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Received: 20 July 2004 – Accepted: 18 August 2004 – Published: 13 September 2004

Part of Special Issue “Nonlinear analysis of multivariate geoscientific data – advanced methods, theory and application”

Abstract. Linear methods of dimensionality reduction are
useful tools for handling and interpreting high dimensional
data. However, the cumulative variance explained by each
of the subspaces in which the data space is decomposed may
show a slow convergence that makes the selection of a proper
minimum number of subspaces for successfully representing
the variability of the process ambiguous. The use of nonlin-
ear methods can improve the embedding of multivariate data
into lower dimensional manifolds. In this article, a nonlinear
method for dimensionality reduction, Isomap, is applied to
the sea surface temperature and thermocline data in the trop-
ical Pacific Ocean, where the El Niño-Southern Oscillation
(ENSO) phenomenon and the annual cycle phenomena inter-
act. Isomap gives a more accurate description of the manifold
dimensionality of the physical system. The knowledge of the
minimum number of dimensions is expected to improve the
development of low dimensional models for understanding
and predicting ENSO.

1 Introduction

The reduction of dimensionality of large multivariate data is
a common task in many different branches of science. Its pur-
pose is to reduce a theoretically infinite dimensional system
(which, in measured data, is finite but highly dimensional) to
a few physically relevant modes in order to gain insight into
the dynamics of the complex system by neglecting unimpor-
tant degrees of freedom. In climate research, a widely used
linear method is the principal component analysis (PCA) (Jo-
liffe, 1986), also called empirical orthogonal function (EOF)
analysis in the geoscience context (von Storch and Zwiers,
1999), proper orthogonal decomposition (POD) in fluid dy-
namics (Holmes et al., 1997) and Karhunen-Loève decom-
position in the continuous form (Karhunen, 1946; Loève,
1945). In PCA, the system under study is approximated by
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a linear combination of steady spatial patterns with time de-
pendent coefficients. The relevant number of dimensions is
determined from the cumulative explained variance of the
PCA modes and their physical interpretation. This variance
is closely related to the eigenvalues of the spectral decom-
position. Unfortunately, for many physical systems, these
eigenvalues show a slow convergence that hampers the se-
lection of the minimum number of dimensions.

In this article, we will apply a nonlinear method of dimen-
sionality reduction to the observed sea surface temperature
(SST) data in the tropical Pacific Ocean. In the equatorial
Pacific, the SST evolution is characterized by a nonlinear su-
perposition of two different oscillatory phenomena, ENSO
and the annual cycle. ENSO is the most dominant statisti-
cal and physical mode of climate variability on interannual
timescales (Philander, 1990). Climate models of different
complexity have been used to explore the origin of its oscil-
latory character, its period and skewness (Zebiak and Cane,
1987; Tziperman et al., 1994; Jin, 1997). Attempts to recon-
struct ENSO’s attractor have been made using different non-
linear methods (Monahan, 2001; Grieger and Latif, 1994).
The statistical analysis of ENSO is mostly based on SST
anomalies which are obtained by subtracting a mean annual
cycle from the monthly averaged SST data. The annual cycle
in the tropical Pacific area originates from a complex inter-
play between semi-annual solar forcing and coupled air-sea
instabilities (e.g. Li and Philander, 1996; Xie, 1994). As the
strength of these instabilities varies slowly in time, one may
expect that the amplitude of the physical annual cycle is not
stationary but time-dependent. Extracting a time-varying an-
nual cycle and an ENSO mode in a multivariate way from
SST data is not simple and the results may depend strongly
on the assumptions used by different methodologies. In par-
ticular, linear methods may fail to disentangle both modes
since ENSO and the annual cycle exhibit in some sense a
joint synchronised behaviour – ENSO amplitude is strong
during the boreal winter season. This behaviour is remi-
niscent of an interactive coupling between the two modes
(Pikovsky et al., 2001). For this reason, the study of the inter-
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action is of great importance for understanding the variability
of ENSO. In the last years, several articles discussing how
ENSO and the annual cycle interact in the tropical Pacific
Ocean have been published (e.g. Xie, 1995; Jin et al., 1996;
Tziperman et al., 1998; An and Wang, 2001). This type of
interaction, which could be nonlinear, may lead to erronous
conclusions when subtracting a constant annual cycle from
SST data under consideration, as usually done in the analysis
of ENSO dynamics. Therefore, the data space cannot be de-
composed into a sum of linear subspaces each containing an
independent variable because of the existing interaction. So
that, the separation of the SST into physically independent
modes is not possible. Our aim will be, then, to extract a
low dimensional manifold where the whole physical system
could be embedded.

The structure of the paper is as follows. In the second sec-
tion, we will provide a view of the problem of dimensional-
ity reduction using the framework of Multidimensional Scal-
ing (MDS). By doing this, the linear (PCA) and nonlinear
(Isomap) methods used in this article can be compared under
the same theoretical basis. In fact, the crucial point will lie
on the definition of distance in the data space. In the third
section, the methods will be applied to the SST dataset. Fi-
nally, we will extract some conclusions about the feasibility
of our procedure.

2 The framework of Multidimensional Scaling

Let us define a matrixTn×m of data, in such a way thatT ij is
the SST at timeti in a certain spatial pointxj . We can think
that the matrix is built up ofn points{Ti} in aRm space, and
that these points belong to a trajectory as they are ordered in
time. In this space, for every two points{Ti, Tj} in Rm, the
metric or distancedij = d(Ti, Tj) can be defined as a func-
tion onto nonnegative real numbers that obey the following
rules:dij = 0 iff i = j , dij = dj i and the triangle inequality,
which states thatdij + djk ≥ dik.

The distance can be interpreted as a measure of similarity:
if dij < dik we say that the physical state represented byTi
is closer toTj thanTk. The multidimensional scaling (MDS)
approach makes use of the matrix of squared distances

(D(2))ij = dij
2 (1)

and applies the following procedure (Borg and Groenen,
1997). First,D(2) is transformed via an operation called
double-centering. More precisely, using a matrixJ where
J ij = δij − 1/n, whereδij is the Kronecker delta, we define
the matrix

Z(2)
= −

1
2JD(2)J. (2)

As we will see later, the matrixZ(2) is the matrix of scalar
products of data points in the case that we use euclidean
distances. Then,Z(2) is decomposed into its eigenvalues
and eigenvectorsZ(2)pi = λipi . Defining3ij = λiδij with
λi > λi+1 andPij = pij the componentj of vectorpi , then
Z(2)

= P3P. If the set of eigenvalues have some leading

components{λ1, ..., λp} with p < m, and the rest decays
very fast, meaningλp >> λp+1, we could approximateZ(2)

to its projection into the subspace spanned by the eigenvec-
tors{p1, ..., pp}.

This MDS framework can be used to embrace all the data
analysis methods we are going to use. In fact, the main dif-
ference between the linear and the nonlinear method applied
in this work come, as we will show, from the particular defi-
nition of distance used in Eq. (1).

2.1 Principal Component Analysis

Let us consider our data space as euclidean. This means that,
if we define the scalar product as,

Ti · Tj =
∑m

k=1 TikTjk (3)

then, this definition allows us to define the norm of a vector
as

‖Ti‖ =
√

Ti · Ti =

√√√√ m∑
k=1

TikTik (4)

and the distance between two pointsTi andTj as the norm of
their difference

dij = ‖Ti − Tj‖ =

√√√√ m∑
k=1

(Tik − Tjk)2 (5)

which is the well known expresion of euclidean distance.
Therefore,D(2) can be written in the form

D(2)
= 1cT

+ c1T
− 2TTT (6)

where the components of the vectorc are ci =
∑m

k=1 T 2
ik

and1 is a vector formed by ones and dimensionn. Then,
applying the centering and eigendecomposition as explained
in Sect. 2, we obtain,

Z(2)
= −

1
2JD(2)J = TTT

= P3PT
=

P31/231/2PT (7)

where3 is the diagonal matrix of eigenvalues andP is the
matrix of eigenvectors ofZ(2). This allows us to make a rep-
resentation ofT in terms ofPiλ

1/2
i which is called principal

coordinates analysis (PCO or PCoA) (Gower, 1966). If the
data have mean zero and variance one, there is a nice cor-
respondence with the PCA. The correlation matrixV can be
written as,

V = TT = Q3QT
= Q31/2PTP31/2QT (8)

wherePTP = I . Finally, we can associate, by singular value
decomposition,T = P31/2QT, whereP31/2 is the principal
components matrix,3 is the diagonal matrix formed by the
eigenvalues of the correlation matrix andQ is the matrix of
patterns. Therefore, PCA and PCO get the same representa-
tion in terms of componentsP31/2. This way we can reduce
the dimensionality of the data by takingPiλ

1/2
i from i = 1 to

some valuep < m, which could bep << m.
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Summarizing, PCA can be regarded as an euclidean MDS
for normalised data. We would like to stress that PCA is
a linear method of decomposition, where the data are pro-
jected into orthonormal linear subspaces. However, if the
data points belong to a nonlinear manifold, the orthonormal
projection spreads contributions to the variance onto the dif-
ferent principal components. In that case, reducing the di-
mensionality of a physical system in which the dynamics is
not governed by linear processes or where there are nonlinear
relations between variables could lead to a wrong interpreta-
tion of the dimensionality. As a simple example, we can ap-
ply PCA to several, but simple, nonlinear data. For instance,
we construct a trajectory of a particle moving on a spiral with
some added uniform noise (Fig. 1a). In this example we can
observe (Fig. 1b) that the PCA do not reconstruct the one-
dimensional trayectory. To reproduce the real dynamics we
need, in this context, to use a definition of distance that cap-
tures the nonlinear structure of the manifold. The geodesic
distance is the proper metric for measuring distances on non-
linear manifolds, as we will discuss in the following section.

2.2 Isomap

The natural metric for nonlinear manifolds is the geodesic
distance (for a review in differential geometry, see Do Carmo
(1976)). Let us have an euclidean space of temperaturesT of
coordinates{T1, ..., Tm}. Suppose there is a manifold2 ⊆ T
represented by the coordinates{21, ..., 2p}. The metric of
2 is the matrixg with elements defined by,

gij =
∑m

k=1
∂Tk

∂2i

∂Tk

∂2j
(9)

For a generalg, the distance between two pointsθ1 andθ2 in
2 is then

d(θ1, θ2) = ‖θ1 − θ2‖ =

∫ θ2

θ1

√√√√ m∑
i,j=1

gijd2id2j (10)

In the case of a euclidean manifold,gij = δij and we recover
Eq. (5) for the discrete case.

For example, let us think of a particular manifold2, in
our case a spiral similar to that one shown in Fig. 1a. The
equations of the spiral are:

x = t sint

y = t cost,

wheret belongs to a real interval. The euclidean distancedE

between two points(x1, y1) = (x(t1), y(t1)) and(x2, y2) =

(x(t2), y(t2)) is dE =

√
(x1 − x2)2 + (y1 − y2)2 =√

t2
1 + t2

2 − 2t1t2 cos(t1 − t2). The path from one point to
another one is a straight line that does not belong to the spi-
ral. But, if we restrict ourselves to a path inside the spiral, the

geodesic distance isdS =
∫ t2
t1

√
1 + t2dt =

1
2{t2

√
1 + t2

2 −

t1

√
1 + t2

1 + arcsinh(t2) − arcsinh(t1)} as can be calculated.
It is interesting to note that small euclidean distances may
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Fig. 1. (a)Spiral with uniform noise.(b) Result for the spiral after
PCA, the method cannot guess the true dimensionality.(c) Result
for the spiral after Isomap, now the method unfolds the one dimen-
sional trajectory.

correspond to large geodesic distances. For this reason, mea-
suring similarities based on inadequate distances could lead
to misleading results. Consequently, the idea is to substi-
tute the euclidean distance in the MDS method (hence, the
scalar product defined by the statistical correlation in the
case of PCA) by the geodesic distance between each pair
of points. Tenenbaum et al. (2000) proposed a method for
computing geodesic distances through graph distances. The
method could be divided in several phases: i) in a first
step, Isomap approximates the geodesic distance using a
graph constructed by connecting nearest neighbours in the
euclideanRm space. More specifically, we will say that a
pointTi is one of the nearest neighbours ofTj if it belongs to
a ball centered onTj with radiusε. Alternatively, we could
also defineTi as a nearest neighbour ofTj if it is one of the
K closest points (measured by the euclidean distance) toTj
in the set. ii) After the nearest neighbours are defined, they
are connected via weighted edges where the weight is the
euclidean distance between connected points. iii) Then, the
minimum graph distance between each pair of points is com-
puted. This distance is used as a fair approximation to the
true geodesic distance (for discussion and proofs, see Tenen-
baum et al. (2000) and references therein). The crucial point
lies on finding an interval ofε, or a number ofK, where the
solution is robust. Low values ofε or K will not connect
all the points, while too many will overestimate the dimen-
sion of the manifold. After the new matrix of squared dis-
tances is computed, the MDS procedure is applied, starting
at Eq. (2). The dimensionality of the manifold (the optimum
number of dimensions needed to capture the variability of the
data) can be measured via the eigenvalues of the MDS pro-
cedure. These eigenvalues are a measure of the error made
when we project the whole dataset onto the directions defined
by the corresponding eigenvectors. The cumulative variance

cp, of dimensionp is defined usingcp =

∑p
i=1 3ii

T r(3)
, and takes

the valuecp = 0 if no statistical variance is explained, and
cp = 1 if all the variability is taken into account.

The Isomap algorithm has two computational bottlenecks
(Silva and Tenenbaum, 2003). The first is the calculation
of the n2 shortest-paths distance matrix. The second is the
eigenvalue calculation after the double-centering operation
in Eq. (2) of then2 rank matrixZ(2). These two inefficien-
cies can be avoided by designatingn′ < n landmark points.



396 A. J. Ǵamez et al.: Nonlinear dimensionality reduction in climate data

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9 100

0.2

0.4

0.6

0.8

1

(b)(a)

p p

cpcp

Fig. 2. The cumulative variancesrp plotted against the number of
dimensionsp considered for PCA (triangles) and Isomap (circles).
For (a) spiral, the dimensionality is one when Isomap is used, and
two when PCA is applied. For(b) KE SST database, the dimension-
ality shown by Isomap is three, as the cumulative variance ceases to
increase significantly if adding more dimensions. The dimension-
ality shown by PCA is unclear because of the slow convergence of
cp.

Instead of computing the whole set of distances, only the
n × n′ matrix of distances from each data pointto the land-
marks are calculated. Of course, ifn′ << n, a lot of com-
puting time is saved. The fact that the use of landmarks is
feasible can be justified from the assumption that the data are
embedded in a low-dimensional manifold (Silva and Tenen-
baum, 2003).

Using the same example as in the preceeding section, we
apply Isomap (k = 5) to the spiral set with noise represented
in Fig. 1a. For the spiral, the dimensionality is one (Fig. 2a),
in contrast with the results offered by PCA. We can observe
how the spiral is unfolded into an approximately one dimen-
sional set in the Fig. 1c.

In the following section, we will apply PCA and Isomap to
geophysical data. More specifically, the SST data in the trop-
ical Pacific Ocean region depicted in Fig. 3 will be analysed
using both methods.

3 Application to SST

We have taken Sea Surface Temperature (SST) data
from public databases (e.g. http://ingrid.ldeo.columbia.edu/).
More precisely, we have made use of two databases:

1. the Reynolds-Smith (shortly, RS) database (Reynolds
and Smith, 1995) for the region limited by 89.5◦ W to
149.5◦ E and 20.5◦ N to 20.5◦ S, from November 1981
to October 2002, with a resolution of one month in time
and one degree in space. This means that there are 5124
spatial measurements for 252 months.

2. the Kaplan Extended (shortly, KE) database (Kaplan
et al., 1998) for the region limited by 87.5◦ W to
147.5◦ E and 17.5◦ N to 17.5◦ S, from January 1856 to
October 1981, with a resolution of one month in time
and five degrees in space. In this case, the spatial reso-
lution is 208 points with 1762 time points.

Fig. 3. Map of the Pacific Ocean. The big rectangle shows the
region under study in comparison to the regions where NINO3 and
NINO4 are defined in the literature.

Fig. 4. (a)Evolution of the temperature pattern along the Equator
from January 1982 to January 2002 (resolution one month). We
can observe the warm pool in the west and the cold tongue in the
east punctuated by ENSO events (marked with arrows).(b) Time
evolution of the temperature at the point (115◦ E, 0◦ N).

RS is used to complement the data of KE in the Novem-
ber 1981 to October 2002 time range. The time evolution of
the temperature on the Equator is shown in Fig. 4a. If we
focus on a fixed position in the ocean, we can observe two
principal oscillations, a rather regular one associated with
the annual cycle, and an irregular one associated with ENSO
(Fig. 4b). The following results are obtained by using the
normalized (unit variance and zero mean) KE database. This
allows us to compare PCA and Isomap using the same nor-
malised data. The results obtained from the analysis of the
RS database are consistent with the ones presented here. The
analysis of SST with PCA shows an annual oscillation which
is present in all the principal components (Fig. 5). The con-
vergence ofcp with the number of dimensions is slow. For
this reason, it is difficult to select the number of dimensions
that best describes the physical process. Depending of the
criterion selected, we get different cut-offs in the number of
relevant components. We turn now our efforts to Isomap to
compare its results in terms of dimensionality. For the KE
database, the radius of the ball that defines the nearest neigh-
bours was taken asε = 9. Similar results were found when
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Fig. 5. (a)Coordinates and(b) power spectra of, from top to bot-
tom, the first, second and third principal components for the KE
dataset from January 1982 to January 2002 (resolution one month)
computed via PCA.

Fig. 6. Embedding of the KE SST into the dimensions defined by
the first three eigenvalues.

ε was ranging from 9 to 30. Although the use of landmark
points is suggested forn > 1000, we used the whole set of
data points for calculating the eigenvalues ofZ(2). This was
done so because, for the KE database,n = 1762, and the use
of the Floyd’s algorithm (Floyd, 1962) when computing dis-
tances saved enough time of computation without sacrifying
accurateness in the calculation of the eigenvalues ofZ(2), as
they are needed for finding the dimensionality of the data.

The cumulative variances calculated by PCA and Isomap
are shown in Fig. 2b. We observe that the dimensionality
found by Isomap is three, while the convergence of PCA’s
cumulative variance is much slower. The first three compo-
nents found by Isomap are:
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Fig. 7. (a)Coordinates and(b) power spectra of, from top to bot-
tom, the first, second and third principal components for the KE
dataset from January 1982 to January 2002 (resolution one month)
computed via Isomap. The double headed arrows indicate the ap-
proximate duration of El Nĩno events.

T 1(tj) = λ
1/2
1 p1j

T 2(tj) = λ
1/2
2 p2j (11)

T 3(tj) = λ
1/2
3 p3j,

which we can plot in a three dimensional coordinate space
(Fig. 6). We can observe a twelve-month oscillation in a
plane with some deviation in a coordinate perpendicular to
that plane. To isolate the twelve-month oscillation we can
rotate the new three dimensional points because the represen-
tation in terms of distances is equivalent to any orthonormal
transformations. The optimal plane can be found by com-
puting the plane that best embeds a mean 12-month cycle
over the whole trajectory. After rotating, the three time se-
ries shown in Fig. 7 are extracted. We can see that there
are major differences between the second and third compo-
nents of Figs. 5 and 7. Moreover, the third Isomap compo-
nent faithfully represents ENSO, as all the well known events
have their corresponding peak in the time series of the third
component.

The results show that the complex dynamics due to the
interaction between ENSO and the annual cycle can be well
approximated by a three dimensional manifold.

PCA introduces a particular normalisation in the data be-
cause the matrix of the eigendecomposition is the correlation,
which is naturally normalised to variance one. But we can
apply MDS and Isomap to the raw data, without any other
mathematical operation. The results are similar to the usual
indexes that describe ENSO, as we can see in Fig. 8. This
plot shows how this decomposition provides a useful way
to characterise ENSO by using the third Isomap component.
Moreover, we observe that the occurrence of the events is
essentially preserved, although the amplitude and the prob-
ability distribution function found by the decomposition are
slightly different. This is due to the fact that now the annual
cycle is not approximated by a periodic function, as in the
NINO3.4 or other indexes.
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Fig. 8. Third Isomap coordinate (top) in comparison with the index
NINO3.4 (bottom). The amplitude of the events changes slightly
from one method to the other.

4 Conclusions

Nonlinear dimensionality reduction methods provide a use-
ful way of analysing and modeling high dimensional data
when nonlinear interactions are present. If the physical pro-
cess can be embedded in a low dimensional manifold, the
reduction of the relevant components is better achieved by
nonlinear methods than by linear ones. In particular, Isomap
provides a physically appealing method of decomposing the
data, as it substitutes the euclidean distances in the mani-
fold by an approximation of the geodesic distances. We ex-
pect that this method could be succesfully applied to other
oscillatory extended systems and, in particular, to meteoro-
logical phenomena. Reduction allows to model the physical
process by a low dimensional nonlinear dynamical system
strictly based on data in order to make predictions of future
states. We expect that this model will provide insight into
the physics of the interaction between ENSO and the annual
cycle in the tropical Pacific Ocean.
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