as in Eq.
as a training set, is shown in Fig(a. (5). The estimated curves are quite close to the original ones

We present here only the estimations yrat the front  (Fig. 3) except for the cropped peaks. Looking at the original
tip of the tool(Fig. 1) because the displacements at the cuttime series and the optimal transformations in Fig. 2, we see
ting edge are the most interesting ones. The results arenmediately that the support in the displacement series of the
shown in Fig. 2b), i.e., the estimations for the optimal trans- training set is not as wide as the range of the test series.
formations6; and¢j,, ..., ¢} 4. The nonlinearity of these Therefore, for data from real modular tool systems we have
functions is a clear evidence that linear regression is noto consider this problem. Moreover, we have to find minimal
sufficient to model the relation between temperatures antheasurement points with optimal predictability of the dis-
displacements—otherwise the optimal transformationglacements to reduce the dimensionality of the task.
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FIG. 3. Estimation of the displacemej for the test time series, top: the F!G- 5. Measurement for the “resting tool systefaining se, which was
original temperatures, bottom: the original and the estimated axial displacéhermally forced—;, i=1,2,8 are the temperature§,, i=1,..,3 the mea-
ments of the main spindle model. sured axial displacements.

LetS;, j=1,..,3 denote the measured displacements and
T,, i=1,..,9 the temperatures measured. Then, we can as-
sume the following additive model:

In the last section it was possible to demonstrate that the 9
presented nonlinear regression approach is able to predict gj(sj)ZE $;:(T), i=1,....3. (6)
displacements which were generated using a FEM model. i=1

Now, its applicability to measured data from real modular  As in the previous section we apply a two step strategy:
tool systems have to be validated. Therefore, a tool systemijrst, the optimal transformations are estimated based on a
with a corresponding recording system was designed whiclearning data base. Afterwards, the temperature-displacement
is able to measure temperatures and displacements at sevei@htionship is tested on an independent measurement. In this
tool positions(see Fig. 4 However, as a first step, the tool \york, only the temperature measuring poifits T, andTg
system was resting, i.e., not active. On a body, a fixed maiyere taken into account for modeling.e., ¢, =0 for
spindle shaft with the hydraulically actuated tool chuckingj+1 28 j=1,...,3)—this combination of Ymeasuring
system HSK 63 is fixed. Electrically driven heating elementsyoints has proven to be very efficient in predicting the dis-
enable the intentional introduction of dimensioned heat flowsyjacementdthe algorithm for the selection of optimal mea-
into the tools at the tool chuck via the roller bearing fit of the gyring locations is explained in Appendi®.Bn Figs. 5 and
main spindle shaft. Heating of the cutting edges, which origi two representative measurements are given. The only dif-

nally results from the cutting procedure, is generated with 8grence between the two measurements is a break in the
shuttered hot air gun in an approximately point-wise manner

or at the tool tip with a soldering copper. Then, to avoid
external error sources, in a thermal cell temperatures at ninc 80 ; ; ;
locations and displacements at three locations were simulta ' ' :
neously recorded. In this thermal cell, predefined room and
foundations temperatures, including local temperature gradi-
ents, can be generated.

IV. THE APPLICATION TO A SILENT REAL
EXPERIMENTAL SETUP
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FIG. 4. Scheme of the resting tool system on a fixed shaft with measurememIG. 6. Measurement for the “resting tool systemest sek—T;,

positionsS;, j=1,..,3 for the displacements afg, i=1,..,9 for the tem-  i=1,2,8 are the temperatureS,, i=1,..,.3 the measured axial displace-
peratures g is the room temperature ments.
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FIG. 7. Estimation of the displacemef of the test set based on the G 8 M t for the “working tool tenttraini ¢ f
estimated optimal transformations of the training set and the temperaturé:s - 8. Measurement for the “working tool systenifraining set, four

from the test settop). On the bottom the residuals to the original displace- SUCCESSIvVe measuremertsT, , i=1,2,3 are the temperatures, the mea-
mentsS, are plotted. sured displacement on the tip of the tool system.

neighborhood of the measuring point No. 400 during theSOn of the measured displacements and the estimated ones,
measurement for learir(@ig. 5). This break was performed S€€ Fig. 9. As it can be seen, the nonlinear estimation of the
to get a sufficient range of values in the learning series, esdisplacement and the original one vary only slightly from
pecially in the fast heating region (30—50°C). each other—the total RMS error is 2/2n. Avoiding dis-
Figure Ta) shows the estimated displacements at the tinIacement determination errors as those around measurement
of the toolS; using multiple linear regressioibased on the POINt 17 leads to estimations with 1+&n accuracy. In con-
least square methoddis well as using our nonlinear regres- trg_st, the estimation using multiple linear regression is sig-
sion approach. In Fig. (B) the differences to the original Nificantly worse—the RMS error amounts to S.0n. The
measured displacements are plotted. The displacements egﬁ_umple linear regression tends to a systematic overestima-

mated upon nonlinear regression are very close to the orighon of the displacements between measurement points 10
nal, the RMS(root mean squajefailure is up to 10-fold and 40, whereas it is underestimated from measurement

lower than with multiple linear regression, especially in thePoint 60 on.
active warming region at the beginning of the series. The
total RMS error for multiple linear regression amounts toVI. CONCLUSIONS

5.7 pm and to 1.0um for nonlinear regression. The main purpose of this paper was to test whether we

could predict thermal displacements by using a nonlinear
V. THE THERMAL BEHAVIOR OF A MODULAR TOOL

SYSTEM IN A WORKING MILLING MACHINE

. . . 100 T T T T T T T T
Finally, after successfully applying the nonlinear regres- : : : : s :

sion approach to the measured data from a silent experimer

tal setup, we investigate now the thermal behavior of a

modular tool system in a working milling machine. In this

final section, the thermally caused displacements within the

modular tool system were compensated as a demonstrato
H 20 30 40 50 60 70 80 90

On a laptop near the machine, the temperatures measured o 10

the process were entered. Now, using these temperatures, t

computer online calculated the displacements based on th 5 ‘ 5 5 5 5 ‘ 5

temperature-displacement learning set given in Fig. 8. Here_ *®[ " " L L AP v

four successive measurements from four different days wereg 002 e

taken as the training set to include several manufacturings 0.01f- ‘ : : EEgT e

schemes and finally to have a sufficiently large range of val- obadd i b RS RS ey multiple linear regression f

ues. It was possible to compare simultaneously the calculater _j . . ., |z orignaldisplacement

; ; i H ) 10 20 30 40 50 60 70 80 90

displacements with the measured ones in the cutting proce N

dure. During this demonstration test, the cutting speed values

were repeated|y Changed in order to generate deviations froﬁ"G. 9. Thermal error modeling of the test set based on the estimated opti-

P : nal transformations of the training sétee Fig. 8 and the temperatures
the training measurements and, thus, to reinforce the Conﬂ]om the test seftop). On the bottom the nonlinear and multiple linear

pensating Cal_CU|ati0n5- The cutting speed_ values varied fr(_)rgstimations of the displacemes as well as the original measured series
v:=120 m/min, 200 m/min and 370 m/min. For a compatri- are plotted.
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regression analysis. The data analyzed were generated by¢a(T,) for given 6(S), keeping E[qSi(Tl)]:l. Now the
finite element spindle model of modular tool systems, wereACE algorithm consists of the following iterative procedure:
measured on a silent real experimental setup and finally reStarting with the initial function

corded from a working milling machine. The nonlinear 1 B
temperature-displacement functions, which are the basis for (1 Ty = E[SIT4l, (A3)
thermal error modeling, were estimated first from learningfrom i =2 one calculates recursively
measurements using the ACE algorithm and then tested on i _ i—1
independent data sets. As it turned out to be very important H(I)(S)_E[(b(l )(T1)|S] (Ad)
in this investigation, the support of the training measure-and
ments, i.e., the temperature range passed, must be at least as _ i i
wide as that to be estimated later. Outside the range of values (1)(T1)'_ ELOV(SITIIELOO (ST, (AS5)
of the training measurements the calculation accuracy is deintil E[(¢(1')(T1)—0(i)(8))2] fails to decrease. The limit
creasing rapidly. However, in principle, the compensation alvalues are then estimates for the optimal transformatibns
gorithm described above can be applied to all modular tooknd ¢, . For the minimization of the right hand side of Eq.
systems whose temperature-deformation ratio has been préA2) one uses a double-loop algorithm. In the additional in-
viously determined in a learning trial. Moreover, the algo-ner loop the functions
rithm may be immediately transferred to tool systems of
similar geometry and consistence. Summarizing the results ¢J(i)(Tj)=E 90)(3)_2 ¢S’i_l)(Tp) le
of this paper, we find that the ACE algorithm is a powerful p#]
t00| to eStimate the transformatioﬂandd) in the analyzed are Ca'cu'ated_ In the sum, the Superscrip@)‘"‘ is used for
models and thus enables a reliable prediction of thermal disy<j and “. ~1” for p>j. For k>1 the ACE algorithm
placements. Therefore, this approach seems to be very profyorks similarly.
ising for the development of new modular tool systems. There are several possibilities to estimate conditional ex-
pectations from finite data sets. In our examples local
ACKNOWLEDGMENTS smoothing of the data is used. This smoothing can be
We would like to thank the Volkswagen-Foundation for achieved with different kernel estimators. We use a simple
funding this research project and Henning Voss airg 3®- boxcar window, i.e., the conditional expectation value
mus for very helpful discussions. Ely|x] is estimated at each sitevia
N
APPENDIX A: THE ACE ALGORITHM E[ylx]= ﬁ ZN Vit
In this appendix we provide a short description of the ) ) : ) )
ACE algorithm of Breiman and Friedm&h,the computer for aﬂ)fed half window sizeN. In al! exampl_es of this paper
programs used can be obtained from the author& =10 is used to account for a reliable estimate of the mean
(http://tocsy.agnld.uni-potsdam.dle/ln the following the Value. o
same notations as introduced in Sec. Il are used. Furthermore, to allow for a better estimation in the case
Generally, the estimation of functions that are optimaIOf inhomogene_ous distributions, prior to the application of
for correlation is equivalent to the estimation of functionsth® ACE algorithm we transform the data to have rank-
that are optimal for regression. Therefore, another writing offfdered distributioni.e., we sort the data stin ascending
the problem, order resulting in the vector and all further calculation are
. performed with the corresponding index vectior where
Y=X(1)]. This allows for a more precise estimation of ex-
49(0(8)'21 ‘i’i(Ti))" (A1) pectation values, independently of the form of the data dis-

P (STq,...,Ty=ma

6, i o . o . . .
tribution, and simplifies the algorithm considerably. It is al-
is the regression problem lowed since the rank transformation is invertible and the
K 21, maximal correlation is, by definition, invariant under invert-
E ( 9(3)_2 &(T) _ min. (A2) ible transformations. Proofs of convergence and consistency
i=1 of the function estimates are given in Ref. 21.

Here, the functions) and ¢; (j=1,... k) are varied in
the space of Borel measurable functions, and the constrainfS?PENDIX B: ALGORITHM FOR SELECTING OPTIMAL
onto these functions are that they have vanishing expectatidd EASURING LOCATIONS
and finite variances to exclude trivial solutions.

° ’ In the silent real experimental setup for three different
For the one-dimensional cas&=1), the ACE algo-

) ) o . tool mountings(HSK 63 interface; collet chuck, hydraulic
rithm works as follows: Denoting the conditional expectatlonexpansion chuck and shrink chudke temperatures and the

of ¢1(T1) with respect toS by E[¢:(T1)[S], then the  gishiacements were recorded at different locatioss, (
function  ¢o(S)=E[#1(T1)|S] minimizes (A2) with  j=1 .3 for the displacements aiig, i=1,..,9 for the tem-
respect to 6(S) for given ¢y(T;). Similarly,  peratures For real working tools, however, the number of
d1(T1)=E[0(S)|T.1/|E[6(S)|T1]ll, where the norm is de- temperature measurement locations are too high; thus we had
fined by ||Z||=yvafZ], minimizes (A2) with respect to to reduce this number without any loss of information. With
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