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In the last decade, there has been an increasing interest in compensating thermally induced errors to
improve the manufacturing accuracy of modular tool systems. These modular tool systems are
interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their
thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature
of this behavior the so far used linear regression between the temperatures and the displacements is
insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such
thermal displacements via nonlinear temperature-displacement regression functions. These
functions are estimated first from learning measurements using the alternating conditional
expectation~ACE! algorithm and then tested on independent data sets. First, we analyze data that
were generated by a finite element spindle model. We find that our approach is a powerful tool to
describe the relation between temperatures and displacements for simulated data. Next, we analyze
the temperature-displacement relationship in a silent real experimental setup, where the tool system
is thermally forced. Again, the ACE algorithm is powerful to estimate the deformation with high
precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold
lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal
behavior of a modular tool system in a working milling machine and again get promising results.
The thermally induced errors can be estimated with 1–2mm accuracy using this nonlinear
regression analysis. Therefore, this approach seems to be very useful for the development of new
modular tool systems. ©2004 American Institute of Physics.@DOI: 10.1063/1.1622351#
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Manufacturing processes are highly complex systems—
predicting, controlling and optimizing of such processes
is rather difficult. A major challenge is an optimum de-
sign of the manufacturing processes to consistently
achieve quality targets. Here we investigate especially
thermal influences on machine tools which are essentia
to get stabilized manufacturing processes with tolerances
in the micrometer range. The modular tool systems, con-
sidered in this study, are interfaces between spindle and
workpiece and consist of several complicatedly formed
parts. Their thermal behavior is dominated by nonlin-
earities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoreti-
cally. Due to the dominant nonlinear nature of this be-
havior the so far used linear regression between the tem
peratures and the displacements is insufficient.
Therefore, we introduce a concept of maximal correlation
which is a very powerful criterion to measure the depen-
dence of two especially nonlinear related variables. In
this study, we show that we can significantly improve the
prediction of thermal displacements via nonlinear

a!Electronic mail: niels@agnld.uni-potsdam.de
231054-1500/2004/14(1)/23/7/$22.00
temperature-displacement regression functions, which
are estimated using the alternating conditional expecta-
tion algorithm, a recently developed approach of nonlin-
ear time series analysis. The practical applicability of this
method was proven on a working milling machine—the
thermally induced errors could be estimated with 1–2
mm accuracy. Therefore, this approach seems to be very
useful not only for the development of new modular tool
systems but also for other interdisciplinary applications.

I. INTRODUCTION

In the recent decade, much attention has been devote
the investigation of the thermal influence on complete m
chine tools to get thermally stabilized processes with to
ances in the micrometer range.1–12 Modular tool systems as
interfaces between spindle and workpiece, however, affec
a great extent the accuracy of machining. Therefore, the t
mal behavior of modular tool systems has to be thoroug
investigated, especially using nonlinear-dynamical a
proaches, which turned out to be very promising
engineering.13,14

Economic and ecological reasons lead to so-called ‘‘
© 2004 American Institute of Physics
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processing’’ without the use of any lubricants and coolan
However, the stronger thermal influence in dry process
due to friction causes displacements up to 100mm. Over the
past few decades, the compensation for defects due to a
mal impact has attracted steadily increasing interest. Th
investigations comprise a wide range of methods rang
from computer simulations15 and internal monitoring in neu
ral networks16,17 to thermal error modeling.2,3,7,15,18,19The
relation between temperatures and displacements is
complex even in simple tools.9 A modular machine tool con
sists of several complicatedly formed interfaces. Therefor
is difficult to describe thermal displacements theoretica
The state of the art in the description of thermal displa
ments is represented today by a linear regression betwee
temperatures and the displacements.20 One disadvantage o
this approach is that it cannot describe hysteresis beha
especially for very fast heating or cooling. In that case
temperatures measured on the surface of the modular
systems are different from the real temperatures inside
system, which leads to time delays in the temperature pro
gation.

The purpose of this paper is, therefore, to use nonlin
regression methods to model the relation between temp
tures and inelastic displacements and finally to predict
thermal displacements quantitatively in a high precision. T
paper is organized as follows. In Sec. II we shortly descr
the nonlinear regression approach we are using. In Sec
we present the application of this approach to data that w
generated by a finite element spindle model. Section IV c
tains the application to a silent real experimental set
where the tool system was thermally forced. In Sec. V
investigated the thermal behavior of a modular tool system
a working milling machine and, finally, in Sec. VI we discu
our results.

II. MAXIMAL CORRELATION AND OPTIMAL
TRANSFORMATIONS

We generally assume that there are measurementsTi ,
i 51, . . . , ni of the temperature andSj , j 51, . . . , nj of the
axial displacement atni , resp.,nj points ~e.g., Fig. 1!. We
use these different measurement points, e.g., at the cu
edge, to describe the thermal process in the whole mod
tool system. The main aim is then to reconstruct the displa
mentsSj on the basis of manufacturing parameters, es
cially the temperaturesTi . Because of well-known hyster
esis effects,9 it is necessary to consider a respon
transformation model, which is of the type

u j~Sj !5f j~T1 , . . . ,Tni
!, j 51, . . . ,nj . ~1!

The regression functionsf j are high dimensional surface
and cannot be displayed for dimensions greater than
Moreover, they do not provide a geometrical description
the regression relationship between the temperatures an
displacements. To overcome this problem, we consider
following models:

u j~Sj !5(
i 51

ni

f j ,i~Ti !, j 51, . . . ,nj , ~2!
.
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and apply the alternating conditional expectations~ACE!
algorithm,21 described below, as a nonparametric approac
estimate the transformationsf j ,i andu j in Eq. ~2!.

The concept of maximal correlation is a very powerf
criterion to measure the dependence of two especially n
linear related variables.22 The main idea of this approach i
to measure the maximized correlation of properly tra
formed variables.

Given a real variableSj and anni-dimensional vector
T5(T1 , . . . ,Tni

) in the additive model~2!. Then, the maxi-
mal correlation is defined by

C j~Sj ,T!ªur„u j* ~Sj !,f j* ~T!…u5max
u,f

ur„u~Sj !,f~T!…u,

~3!

wherer denotes the correlation coefficient. The functionsu j*
andf j* , which fulfill the maximal condition~3!, are called
optimal transformation and represent an estimation of
model ~2!. To estimate them nonparametrically, we use
ACE algorithm.21 This iterative procedure is nonparametr
because the optimal transformations are estimated by l
smoothing of the data using kernel estimators. We us
modified algorithm in which the data are rank-ordered bef
the optimal transformations are estimated. This makes
result less sensitive to the data distribution. For more det
see Appendix A.

The maximal correlation and optimal transformation a
proach have been recently applied to nonlinear dynam
systems especially to identify a delay in lasers23 and partial
differential equations in fluid dynamics.24 The ACE algo-
rithm turned out to be a very efficient tool for nonlinear da
analysis.23,25,26

III. RECONSTRUCTION OF THERMALLY INDUCED
DISPLACEMENTS IN A FINITE ELEMENT
SPINDLE MODEL

To investigate whether the nonlinear regression appro
described above is appropriate also for modular tool syste
which are used in milling and drilling machines, we fir
analyze simulated data from finite element models~FEM!.
The tool system is the connecting part between the m
spindle and the milling tool. Its main target is the producti
of clamping forces for an accurate machining. There are
ferent types of clamping systems; in this work we focus
power shrinking and hydraulic chucks tools. These data
obtained with the FEM model are used to find an optim
number and optimal locations of measurement points an
study the influence of the controlling parameters. In the FE
model, a given regime of rotations leads to the temperatu
Ti and the displacementsSj at several measurement point
In the following, we are investigating a main spindle to
design~Fig. 1! with two different simulations. We use th
first measurement as a learning set$St, j% t51, . . . ,n ,
j 51, . . . , nj , $Tt,i% t51, . . . ,n , i 51, . . . , ni to compute the
optimal transformations and the second as a test se
$St, j8 % t51, . . . ,n , j 51, . . . , nj , $Tt,i8 % t51, . . . ,n , i 51, . . . , ni to
check how well the optimal transformations obtained by
reference series describe the temperature-displacement
tion. The only difference between both series is given w
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25Chaos, Vol. 14, No. 1, 2004 Predicting thermal displacements
different manufacturing schemes, especially with differe
time scales and regimes of rotations. We apply a two s
strategy.

~i! Computation of the optimal transformationsu j* and
f j* in the model

uj~St,j!5fj~Tt,iiPI
!

~4!
j51, . . . ,nj5 (

i 51, . . . ,ni

f j ,i~Tt,i !,

from the training series$St, j% t51, . . . ,n , j 51, . . . , nj ,
$Tt,i% t51, . . . ,n , i 51, . . . , ni .

~ii ! Reconstruction of the displacementsSt, j8 , j 51, . . . ,
nj of the test series using the temperaturesTt,i8 ,
i 51, . . . , ni of the test series and the optimal tran
formationsu j* andf j* of the training series compute
in ~i!,

Ŝt,j8 5ûj*
21S(

iPI
f̂j,i* ~Tt,i8 !D, j51, . . . ,nj , ~5!

and a comparison of the realSt, j8 with the estimated
Ŝt, j8 displacements.

The hat overu andf denotes a nonparametric estimati
for these functions. Practically, we use a nearest-neigh
estimation withk52 nearest neighbors27 to estimate these
functions. We have tested different numbers of nearest ne
borsk51,..,10, however, there are only slight differences
the estimates.

For two different regimes of rotations we have a sim
lated data set with values of temperatures (Tt,i ,i 52,3,4) and
displacements (St, j , j 53,4) belonging to different parts o
the tool. Each series consists ofn5199 points with a sam-
pling time ofDt5100 s. The reference series, which is us
as a training set, is shown in Fig. 2~a!.

We present here only the estimations forS4 at the front
tip of the tool ~Fig. 1! because the displacements at the c
ting edge are the most interesting ones. The results
shown in Fig. 2~b!, i.e., the estimations for the optimal tran
formationsu4* andf4,2* , . . . , f4,4* . The nonlinearity of these
functions is a clear evidence that linear regression is
sufficient to model the relation between temperatures
displacements—otherwise the optimal transformatio

FIG. 1. Design of the main spindle model~output of the commercial FE-
modeling program ANSYS!.
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should be close to linear. The graph on the lower left cor
2~b!~v! shows u4* (St,4) versus ( i 52

4 f4,i* (Tt,i) which
should be the identity in the optimal case. In Fig. 2~b!~vi!
on the lower right side, we plot the residua
u4* (St,4)2( i 52

4 f4,i* (Tt,i). Assuming the existence of func
tionsu andf in the model, the residuals should vanish and
fact, the high value obtained for the maximal correlati
C50.9994 indicates a very good estimation. Furthermo
this value is quite high in comparison with the maximal co
relation in other applications of the ACE algorithm.22,28

Next, we compute the estimation of displacements of
test data set using the optimal transformations estima
above and the temperatures from the test data set as in
~5!. The estimated curves are quite close to the original o
~Fig. 3! except for the cropped peaks. Looking at the origin
time series and the optimal transformations in Fig. 2, we
immediately that the support in the displacement series of
training set is not as wide as the range of the test ser
Therefore, for data from real modular tool systems we ha
to consider this problem. Moreover, we have to find minim
measurement points with optimal predictability of the d
placements to reduce the dimensionality of the task.

FIG. 2. Simulated data for the model of Fig. 1:~a! Training time series~top:
temperatureT2 , T3 , T4 , bottom: axial displacementsS3 , S4); ~b! optimal
transformations~arbitrary units! for S4 with respect to the model Eq.~4!: ~i!
u4* (St,4), ~ii ! f4,2* (Tt,2), ~iii ! f4,3* (Tt,3), ~iv! f4,4* (Tt,4), ~v! plotting u4* ver-
susSf4,i ; ~vi! plotting the residualsu4* 2Sf4,i .
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IV. THE APPLICATION TO A SILENT REAL
EXPERIMENTAL SETUP

In the last section it was possible to demonstrate that
presented nonlinear regression approach is able to pre
displacements which were generated using a FEM mo
Now, its applicability to measured data from real modu
tool systems have to be validated. Therefore, a tool sys
with a corresponding recording system was designed wh
is able to measure temperatures and displacements at se
tool positions~see Fig. 4!. However, as a first step, the too
system was resting, i.e., not active. On a body, a fixed m
spindle shaft with the hydraulically actuated tool chucki
system HSK 63 is fixed. Electrically driven heating eleme
enable the intentional introduction of dimensioned heat flo
into the tools at the tool chuck via the roller bearing fit of t
main spindle shaft. Heating of the cutting edges, which or
nally results from the cutting procedure, is generated wit
shuttered hot air gun in an approximately point-wise man
or at the tool tip with a soldering copper. Then, to avo
external error sources, in a thermal cell temperatures at
locations and displacements at three locations were sim
neously recorded. In this thermal cell, predefined room
foundations temperatures, including local temperature gr
ents, can be generated.

FIG. 3. Estimation of the displacementS4 for the test time series, top: th
original temperatures, bottom: the original and the estimated axial displ
ments of the main spindle model.

FIG. 4. Scheme of the resting tool system on a fixed shaft with measure
positionsSj , j 51,..,3 for the displacements andTi , i 51,..,9 for the tem-
peratures (T9 is the room temperature!.
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Let Sj , j 51,..,3 denote the measured displacements
Ti , i 51,..,9 the temperatures measured. Then, we can
sume the following additive model:

u j~Sj !5(
i 51

9

f j ,i~Ti !, j 51, . . . ,3. ~6!

As in the previous section we apply a two step strate
First, the optimal transformations are estimated based o
learning data base. Afterwards, the temperature-displacem
relationship is tested on an independent measurement. In
work, only the temperature measuring pointsT1 , T2 andT8

were taken into account for modeling~i.e., f j ,i[0 for
iÞ1,2,8, j 51, . . . ,3)—this combination of measuring
points has proven to be very efficient in predicting the d
placements~the algorithm for the selection of optimal mea
suring locations is explained in Appendix B!. In Figs. 5 and
6, two representative measurements are given. The only
ference between the two measurements is a break in

e-

nt

FIG. 5. Measurement for the ‘‘resting tool system’’~training set!, which was
thermally forced—Ti , i 51,2,8 are the temperatures,Si , i 51,..,3 the mea-
sured axial displacements.

FIG. 6. Measurement for the ‘‘resting tool system’’~test set!—Ti ,
i 51,2,8 are the temperatures,Si , i 51,..,3 the measured axial displace
ments.
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27Chaos, Vol. 14, No. 1, 2004 Predicting thermal displacements
neighborhood of the measuring point No. 400 during
measurement for learning~Fig. 5!. This break was performed
to get a sufficient range of values in the learning series,
pecially in the fast heating region (30– 50 °C).

Figure 7~a! shows the estimated displacements at the
of the toolS1 using multiple linear regression~based on the
least square method! as well as using our nonlinear regre
sion approach. In Fig. 7~b! the differences to the origina
measured displacements are plotted. The displacements
mated upon nonlinear regression are very close to the o
nal, the RMS~root mean square! failure is up to 10-fold
lower than with multiple linear regression, especially in t
active warming region at the beginning of the series. T
total RMS error for multiple linear regression amounts
5.7 mm and to 1.0mm for nonlinear regression.

V. THE THERMAL BEHAVIOR OF A MODULAR TOOL
SYSTEM IN A WORKING MILLING MACHINE

Finally, after successfully applying the nonlinear regre
sion approach to the measured data from a silent experim
tal setup, we investigate now the thermal behavior o
modular tool system in a working milling machine. In th
final section, the thermally caused displacements within
modular tool system were compensated as a demonstr
On a laptop near the machine, the temperatures measur
the process were entered. Now, using these temperature
computer online calculated the displacements based on
temperature-displacement learning set given in Fig. 8. H
four successive measurements from four different days w
taken as the training set to include several manufactu
schemes and finally to have a sufficiently large range of v
ues. It was possible to compare simultaneously the calcul
displacements with the measured ones in the cutting pr
dure. During this demonstration test, the cutting speed va
were repeatedly changed in order to generate deviations
the training measurements and, thus, to reinforce the c
pensating calculations. The cutting speed values varied f
vc5120 m/min, 200 m/min and 370 m/min. For a compa

FIG. 7. Estimation of the displacementS1 of the test set based on th
estimated optimal transformations of the training set and the tempera
from the test set~top!. On the bottom the residuals to the original displac
mentS1 are plotted.
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son of the measured displacements and the estimated o
see Fig. 9. As it can be seen, the nonlinear estimation of
displacement and the original one vary only slightly fro
each other—the total RMS error is 2.2mm. Avoiding dis-
placement determination errors as those around measure
point 17 leads to estimations with 1–2mm accuracy. In con-
trast, the estimation using multiple linear regression is s
nificantly worse—the RMS error amounts to 5.0mm. The
multiple linear regression tends to a systematic overesti
tion of the displacements between measurement points
and 40, whereas it is underestimated from measurem
point 60 on.

VI. CONCLUSIONS

The main purpose of this paper was to test whether
could predict thermal displacements by using a nonlin

esFIG. 8. Measurement for the ‘‘working tool system’’~training set, four
successive measurements!—Ti , i 51,2,3 are the temperatures,S1 the mea-
sured displacement on the tip of the tool system.

FIG. 9. Thermal error modeling of the test set based on the estimated
mal transformations of the training set~see Fig. 8! and the temperatures
from the test set~top!. On the bottom the nonlinear and multiple linea
estimations of the displacementS1 as well as the original measured serie
are plotted.
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28 Chaos, Vol. 14, No. 1, 2004 Wessel et al.
regression analysis. The data analyzed were generated
finite element spindle model of modular tool systems, w
measured on a silent real experimental setup and finally
corded from a working milling machine. The nonline
temperature-displacement functions, which are the basis
thermal error modeling, were estimated first from learn
measurements using the ACE algorithm and then tested
independent data sets. As it turned out to be very impor
in this investigation, the support of the training measu
ments, i.e., the temperature range passed, must be at le
wide as that to be estimated later. Outside the range of va
of the training measurements the calculation accuracy is
creasing rapidly. However, in principle, the compensation
gorithm described above can be applied to all modular t
systems whose temperature-deformation ratio has been
viously determined in a learning trial. Moreover, the alg
rithm may be immediately transferred to tool systems
similar geometry and consistence. Summarizing the res
of this paper, we find that the ACE algorithm is a power
tool to estimate the transformationsu andf in the analyzed
models and thus enables a reliable prediction of thermal
placements. Therefore, this approach seems to be very p
ising for the development of new modular tool systems.
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APPENDIX A: THE ACE ALGORITHM

In this appendix we provide a short description of t
ACE algorithm of Breiman and Friedman,21 the computer
programs used can be obtained from the auth
~http://tocsy.agnld.uni-potsdam.de/!. In the following the
same notations as introduced in Sec. II are used.

Generally, the estimation of functions that are optim
for correlation is equivalent to the estimation of functio
that are optimal for regression. Therefore, another writing
the problem,

C~S,T1 , . . . ,Tk!5max
u,f i

UrXu~S!,(
i 51

k

f i~Ti !CU, ~A1!

is the regression problem

EF S u~S!2(
i 51

k

f i~Ti !D 2G5
!

min. ~A2!

Here, the functionsu and f j ( j 51,...,k) are varied in
the space of Borel measurable functions, and the constra
onto these functions are that they have vanishing expecta
and finite variances to exclude trivial solutions.

For the one-dimensional case (k51), the ACE algo-
rithm works as follows: Denoting the conditional expectati
of f1(T1) with respect toS by E@f1(T1)uS#, then the
function f̄0(S)5E@f1(T1)uS# minimizes ~A2! with
respect to u(S) for given f1(T1). Similarly,
f̄1(T1)5E@u(S)uT1#/iE@u(S)uT1#i , where the norm is de
fined by iZi5Avar@Z#, minimizes ~A2! with respect to
y a
e
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f1(T1) for given u(S), keepingE@f1
2(T1)#51. Now the

ACE algorithm consists of the following iterative procedur
Starting with the initial function

f1
(1)~T1!5E@SuT1#, ~A3!

from i 52 one calculates recursively

u ( i )~S!5E@f1
( i 21)~T1!uS# ~A4!

and

f1
( i )~T1!5E@u ( i )~S!uT1#/iE@u ( i )~S!uT1#i , ~A5!

until E@(f1
( i )(T1)2u ( i )(S))2# fails to decrease. The limi

values are then estimates for the optimal transformationu
andf1 . For the minimization of the right hand side of E
~A2! one uses a double-loop algorithm. In the additional
ner loop the functions

f j
( i )~Tj !5EFu ( i )~S!2(

pÞ j
fp

( i ,i 21)~Tp!UTj G
are calculated. In the sum, the superscript ‘‘.( i )’’ is used for
p, j and ‘‘. ( i 21)’’ for p. j . For k.1 the ACE algorithm
works similarly.

There are several possibilities to estimate conditional
pectations from finite data sets. In our examples lo
smoothing of the data is used. This smoothing can
achieved with different kernel estimators. We use a sim
boxcar window, i.e., the conditional expectation val
E@yux# is estimated at each sitei via

Ê@yuxi #5
1

2N11 (
j 52N

N

yi 1 j ,

for a fixed half window sizeN. In all examples of this pape
N510 is used to account for a reliable estimate of the m
value.

Furthermore, to allow for a better estimation in the ca
of inhomogeneous distributions, prior to the application
the ACE algorithm we transform the data to have ran
ordered distributions@i.e., we sort the data setX in ascending
order resulting in the vectorY and all further calculation are
performed with the corresponding index vectorI , where
Y5X(I )]. This allows for a more precise estimation of e
pectation values, independently of the form of the data d
tribution, and simplifies the algorithm considerably. It is a
lowed since the rank transformation is invertible and t
maximal correlation is, by definition, invariant under inve
ible transformations. Proofs of convergence and consiste
of the function estimates are given in Ref. 21.

APPENDIX B: ALGORITHM FOR SELECTING OPTIMAL
MEASURING LOCATIONS

In the silent real experimental setup for three differe
tool mountings~HSK 63 interface; collet chuck, hydrauli
expansion chuck and shrink chuck! the temperatures and th
displacements were recorded at different locations (Sj ,
j 51,..,3 for the displacements andTi , i 51,..,9 for the tem-
peratures!. For real working tools, however, the number
temperature measurement locations are too high; thus we
to reduce this number without any loss of information. W
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the maximal correlation value of a chosen model we a
have information about the quality of this ansatz. The hig
the maximal correlation value the lower the unexplain
variance in the model, i.e., the better the model. Fr
the given nine temperature locations we can fo
( i 51

9 ( i
9)5511 measurement combinations. If we had to c

culate all these combinations for all measured data
(n523) and for all displacements we had to process 35
different models which would exceed our calculation cap
ity. Hence, we limited our study to maximal three differe
temperature locations, i.e., we are considering o
( i 51

3 ( i
9)5129 combinations~the maximal correlation for

temperature triples was.0.99; i.e., we did not have to con
sider more than three temperature locations!. For each model
the maximal correlation was calculated for all measured d
sets and all displacements. Then, we identified equiva
combinations for each displacement locationSj , j 51,...,3
separately. This was done in the following way: first t
temperature combination with the cumulative highest va
of the maximal correlation was determined~sum over all
measurements!, second all combinations were determin
which show nearly the same results using the nonparam
Wilcoxon-test for paired samples. In this way we got
equivalent combinations forS1 , 7 for S2 and 27 for S3 .
Finally, we found only four different combinations whic
were optimal for all displacements: $T1 ,T2 ,T8%,
$T2 ,T4 ,T8%, $T2 ,T5 ,T8%, $T2 ,T8 ,T9%. Note, the importance
of the locationsT2 andT8 : both are included in all combi
nations. Without the information included in the third loc
tion, however, this tuple would be significantly worse. T
last step was subjective: we decided to take the first com
nation$T1 ,T2 ,T8%.
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