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Abstract

We propose a new approach to calculate recurrence plots of multivariate time series, based on joint recurrences in phase space
This new method allows to estimate dynamical invariants of the whole system, like the joint Rényi entropy of second order.
We use this entropy measure to quantitatively study in detaiptiase synchronization of twodbiectionally coupled chaotic
systems and identify different types of transitions to chaotisplsynchronization in dependence on the coupling strength and
the frequency mismatch. By means of this analysis we findrsé new phenomena, such a okaperiod—chaos transition to
phase synchronization for rather large coupling strengths.

0 2004 Elsevier B.V. All rights reserved.

1. Introduction ship between two different dynamical systems, called
cross recurrence plot (CRP8]. The main advantage
Recurrence plots (RPs) is a method of analysis of of this technique with respect to other nonlinear data
data that was initially introduced to visualize the be- analysis methods, is that it can be applied to nonsta-
havior of a trajectory of a dynamical system in phase tionary and rather short time seris9,10,20,30]
space[5]. In order to go beyond the visual impres- In this Letter we propose another approach to cal-
sion, different measures of quantification of RPs were culate multivariate recurrence plots, that enables to
introduced latef27]. This technique has been suc- estimate invariants of the dynamics and information
cessfully applied to various fields, such as physiology measures. Furthermore, we show that this modified
[9,29], fluid dynamics[26] or geology[8]. Further, method is a useful tool to identify complex synchro-
this technique was enhanced to analyze the relation- nization phenomena and to determine weak coupling
strengths between two different systems, like in the
P . case of phase synchronization.
Corresponding author. - The outline of this Letter is as follows: first, we mo-
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of the joint Rényi entropy based on joint recurrences
in phase space. To illustrate some potentials of our
method, we apply it to two non-identical chaotic os-

cillators that are bidirectionally coupled and undergo
a transition to phase synchronization ()] for a

certain range of parameter values. We then show that

this new technique is not only able to detect PS, but it

215

and especially, to regard ttaito mutual information
(AMI)
Al (X(1), X(1 + 1))

=2H2(X(1)) — H2(X(1),X(1 4+ 1)). (5)

Thiel et al.[25] have recently shown, that it is possible

also reveals detailed structures in the parameter spacgq estimate the Rényi information and the auto mutual

of the whole system, like, e.g., different types of tran-
sitions to PS.

2. Multivariate recurrence plots

In this section we recall the definition of the cross
mutual information as a motivation for a new approach
to compute multivariate RPs.

Roughly speaking, mutual information quantifies
the amount of information we obtain from the mea-
surement of one random variable on another one.
Hence, it has become a widely applied measure to
quantify linear and nonlinear dependencies within or

between time series (auto, respectively, cross mutual

information)[14]. Suppose that we have two dynam-
ical systems represented by the orlitsand y;, with
i=1,...,N. We can associate them with probability
distributions{p,,}_,, {gx}""_; and the joint proba-
bility distribution {s, »}""" , [2]. Then the general-
ized mutual information (GMI) of second ordd3] is
given by

(X, y) = Ha(X) + H2(¥) — Ha(X, ), 1)

whereH, denotes the Rényi information of second or-
der[2], which is defined by

M
Ha(X)=—l0og ) p,. )
m=1

Substituting(2) in Eqg. (1) we obtain

M,N
2
2 S

M N
lr(%.5)=—l0g} _ pj, —log) _q; +log
m=1 n=1 m,n=1
(3)

It is also possible to consider this measure in depen-

dence on a time delay, i.e.,

L(¥(1), ¥ + 1)) = H2(X (1) + H2(¥ (1))

— Ha(X(1), y(t + 1)), 4)

information by means of RPs. For example, the second
order Rényi informatiorran be estimated as follows

N
N 1
Hy(x,e)=— |09<W Z Ri,j>, (6)
ij=1
whereRr; ; is the recurrence matrix defined by
Ri.j=0O(e— X —X;ll), (7)

and® () denotes the Heaviside function anc pre-
defined threshold. They have also shown that the joint
Rényi information that enters in the formula for the
auto mutual informtion can be estimated by

1:12()?(1),)?(1 +1),¢€)

:_m(

Analogously, we can now estimate the joint informa-
tion and substitute it in Eq1),

N—1

1
m Z Ri,jRi+r,j+r>~ (8)
ij=1

I:IZ()-C)([)v ;([)’ €x> 8)’)

1 N
_ X y
- —Iog(m > Ri,le.J)

i,j=1
N
1 ..
- —Iog(m Z O (ex — 1% — ;1)
i,j=1

x O(ey — 1y — §j||)>, 9)

whereR? j andRiy j represent the recurrence matrices
of ¥;, respectivelyy;. More generally, if we consider
the generalized mutual infmation function in depen-

dence on the time delay (E@)), we estimate the joint
Rényi informationH2 (¥ (t), y(t + 7)) by
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Ha(X(1), ¥(t + 1), &, &) 3. Egtimation of thejoint Rényi entropy of second
1 Nt order
=—log| ———— Y O(e, — I — %j]
((N —1)2 1,1'2::1 (e =50 Thiel et al. [25,26] have recently shown that it

is possible to estimate some dynamical invariants by
% @(Sy i — i;jJrT”))' (10) means of RPs, like the.secor_ld ord_er Rényi entropy

K2, Al and the generalized dimension of second or-
der D». In this Letter, we extend these estimators to
2-dimensional systems, considering the joint probabil-
ities of recurrences (e.g., we have shown in SecZion

in contrast to the definition of the CRP8]. We rather m;gz(x(t)’ y(t +1)) can be e;tlmated b_y means of
+d s). Here we focus on the joirk,, which is de-
extend the phase space Rf1+%2, whered; andd> fined as

are the phase space dimensions of the corresponding

Note that in order to estimate(x(t), (¢ + 1)) it is
necessary to treat both matric&s i and Riy ; sepa-
rately, i.e., we do natix the phase spaces ofandy,

systems, and are in general different. Further, we have g, — _ |im lim lim 1
a different threshold for each system (ande,), so Ar—0e—01—00 [ At
that we can_apply the criteria to choose thfa,25, x log Z P21, .oyl J1s s 1),
29], respecting the natural measure of both systems. oty Lol
Hence it is straightforward to introduce the following (12)
joint recurrence matrix wherep(i, iz, ..., i, j1, j2, ..., ji) IS the joint prob-
RY — 6 .. ability that X(Af) is in box i1, X(2At) is in box
Rij =0 (ex — 1% = %;1l) io, ..., X(IAt) is in boxi; andsimultaneously y(At)
x O ey — 15 —¥;ll), i.j=1....N, is in box ji1, y(2At1) isin boX ja, ..., andy(lAt) is in
(11) box j;. Then we can estimat€z in terms of MRPs by
I.e-' I%Z(Ex, Ey, l)
JR;Y,y_{lv if ||£i_}j||<8x and||§i_§j||<8y7 1 1 N -1
= _ - L 2y
] O else A |09<N2 zsz—l,goJR;;mYHm)‘ )

We propose to consider the matdi; " as multivari-
ate recurrence plot (MRP). Note that we consider, due Note that the term

to the coupling between the two systems, a single joint 1 N2

phase space of dimensidn+ dz, i.e., all components — — > [ [ R usim

are orthogonal. We alsees, that definition (Eq(7)) t,5=1m=0

of an RP is a special case of the definition (Etf)) is the probabilityP,, ., () to find a diagonal line of at

if we have only one system. In our approach a recur- |eagt length in the MRP. Hence, representing loga-
rence takes place if one point of the trajectayfor  (ihmically the histogram of diagonals of lengtiver-
J=1,2,... returns to the neighborhood of the point g/, the slope of the distribution is an estimator for
X; in p_hase space, and simultaneously one p_omt of the joint Rényi entropy. In the following we show that
the trajectoryy; for j = 1,2, ... returns to the neigh-  his measure estimated from MRPs is a powerful tool

borhood of the poinf;. That means, we consider the oy the analysis of complex synchronization phenom-
joint probability that both recurrences happen simul- o5

taneously. In contrast, in CRPs recurrence is defined
when a point of the trajectory; is within one e-
neighborhood of the point of the trajectoyy. 4. Detection of synchronization transition by
means of joint recurrences
1 Note that it is also possible to choog# + do) different val- L .
uese;, one for each coordinate of the whole phase space, or one ~ Phase synchronization (PS) of chaotic systems has
threshold for all components. been recently extensively studigg11,12,15,22and
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Fig. 1. Difference| A$2| between the mean frequencies of the two Rdssler oscillatorq1E)).in dependence on the frequency mismatch and

coupling strength.

found applications in many fieldg3,17,23] In this
section we estimate the joirk, by means of MRPs
for the prototypical chaotic case of two mutually cou-
pled Rossler oscillators

—(A+v)x2 — x3+ pn(y1 — x1),
x2 = (14 v)x1 + 0.15x2,

x3=0.2+ x3(x1 — 10),

X1

).}1 = —(l— U)yz — y3 + //L(-xl - )’1)7
y2=(1—v)y1 + 0.15y,

y3=0.2+ y3(y1 — 10), (14)

where the parameter governs the detuning of the
frequencies and the coupling is diffusive and propor-
tional to the coupling strengti.2 We analyze the
following range of parameters, where the two oscil-
lators undergo transition® phase synchronization:
v=-0.04,...,0.04 andu =0.0,...,0.12. InFig. 1
the difference of the mean frequencie® = 21— 2;

2 The system was integrated using Runge—Kutta of fourth order.
The integration step i8 = 0.01 and the sampling time= 20, so
that the time interval between two consecutive pointais= 0.2.

of the two oscillators shows the well-known Arnold
tongue® Now we estimate the joirt» based on MRPs

in the same parameter range (for a detailed descrip-
tion of the computation, se®ppendix A). The results,
represented ifrig. 2, also reflect this, but they exhibit
more details thafkig. L

e First, we see two “borders” in the upper part of
Fig. 2(u > 0.04): the outer ones correspond to the
border of the Arnold tongue, i.e., inside this bor-
der the oscillators are in PS, whereas outside they
are not. Both borders have very low valueskof
i.e., the behavior of the system is rather regular
there, even periodic in small regions on both bor-
ders. This is a remarkable fact, because it means
that for relative high coupling strengths the transi-
tion to PS is a chaos—period—chaos one, as inside
the tonguek» > 0, indicating a chaotic regime.

e Inside the Arnold tongue, for coupling strengths
u between approximately 0.025 and 0.04, we find
a region (which looks like two eyes), where the

3 The mean frequencie®, and §2, were calculated follow-
ing [11].
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Fig. 2. Joint Rényi entropﬁz of the two Rdssler oscillators in dependence flmnfrequency mismatch and coupling strength.

value of K> is (almost) 0, i.e., the region is peri-
odic.

e Foru > 0.03 the region inside the Arnold tongue
is more chaotic (largerk,) than outside the

usually not known, the technique to estimate the pre-
dictability of the system in parameter space based on
MRPs seems to yield confident results.

It is important to note that we observe one quali-

tongue. This is surprising, as one would expect tative difference betweehRig. 2 andFig. 3. for u €
that if both oscillators are synchronized, the be- [0, 0.006] one cannot distinguish the tip of the Arnold
havior of the whole system becomes more and tongue only by considering the sum of the positive

more regular for increasing coupling.

4.1. Comparison between the sum of the positive
Lyapunov exponents and K>

Lyapunov exponents (ségg. 5), whereas taking into
accountK» one does Fig. 4). This is due to the
fact, that the relationshiks = >, Ai* is only true
for hyperbolic systems but the 6-dimensional system
(Eqg. (14)) is not a hyperbolic one. For nonhyperbolic

In order to validate these results, we calculate the Systems,Ko < >, A,.* holds [18]. Hence, we have
Lyapunov spectrum of the whole system based on shown thatk, can provide important complementary

Eq. (14), i.e., it is not estimated from the time se-

information to the sum of the positive Lyapunov expo-

ries. AsK> is bounded from above by the sum of the nents.

positive Lyapunov exponenf®,18], we should obtain
qualitatively the same structures plottidg, . _oA; in
the considered parameter space a&im 2 Indeed,
the structures irFig. 3 are reproduced ifrig. 2 It is
remarkable, thak, was estimated from time series
with 10 000 data points (ségpendix Afor the details

4.2. Different types of transitionsto PS

By means of the joint recurrences, we have de-
tected different transitions to PS for the two cou-
pled Roéssler systems in dependence on the coupling

of the computation), whereas for the computation of strength Fig. 2): for lower 1, a chaos—chaos transi-

the sum of the positive Lyapunov exponents, Edt)

tion occurs and the whole system is less chaotic in

were used. As we are interested in a method for datathe phase synchronized state than in the non-phase
analysis, where the equations governing the system aresynchronized one. In contrast, for highera chaos—
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Fig. 3. Sum of the positive Lyapunov exponents of the two Rossler dscdlan dependence on the frequencigmatch and coupling strength.
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Fig. 4. Zoom of the joint Rényi entropi, of the two Rossler oscillators (E¢L4)) in dependence on the frequency mismatch for low values
of the coupling strength.
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period—chaos transition is observed and the system is In the literature, it is often claimed that all tran-
more chaotic in the phase synchronized regime than in sitions between different types of synchronization
the non-phase synchronized one. can be related to the changes in the Lyapunov spec-
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Fig. 5. Zoom of the sum of the positive Lyapunov exponents of the twasRo oscillators in dependence on the frequency mismatch for low

values of the coupling strength.

trum [16]: for rather low values of the coupling
strength, one has the following configurati¢hj > 0,
A2 > 0,3~ 0,14 ~ 0,15 < 0,46 < 0}. Increasing
the coupling strengthy4 becomes negative, indicat-
ing the transition to PS. If one continues increasing
theniz ~ 0 andis < 0, indicating the transition to
generalized synchronization (GBP], where not only

the phases, but also the amplitudes become correlated. o

In order to relate this theory with our results ob-
tained by means ok in the case of Eq(14), we code

the different configurations of the Lyapunov spectrum

in colors Fig. 6). The conclusions we can draw from
Fig. 6are:

find GS, and decreasing the frequency mismatch
(going in the horizontal direction), the correlation
between the amplitudes also decreases, as we only
have PS and not GS. This is in accordance with
the upper part ofFigs. 2 and 3where inside the
tongue, the whole system is more chaotic than out-
side.

We see two “borders” of the Arnold tongue (red
points): the inner one is periodic and the outer
one is exactly periodic only fop larger than
about 0.8. This also in acotance with the results
of Fig. 2

e For 0031 < p < 0.055 PS is not reflected any 5. Conclusions

more by the change of; to negative values. In
this regioni4 is negative also outside the Arnold
tongue. This means, that for these valuesuof

In this Letter, we have proposed a modified method
to compute multivariate RPs (MRPs). The altered

the phases of both subsystems are not independeninethod of MRPs is based on joint recurrences in phase
any more. However, this dependence is still weak, space and allows to estimate easily the joint Rényi en-
and¢1 — ¢2 is not constant, so that both subsys-  tropy of second ordek,.

tems are not in PS for Iarge frequency mismatch. We have app"ed{z estimated by means of MRPs
For 0055< 1 < 0.1 we observe GS for large val-  to the paradigmatic system of two bidirectionally cou-
ues of the frequency mismatch. That means, out- pled Réssler systems. There we have detected three
side and on the edge of the Arnold tongue, we (different types of transitions to phase synchronization.
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Fig. 6. Different configurations of the Lyapunov speat are coded with different colors: dark blye:; > 0, 1 > 0, A3 ~ 0, A4 ~ 0}, light
blue:{A1 > 0,22 > 0, A3 ~ 0, 24 < O}, yellow: {1 > 0,22 ~ 0,23 < 0, 24 < O} and red:{rq ~ 0,12 < 0, A3 <0, A4 < 0}. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)

To validate this result, we have compared the esti- non-PS. However, we want to emphasize that CRPs

matedK > with the sum of the positive Lyapunov expo- have other advantages with respect to MRPs. For ex-

nents. Qualitatively we have obtained the same struc- ample, CRPs have been applied very successfully to

tures in the parameter space. However, for rather small the readjustment of geological time series with differ-

coupling strengthsk», can detect the transition to PS, enttime scalef8]. Hence, depending on the problem,

whereas the sum of the positive Lyapunov exponents one has to select the more appropriate one.

cannot, due to the nonhyperbolicity of the considered  We plan to develop the analysis of the influence of

system. Hence, the estimate$ by means of MRPs  noise to the presented algorithm. First steps in this di-

is a powerful tool for the analysis of the mean pre- rection are presented [@4]. Furthermore, we plan to

dictability of dynamical systems, especially when no apply the proposed method to measured daily temper-

model equations of the underlying system is available. ature data on one hand, and to EEG and eye-movement
On the other hand, we have calculated the Lya- time series on the other hand, to compare the outcomes

punov spectrunfi; } for the whole range of parameters with saccade generation modgds.

considered. Coding the different configuration$xqf

with different colors, we have seen that for intermedi-

ate coupling strengths, outside the Arnold tongue one Acknowledgements

zero Lyapunov exponent has passed to negative values.
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Appendix A. Automatization of the algorithm for the detection of the scaling region infagr(/)
vs. [, we chose 2 different clusters and used the
To compute the joint Rényi entropi2 (Eq. (12)) slope of the largest cluster. For the detection of
in the whole range of parameterse [—0.04, 0.04] the plateau iK2(RR) vs. RR, we chose 3 clusters
and p € [0.0,0.12], the algorithm based on MRPs and used the value of the cluster with the mini-
(Eqg. (11)) had to be automated. First, the distribution mum absolute slope.

of diagonal lines for different thresholdshas to be

computed, as the entropy is only well defined whena  These choices have proven to be the most appropri-
scaling region withe is found. In the case of MRPs ate ones for the estimation of the scaling regions. All
we have in general two thresholgdsands,. As there these parameters are defaults of a computer program.
exists a unique relationship between the threshold and Furthermore, this automatization of the algorithm has
the recurrence rateR [25,26]* we use different val- been already successfullpglied to the computation
ues ofRR, because they are normed. The crucial point of stability of trajectories of extrasolar planetary sys-
in the automatization is the estimation of the scaling tems[1].

region of InPrr(!) vs.l and the plateau iK2(RR) vs.

RR. In both cases we applied a cluster dissection al-

gorithm[21]. The algorithm divides the set of points References
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