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How much information is contained in a recurrence plot?
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Abstract

Recurrence plots have recently been recognized as a powerful tool for the analysis of data. Not only the visualization of
structures of the time series but also flussibility to estimate invarrds from them and the posdity to analyze non-stationary
data sets are remarkable. However, the question of how much information is encoded in such a two-dimensional and binary
representation has not been discussed so far. In this Lettehaw that—under some conditiong-isi possible to reconstruct
an attractor from the recurrence plot, at least topologically. This means that all relevant dynamical information is contained in
the plot.
0 2004 Elsevier B.V. All rights reserved.

PACS: 07.05.Kf

Keywords: Recurrence plots; Reconstruction

1. Introduction bases for the issue of generating appropriate surrogates
from RPs.
RPs visualize the behavior of trajectories in phase

~ Using recurrence plots (RPs) for the analysis of spacq1,2]. They are a graphical representation of the
time series, allows not only to visualize but also t0 matrix

quantify structures hidden in the data. However, the

question arises, how much information can be ex- Rij=0(s— % —%l), i,j=1....N, (1)

tracted from such a plot. But the results presented

here on this problem will not only give an answer to wherex; € R¢ stands for the point in phase space at

this rather theoretical question. They could also be the which the system is situated at tinige is a prede-
fined threshold and(.) is the Heaviside function.
One assigns a “black” dot to the value one and a

~* Corresponding author. “white” dot to the value zero. The two-dimensional

E-mail address: thiel@agnld.uni-potsdam.da/. Thiel). graphical representation &; ; then is called a RP.
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An unthresholded RP is not binary but its matRy o) 20
is given by the (real valued) distances of the vectors 1500
X; andx;. The matrix then is usually represented in a 1000
two-dimensional colored plot. It has been shof8h

that from an unthresholded RP it is possible to recon- 500
struct the time series. But unthresholded RPs are more 0
difficult to quantify than binary RPs. For this reason, o) 2000
in data analysis usually binary RPs are used. 1500

To quantify complex structures that occur in RPs,
Webber and Zbilut have proposed several measures 0%
in their seminal papef4], that constitute the recur- 500
rence quantification analysis (RQA). Basing on these
measures, RPs have become very popular and have
been applied to various experimental data, especially )

2000

in physiology and earth scienfe-9]. A further poten- 1500

tial advantage of RPs is that they enable the computa- 1000

tion of dynamical invariants, such as the correlation

entropy K, and correlation dimensiom, [10-13] s00

One crucial point in the analysis based even on bi- 0 : Lot L
nary RPs is whether the estimates of the invariants 0 500 10001500 2000 0 500 1000 1500 2000

depend on the parameters used inthe computations. Toxjg. 1. Rps for uniformly distribted noise (a), the sine function (b)
calculate an RP, one has to fix three parameters in ad-and the Réssler system (c). The left panel shows the plots$of.
vance. One of them is the thresheldRecently alower  The right panel represents the plots o= 14,d = 2 andd =3, re-
bound fore in the presence of noise has been deter- spectively, from top to b(_)tto_rmis chose_n so that the recurrence rate
mined[14]. It has been shown that, in order to resolve (percentage of black .pomt m_the plot) is the same for the embedded
. ;i and non-embedded time series.
fine structuress should not be chosen too large either
[6,10]. So upper and lower bounds ferare known,
at least theoretically. However, up to now it was not RPs drastically. The mostimportant feature to quantify
known for what choice ot the information content  the predictability of the system is the distribution of
of the RP is somewhat optimal. In this Letter we will diagonalg19], which seems to depend on the embed-
show for which range of thresholds the RP contains all ding, Fig. 1(c). Hence, it seems to be obvious, that for
topological information about the underlying attractor. a quantification of these structures a suitable embed-
A further important point is that in the case of ex- ding has to be used. However, we have recently shown,
perimental data there is often only one component that dynamical invariants can be estimate from the RP
(i.e., a univariate time series) available. Hence, em- even if no embedding is usddOQ]. In this Letter we
bedding is used to reconstruct the phase space. Usingwill demonstrate that a binary RP obtained from only
delay embedding, the embedding dimensicend the one component of a system, all dynamical information
delayt needed for the embedding of the time series  about the underlying system is contained. Therefore,
we reconstruct the time series from the RP and then

Yo— (x: x: . T

Xi = (Xis Xigrs oo Xigd—Dyr) @) use Takens theorem to reconstruct the attractor.

have additionally to be fixedl5]. To estimate the The outline of the Letter is as follows. First, we will
“optimal” embedding dimensio@d and the delayr introduce an algorithm to reconstruct the (univariate)

methods are presented[it6—18] Fig. 1presents RPs  time series from its RP. Then, we will show the results
for three different systems (uniformly distributed and of this algorithm when applied to time series from dif-
independent noise, a sine function and the chaotic ferent paradigmatic systems (logistic map, the Rdssler
Rossler system with standard parameters) and for dif- system, and independent noise). In a discussion of the
ferent embedding paramese The plots show that the  algorithm we give limits fore and discuss limitations
embedding via Eq(2) influences the structure in the of the reconstructability.
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2. Reconstruction of time seriesfrom an RP

In this section we want to study how to reconstruct
a time serieqx1, x2, x3, ..., x,} from a binary (i.e.,
black and white) RPR; ; Eq. (1). Let us further as-
sume that the values af, are distributed rather con-
tinuously between the minimumy,, and the maxi-
mumxmax Of the time series with respect to the thresh-
old ¢. By this, we mean that there is no subinterval in
[xmin; xmax] Of lengthe which does not contain at least

one point of the time series. In other words we assume

that the following condition is fulfilled:

Condition for the reconstructability. If it is impos-
sible to divide the entries of the time series in two
subsets, such that no point of one of the sets has a
neighbour (with respect to its e-neighbourhood) in the
second set, then the time series is reconstructible.

We will show that then the following algorithm can
be used to reconstruct the (univariate) time series from
the RP. It is important to note that the so reconstructed

time series has the same rank order and the same num-

ber of entries as the one untiéng the RP. Addition-
ally reconstructing by Takens theor¢ihd] an attractor
from this time series yields a topologically identical
object.

The algorithm to reconstruct the time series from
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by k. If there is a uniqgue minimum in the set
of {n; };, i.e., there is dmin so thatn; . r <
nix Vi # imin, take the point with the index
imin @s the second point;

(b) If there is no unique minimum in thigy ¢};,
i.e., there is a set ofi indices{u1, ..., um},
so thatn,, k = --- =ny, r <nir Vi, choose
the minimumw = min{ny ,, };. The next point
for the reconstruction then is,;

(c) Ilterate the two steps (a) and (b) of this phase,
until all indices are ranked. Then, you have a
rank order of the points of the time seriegd
which underlies the RP.

(3) Final reconstruction

(a) Generate random numbers so that for each en-
try in the ordered series there is one number.
Then rank order these random numbgts

(b) Generate a time series by putting the valpe
at the positiom?™. Then you obtairy,or;

(c) Reintroduce at the position of the “identical
columns” obtained in step 1 the values of the
points at the corresponding indices which re-
mained in the RP.

In Appendix Awe will illustrate the use of this algo-
rithm by an easy example.

the RP consists of three main phases and a total of 103. Application of the algorithm to three different

steps.

(1) Sort

(@) If n columns of the matrix; ; are identical,
store the indices of the columns and cancel
n — 1 of them, so that every column is unique;

(b) Compute for all pairs of neighbouring points
with coordinates, j (i.e., R; ; = 1) the num-
ber of neighbours of ; which are not neigh-
bours ofx;. We will call this number;_;;

(c) There exist exactly two points, say, and
Xj,, S0 thaty; j, , = 0Vi. These two points are
the maximum and the minimum of the time
series;

(d) Choose one of these two indices as starting
point. (We will call this index.)

(2) lteration

(a) Denote the last index which has been ranked

in the reconstruction of the time series so far

systems

Now we show, that the algorithm works well for
very different systems, both dynamical and stochastic
ones. The algorithm does not depend on the dynamics
of the underlying system.

(A) We start with the reconstruction of the time se-
ries of a logistic mafix,+1 = 4x,(1 — x,)), Fig. 2a).
Given only the RP from a simulation of the logis-
tic map (in this case we used = 0.1, length of
the time seriesV = 1000), we reconstruct based on
the upper algorithm the time series which is dis-
played inFig. 2(b). Plotting the original and the recon-
structed time series one on top of the other, one obtains
Fig. 2(c). Note, that the reconstruction is much more
precise than the error bounds given by the threshold
Actually, the precision increases with the length of the
underlying time series. The main dynamical proper-
ties of the time series (e.qg., the correlation entropy and
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Fig. 2. Reconstruction of a time series of a logistic map from an RP.
(a) Original time series, (b) reconstructed time series, (c) both time
series: original one (line)econstructed one (points).
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Fig. 3.x, vs.x,41 diagram for the reconstructed logistic map. Due
to the different distribution of the time series it is not a parabola.

dimension) are captured. This can also be seen in an
Xn VS. x,+1 plot (Fig. 3). Plotting this diagram for the
original time series yields a parabola. For the recon-
structed time series one finds a graph which seems to
be a continuously deformed parabola. This effect is
mainly due to the different distribution of the original
and the reconstructed time series. However, it is still
a one humped map and also its correlation entropy is
unchanged.

(B) The reconstruction also works for continuous
systems, such as the Rdssler sys{@®]. Fig. 4(a)
shows a portion of the time series of thecomponent
of the Rossler attractor with standard parameters.
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Fig. 4. Reconstruction of a time series of thewomponent of the
Rossler system from a recurrence plot. (a) Original time series,
(b) reconstructed time series (for better comparability the standard
deviation and the mean have been adapted), (c) both time series:
original one (line) reconstructed one (points).

The reconstruction coincides nearly perfectly with the
original time serieskig. 4(c).

(C) The next case we want to present is independent
uniformly distributed noise. This system is not dy-
namical, but the reconstruction of the trajectory based
on the algorithm still worksFig. 5@) represents the
original time seriesFig. 5b) and (c) represent the
reconstructed time series. There is nearly perfect co-
incidence.

In all the cases the algorithm succeeded in recon-
structing the time series from the RP. In the next sec-
tion we will discuss more of the characteristics and
limitations of the algorithm.

4. Discussion of the algorithm

The reconstruction algorithm works by considering
the neighbourhoods of the points of the time series.
Condition for the reconstructability assures, that the
neighbourhood overlap sufficiently. This makes it pos-
sible to reconstruct the time series. It is equivalent to
the condition that in the projection of the values there
is noe-interval void of points.

Assuming that the values are uniformly distrib-
uted, one can estimate the number of points which
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Fig. 5. Reconstruction of a time $es of independent uniformly dis-

tributed noise. (a) Original time series, (b) reconstructed time series,

(c) both time series: original onér(e) reconstructed one (points).

are needed to reconstruct the time series for a given

thresholck. The distancé of two neighbouring points
in the interval of the valueptmin, xmax is then expo-
nentially distributed
p(d)=N-e N, (3)

whereN is the length of the time series. Let us, with-
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distributed uniformly in the unit interval. Then, 4fis
0.5+ 4, a band of width 2 around 0.5 has all points

of the time series as neighbours. All these points have
equal columns in the RP and are not distinguishable.
(They are “canceled” in the first step of the algorithm.)
Wheneverg < 0.5, i.e., half the interval width of the
value of the time series, the time series can be recon-
structed as accurately as one wishes by considering
sufficiently long time series.

Note, that based on Takens theords], it is possi-
ble to reconstruct the attractor from the reconstructed
time series. Hence, the attractor can be recovered from
the RP (of only one component) of the system, at least
topologically.

This means, that the RP contains all topological
information of the underlying system, even though it
is only computed from one of its componenfsy. 6
shows the reconstruction of the Réssler attractor from
the reconstructed time series. However, the reconstruc-
tion of the time series from the RP of more than one
component of the system, e.g., the three-dimensional
vectors of the Rdssler system, is not possible with this
algorithm. Such a plot is the point-wise product of the
RP of the single components, if one uses the maxi-
mum norm in Eq(1). Hence, one loses information.
The open question is, if it is possible to reconstruct the
attractor from such a multidimensional RP. This is an
important problem as the RP of only one component

out loss of generality, assume that the interval in which (i.e., the projection of the attractor onto one coordi-

the values are distributed is the unit interval. Then
there areV + 1 intervals, which have to be all smaller
thane. One obtains the following relation between the
numberN of points in the time series, the threshold
¢ and the probability to find a void interval which is
larger than the thresholal

P=(1—e V)N (4)

This formula allows to estimate that in order to be able
(with a probability of abouD.999) to reconstruct the

nate axis) contains seemingly less information than
the wholen-dimensional phase space. It even does
not represent real recurrences but due to the projec-
tion also false ones (“false nearest neighbours”).

5. Conclusions

In this Letter we have shown—based on Takens

time series (and the attractor) for an RP which has a re- theorem—that it is possible to reconstruct an attrac-
currence rate of 1%, one should have more than abouttor from its RP obtained from one component. This

1400 points in the time series. Usiag= 0.1 one only
needs about 90 points to reconstruct the time series.
Hence, ife is larger, one needs less points for the
algorithm to reconstruct the time series. If, on the
other hand is too large, the reconstruction algo-
rithm works but cannot distinguish different points
properly. Let us take example (C) of values which are

result is an extension of the wofB], where it was
shown that the attractor can be reconstructed from the
unthresholded RP. It must be noted that with our al-
gorithm it is also possible to reconstruct time series
which have a stochastic component from an RP, i.e., it
does not matter whether the time series is stochastic,
dynamical or a dynamical system corrupted by noise.
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Fig. 6. (a) Reconstruction of the phase space by Takens theorem, basedxecotn@onent of the Rdssler system (b) reconstruction of the
attractor of the Rossler system from the RP of a time series ofésmponent.

An interesting point is that the RP of only one com-
ponent is sufficient to reconstruct the attractor. This is
linked to the fact presented [t0] that the RP of one
componentis sufficient to estimate both the correlation
entropy and dimension. Also note, that the algorithm
presented in this Letter cannot reconstruct the attrac-
tor from a RP of a vector valued, i.e., embedded time
series. It is an open question if such an algorithm can
be constructed.

Our results are of mainly theoretical relevance as
they show that also in a binary RP all topological in-
formation is conserved. The algorithm to reconstruct
the time series allows to state some fundamental rela-
tions for information theoretical considerations, e.g.,
how to choose the threshoddso that based on recur-
rences the attractor can be reconstructed.

However, our results could be the basis for a forth-
coming study on generating of surrogates from an RP.

Beyond the topological information, there is also
some information about the distribution of the data
contained in the RP. To extract this information, too, is
an open problem and will be the objective of a forth-
coming paper.
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Appendix A. Practical reconstruction atime
seriesfrom an RP

To illustrate how the algorithm works, we ap-
ply it to the RP of the following toy time series
{3,2,4,8,2,5,7,6,0,2}. The threshold is chosen
¢ = 2. The corresponding RP is representeéig. 7.
Now we apply the algorithm described in the last sec-
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tion. First, we notice that the columns 2, 5, 10 are
identical (here marked in grey). Following the instruc-
tion in step “1” we cancel columns 5 and 10, i.e., we
will ignore them carrying out the next steps of the al-
gorithm.

Next, we compute the; ; for all neighbours. See
Table 1

Following step “3” we search the two indicgs
and j, for which n; ;, , = 0 Vi. We find j; =9 and
Jj2 = 4. This means that one of the valugsandxy is
the largest and one is the smallest of the time series.
We choose one of them, e.gy = 9 respectivelyxg
(step 4).

Then (step 5), we search all neighbours@fThere
is only one such valuey. This is the next value in the
rank order. Hence, we hawg < x2 (Or xg > x2).

Next, we search all neighbours.of. These ara,
x3, xg andxg is already arranged. Hence, we consider
n21=1andnp3=2. The minimumisiz1=1, i.e,,
x1 is nextin the series. We hawg < x2 < x1 (0Or xg >
X2 > X1).

The neighbours o1 are x2, x3, xg. x2 is already
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next point isx7 and the last ones. We obtain the
fime seriesxg < x2 < X1 < X3 < Xg < X8 < X7 < X4
(Orxg>x2>x1>X3>x6>x8>X7>X4).

Next, one generates 9 random numbers and orders
them. Thenxg is identified with the smallest number,
x2 with the smallest but one and so on.

Finally, one reintroducess and x19 which have
been canceled in the first step. Both are set equal.to

Then, the algorithm is finished and one has a time
series{x;} which is reconstructed from the RP.
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