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Abstract

We propose a new approach to calculate recurrence plots of multivariate time series, based on joint recurrences in ph
This new method allows to estimate dynamical invariants of the whole system, like the joint Rényi entropy of secon
We use this entropy measure to quantitatively study in detail the phase synchronization of two bidirectionally coupled chaotic
systems and identify different types of transitions to chaotic phase synchronization in dependence on the coupling strength
the frequency mismatch. By means of this analysis we find several new phenomena, such a chaos–period–chaos transition
phase synchronization for rather large coupling strengths.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Recurrence plots (RPs) is a method of analysis
data that was initially introduced to visualize the b
havior of a trajectory of a dynamical system in pha
space[5]. In order to go beyond the visual impre
sion, different measures of quantification of RPs w
introduced later[27]. This technique has been su
cessfully applied to various fields, such as physiolo
[9,29], fluid dynamics[26] or geology[8]. Further,
this technique was enhanced to analyze the relat
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ship between two different dynamical systems, ca
cross recurrence plot (CRP)[28]. The main advantag
of this technique with respect to other nonlinear d
analysis methods, is that it can be applied to non
tionary and rather short time series[5,9,10,20,30].

In this Letter we propose another approach to c
culate multivariate recurrence plots, that enables
estimate invariants of the dynamics and informat
measures. Furthermore, we show that this modi
method is a useful tool to identify complex synchr
nization phenomena and to determine weak coup
strengths between two different systems, like in
case of phase synchronization.

The outline of this Letter is as follows: first, we m
tivate the multivariate RPs and introduce an estima
.
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of the joint Rényi entropy based on joint recurrenc
in phase space. To illustrate some potentials of
method, we apply it to two non-identical chaotic o
cillators that are bidirectionally coupled and under
a transition to phase synchronization (PS)[11] for a
certain range of parameter values. We then show
this new technique is not only able to detect PS, bu
also reveals detailed structures in the parameter s
of the whole system, like, e.g., different types of tra
sitions to PS.

2. Multivariate recurrence plots

In this section we recall the definition of the cro
mutual information as a motivation for a new approa
to compute multivariate RPs.

Roughly speaking, mutual information quantifi
the amount of information we obtain from the me
surement of one random variable on another o
Hence, it has become a widely applied measure
quantify linear and nonlinear dependencies within
between time series (auto, respectively, cross mu
information)[14]. Suppose that we have two dyna
ical systems represented by the orbits�xi and �yi , with
i = 1, . . . ,N . We can associate them with probabil
distributions{pm}Mm=1, {qn}Nn=1 and the joint proba

bility distribution {sm,n}M,N
m,n=1 [2]. Then the general

ized mutual information (GMI) of second order[13] is
given by

(1)I2(�x, �y) = H2(�x) + H2(�y) − H2(�x, �y),

whereH2 denotes the Rényi information of second
der[2], which is defined by

(2)H2(�x) = − log
M∑

m=1

p2
m.

Substituting(2) in Eq.(1) we obtain

(3)

I2(�x, �y) = − log
M∑

m=1

p2
m − log

N∑
n=1

q2
n + log

M,N∑
m,n=1

s2
m,n.

It is also possible to consider this measure in dep
dence on a time delay, i.e.,

I2
(�x(t), �y(t + τ )

) = H2
(�x(t)

) + H2
(�y(t)

)
(4)− H2

(�x(t), �y(t + τ )
)
,

and especially, to regard theauto mutual information
(AMI)

AI2
(�x(t), �x(t + τ )

)
(5)= 2H2

(�x(t)
) − H2

(�x(t), �x(t + τ )
)
.

Thiel et al.[25] have recently shown, that it is possib
to estimate the Rényi information and the auto mut
information by means of RPs. For example, the sec
order Rényi informationcan be estimated as follows

(6)Ĥ2(�x, ε) = − log

(
1

N2

N∑
i,j=1

Ri,j

)
,

whereRi,j is the recurrence matrix defined by

(7)Ri,j = Θ
(
e − ‖�xi − �xj‖

)
,

andΘ(·) denotes the Heaviside function andε a pre-
defined threshold. They have also shown that the j
Rényi information that enters in the formula for t
auto mutual information can be estimated by

Ĥ2
(�x(t), �x(t + τ ), ε

)
(8)= − log

(
1

(N − τ )2

N−τ∑
i,j=1

Ri,jRi+τ,j+τ

)
.

Analogously, we can now estimate the joint inform
tion and substitute it in Eq.(1),

Ĥ2
(�x(t), �y(t), εx, εy

)
= − log

(
1

N2

N∑
i,j=1

Rx
i,jR

y
i,j

)

= − log

(
1

N2

N∑
i,j=1

Θ
(
εx − ‖�xi − �xj‖

)

(9)× Θ
(
εy − ‖�yi − �yj‖

))
,

whereRx
i,j andR

y
i,j represent the recurrence matric

of �xi , respectively,�yi . More generally, if we conside
the generalized mutual information function in depen
dence on the time delay (Eq.(4)), we estimate the join
Rényi informationH2(�x(t), �y(t + τ )) by
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H2
(�x(t), �y(t + τ ), εx, εy

)
= − log

(
1

(N − τ )2

N−τ∑
i,j=1

Θ
(
εx − ‖�xi − �xj‖

)

(10)× Θ
(
εy − ‖�yi+τ − �yj+τ‖

))
.

Note that in order to estimateI2(�x(t), �y(t + τ )) it is
necessary to treat both matricesRx

i,j and R
y
i,j sepa-

rately, i.e., we do notmix the phase spaces of�x and�y,
in contrast to the definition of the CRP[28]. We rather
extend the phase space toRd1+d2, whered1 and d2
are the phase space dimensions of the correspon
systems, and are in general different. Further, we h
a different threshold for each system (εx andεy ), so
that we can apply the criteria to choose them[24,25,
29], respecting the natural measure of both system1

Hence it is straightforward to introduce the followin
joint recurrence matrix

JRx,y

i,j = Θ
(
εx − ‖�xi − �xj‖

)

(11)

× Θ
(
εy − ‖�yi − �yj‖

)
, i, j = 1, . . . ,N,

i.e.,

JRx,y

i,j =
{

1, if ‖�xi − �xj‖ < εx and‖�yi − �yj‖ < εy,

0, else.

We propose to consider the matrixJRx,y
i,j as multivari-

ate recurrence plot (MRP). Note that we consider,
to the coupling between the two systems, a single j
phase space of dimensiond1 + d2, i.e., all components
are orthogonal. We also see, that definition (Eq.(7))
of an RP is a special case of the definition (Eq.(11))
if we have only one system. In our approach a rec
rence takes place if one point of the trajectory�xj for
j = 1,2, . . . returns to the neighborhood of the po
�xi in phase space, and simultaneously one poin
the trajectory�yj for j = 1,2, . . . returns to the neigh
borhood of the point�yi . That means, we consider th
joint probability that both recurrences happen sim
taneously. In contrast, in CRPs recurrence is defi
when a point of the trajectory�xi is within one ε-
neighborhood of the point of the trajectory�yj .

1 Note that it is also possible to choose(d1 + d2) different val-
uesεi , one for each coordinate of the whole phase space, or
threshold for all components.
3. Estimation of the joint Rényi entropy of second
order

Thiel et al. [25,26] have recently shown that
is possible to estimate some dynamical invariants
means of RPs, like the second order Rényi entr
K2, AI2 and the generalized dimension of second
der D2. In this Letter, we extend these estimators
2-dimensional systems, considering the joint proba
ities of recurrences (e.g., we have shown in Sectio2
that I2(�x(t), �y(t + τ )) can be estimated by means
MRPs). Here we focus on the jointK2, which is de-
fined as

K2 = − lim
�t→0

lim
ε→0

lim
l→∞

1

l�t

(12)

× log
∑

i1,...,il , j1,...,jl

p2(i1, . . . , il, j1, . . . , jl),

wherep(i1, i2, . . . , il, j1, j2, . . . , jl) is the joint prob-
ability that �x(�t) is in box i1, �x(2�t) is in box
i2, . . . , �x(l�t) is in box il andsimultaneously �y(�t)

is in boxj1, �y(2�t) is in boxj2, . . . , and�y(l�t) is in
boxjl . Then we can estimateK2 in terms of MRPs by

K̂2(εx, εy, l)

(13)= 1

l�t
log

(
1

N2

N∑
t,s=1

l−1∏
m=0

JRx,y
t+m,s+m

)
.

Note that the term

1

N2

N∑
t,s=1

l−1∏
m=0

JRx,y
t+m,s+m

is the probabilityPεx,εy (l) to find a diagonal line of a
least lengthl in the MRP. Hence, representing log
rithmically the histogram of diagonals of lengthl ver-
susl, the slope of the distribution is an estimator f
the joint Rényi entropy. In the following we show th
this measure estimated from MRPs is a powerful t
for the analysis of complex synchronization pheno
ena.

4. Detection of synchronization transition by
means of joint recurrences

Phase synchronization (PS) of chaotic systems
been recently extensively studied[4,11,12,15,22]and
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and
Fig. 1. Difference|�Ω| between the mean frequencies of the two Rössler oscillators (Eq.(14)) in dependence on the frequency mismatch
coupling strength.
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found applications in many fields[3,17,23]. In this
section we estimate the jointK2 by means of MRPs
for the prototypical chaotic case of two mutually co
pled Rössler oscillators

ẋ1 = −(1+ ν)x2 − x3 + µ(y1 − x1),

ẋ2 = (1+ ν)x1 + 0.15x2,

ẋ3 = 0.2+ x3(x1 − 10),

ẏ1 = −(1− ν)y2 − y3 + µ(x1 − y1),

ẏ2 = (1− ν)y1 + 0.15y2,

(14)ẏ3 = 0.2+ y3(y1 − 10),

where the parameterν governs the detuning of th
frequencies and the coupling is diffusive and prop
tional to the coupling strengthµ.2 We analyze the
following range of parameters, where the two os
lators undergo transitionsto phase synchronization
ν = −0.04, . . . ,0.04 andµ = 0.0, . . . ,0.12. In Fig. 1
the difference of the mean frequencies�Ω = Ω1−Ω2

2 The system was integrated using Runge–Kutta of fourth or
The integration step ish = 0.01 and the sampling times = 20, so
that the time interval between two consecutive points is�t = 0.2.
of the two oscillators shows the well-known Arno
tongue.3 Now we estimate the jointK2 based on MRPs
in the same parameter range (for a detailed desc
tion of the computation, seeAppendix A). The results,
represented inFig. 2, also reflect this, but they exhib
more details thanFig. 1:

• First, we see two “borders” in the upper part
Fig. 2(µ > 0.04): the outer ones correspond to t
border of the Arnold tongue, i.e., inside this bo
der the oscillators are in PS, whereas outside t
are not. Both borders have very low values ofK̂2,
i.e., the behavior of the system is rather regu
there, even periodic in small regions on both b
ders. This is a remarkable fact, because it me
that for relative high coupling strengths the tran
tion to PS is a chaos–period–chaos one, as in
the tongueK̂2 > 0, indicating a chaotic regime.

• Inside the Arnold tongue, for coupling strengt
µ between approximately 0.025 and 0.04, we fi
a region (which looks like two eyes), where t

3 The mean frequenciesΩ1 and Ω2 were calculated follow-
ing [11].
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Fig. 2. Joint Rényi entropŷK2 of the two Rössler oscillators in dependence on the frequency mismatch and coupling strength.
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value ofK̂2 is (almost) 0, i.e., the region is per
odic.

• For µ > 0.03 the region inside the Arnold tongu
is more chaotic (largerK̂2) than outside the
tongue. This is surprising, as one would exp
that if both oscillators are synchronized, the b
havior of the whole system becomes more a
more regular for increasing coupling.

4.1. Comparison between the sum of the positive
Lyapunov exponents and K2

In order to validate these results, we calculate
Lyapunov spectrum of the whole system based
Eq. (14), i.e., it is not estimated from the time se
ries. AsK2 is bounded from above by the sum of t
positive Lyapunov exponents[2,18], we should obtain
qualitatively the same structures plotting

∑
λi>0 λi in

the considered parameter space as inFig. 2. Indeed,
the structures inFig. 3 are reproduced inFig. 2. It is
remarkable, thatK2 was estimated from time serie
with 10 000 data points (seeAppendix Afor the details
of the computation), whereas for the computation
the sum of the positive Lyapunov exponents, Eq.(14)
were used. As we are interested in a method for d
analysis, where the equations governing the system
usually not known, the technique to estimate the p
dictability of the system in parameter space based
MRPs seems to yield confident results.

It is important to note that we observe one qua
tative difference betweenFig. 2 and Fig. 3: for µ ∈
[0,0.006] one cannot distinguish the tip of the Arno
tongue only by considering the sum of the posit
Lyapunov exponents (seeFig. 5), whereas taking into
accountK̂2 one does (Fig. 4). This is due to the
fact, that the relationshipK2 = ∑

i λ
+
i is only true

for hyperbolic systems but the 6-dimensional syst
(Eq. (14)) is not a hyperbolic one. For nonhyperbo
systems,K2 �

∑
i λ

+
i holds [18]. Hence, we have

shown thatK2 can provide important complementa
information to the sum of the positive Lyapunov exp
nents.

4.2. Different types of transitions to PS

By means of the joint recurrences, we have
tected different transitions to PS for the two co
pled Rössler systems in dependence on the coup
strength (Fig. 2): for lower µ, a chaos–chaos trans
tion occurs and the whole system is less chaotic
the phase synchronized state than in the non-p
synchronized one. In contrast, for higherµ a chaos–
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.

ues
Fig. 3. Sum of the positive Lyapunov exponents of the two Rössler oscillators in dependence on the frequency mismatch and coupling strength

Fig. 4. Zoom of the joint Rényi entropŷK2 of the two Rössler oscillators (Eq.(14)) in dependence on the frequency mismatch for low val
of the coupling strength.
m is
n in

n-
ion
pec-
period–chaos transition is observed and the syste
more chaotic in the phase synchronized regime tha
the non-phase synchronized one.
In the literature, it is often claimed that all tra
sitions between different types of synchronizat
can be related to the changes in the Lyapunov s
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low
Fig. 5. Zoom of the sum of the positive Lyapunov exponents of the two Rössler oscillators in dependence on the frequency mismatch for
values of the coupling strength.
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trum [16]: for rather low values of the couplin
strength, one has the following configuration:{λ1 > 0,

λ2 > 0, λ3 ∼ 0, λ4 ∼ 0, λ5 < 0, λ6 < 0}. Increasing
the coupling strength,λ4 becomes negative, indica
ing the transition to PS. If one continues increasingµ,
then λ2 ∼ 0 andλ3 < 0, indicating the transition to
generalized synchronization (GS)[19], where not only
the phases, but also the amplitudes become correl

In order to relate this theory with our results o
tained by means ofK2 in the case of Eq.(14), we code
the different configurations of the Lyapunov spectr
in colors (Fig. 6). The conclusions we can draw fro
Fig. 6are:

• For 0.031< µ < 0.055 PS is not reflected an
more by the change ofλ4 to negative values. In
this regionλ4 is negative also outside the Arno
tongue. This means, that for these values ofµ,
the phases of both subsystems are not indepen
any more. However, this dependence is still we
andφ1 − φ2 is not constant, so that both subsy
tems are not in PS for large frequency mismatc

• For 0.055< µ < 0.1 we observe GS for large va
ues of the frequency mismatch. That means, o
side and on the edge of the Arnold tongue,
.

t

find GS, and decreasing the frequency misma
(going in the horizontal direction), the correlatio
between the amplitudes also decreases, as we
have PS and not GS. This is in accordance w
the upper part ofFigs. 2 and 3, where inside the
tongue, the whole system is more chaotic than o
side.

• We see two “borders” of the Arnold tongue (re
points): the inner one is periodic and the ou
one is exactly periodic only forµ larger than
about 0.8. This also in accordance with the result
of Fig. 2.

5. Conclusions

In this Letter, we have proposed a modified meth
to compute multivariate RPs (MRPs). The alter
method of MRPs is based on joint recurrences in ph
space and allows to estimate easily the joint Rényi
tropy of second orderK2.

We have appliedK2 estimated by means of MRP
to the paradigmatic system of two bidirectionally co
pled Rössler systems. There we have detected t
different types of transitions to phase synchronizat
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Fig. 6. Different configurations of the Lyapunov spectrum are coded with different colors: dark blue:{λ1 > 0, λ2 > 0, λ3 ∼ 0, λ4 ∼ 0}, light
blue: {λ1 > 0, λ2 > 0, λ3 ∼ 0, λ4 < 0}, yellow: {λ1 > 0, λ2 ∼ 0, λ3 < 0, λ4 < 0} and red:{λ1 ∼ 0, λ2 < 0, λ3 < 0, λ4 < 0}. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this Letter.)
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To validate this result, we have compared the e
matedK2 with the sum of the positive Lyapunov exp
nents. Qualitatively we have obtained the same st
tures in the parameter space. However, for rather s
coupling strengths,K2 can detect the transition to P
whereas the sum of the positive Lyapunov expone
cannot, due to the nonhyperbolicity of the conside
system. Hence, the estimate ofK2 by means of MRPs
is a powerful tool for the analysis of the mean p
dictability of dynamical systems, especially when
model equations of the underlying system is availa

On the other hand, we have calculated the L
punov spectrum{λi} for the whole range of paramete
considered. Coding the different configurations of{λi}
with different colors, we have seen that for interme
ate coupling strengths, outside the Arnold tongue
zero Lyapunov exponent has passed to negative va
That means, in this range of parameters the phase
come already weakly correlated, although they are
locked. These findings challenge for an extension
the theory of complex synchronization. Beyond th
applying the former method of CRPs to the sa
example, we could not distinguish between PS
.
-

non-PS. However, we want to emphasize that CR
have other advantages with respect to MRPs. For
ample, CRPs have been applied very successfull
the readjustment of geological time series with diff
ent time scales[8]. Hence, depending on the proble
one has to select the more appropriate one.

We plan to develop the analysis of the influence
noise to the presented algorithm. First steps in this
rection are presented in[24]. Furthermore, we plan t
apply the proposed method to measured daily tem
ature data on one hand, and to EEG and eye-move
time series on the other hand, to compare the outco
with saccade generation models[6].
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Appendix A. Automatization of the algorithm

To compute the joint Rényi entropyK2 (Eq. (12))
in the whole range of parametersν ∈ [−0.04,0.04]
and µ ∈ [0.0,0.12], the algorithm based on MRP
(Eq. (11)) had to be automated. First, the distributi
of diagonal lines for different thresholdsε has to be
computed, as the entropy is only well defined whe
scaling region withε is found. In the case of MRP
we have in general two thresholdsεx andεy . As there
exists a unique relationship between the threshold
the recurrence rateRR [25,26],4 we use different val-
ues ofRR, because they are normed. The crucial po
in the automatization is the estimation of the scal
region of lnPRR(l) vs. l and the plateau inK2(RR) vs.
RR. In both cases we applied a cluster dissection
gorithm [21]. The algorithm divides the set of poin
into distinct clusters. In each cluster a linear regr
sion is performed. The algorithm minimizes the su
of all square residuals in order to determine the sca
region and the plateau. To find both regions autom
cally, we used the following parameters:

• We considered only diagonal lines up to leng
lmax = 400. Longer lines were excluded becau
of finite size effects.

• We considered only values ofPRR(l) with PRR(l)

> 500 for the same reason as in the last item.
• We used 40 different values forεx and εy , cor-

responding to 40 equally spaced recurrence r
RR between 1% and 95%, to have a good defin
plateau inK2(RR) vs.RR.

• We used 10 000 data points of each simula
trajectory. The more data points one uses,
more pronounced the scaling regions. Note t
the computation time increases approximat
with N2.

• We had to specify for the applied cluster diss
tion algorithm the number of clusters in each ru

4 The recurrence rateRR is defined as the percentage of bla
points in the RP, i.e.,

RR = 1

N2

N∑
i,j=1

Θ
(
ε − ‖�xi − �xj ‖).

Note, that the definition ofRR coincides with the one of the corre
lation sum[7].
for the detection of the scaling region in lnPRR(l)

vs. l, we chose 2 different clusters and used
slope of the largest cluster. For the detection
the plateau inK2(RR) vs.RR, we chose 3 cluster
and used the value of the cluster with the mi
mum absolute slope.

These choices have proven to be the most appro
ate ones for the estimation of the scaling regions.
these parameters are defaults of a computer prog
Furthermore, this automatization of the algorithm h
been already successfully applied to the computation
of stability of trajectories of extrasolar planetary sy
tems[1].
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