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How much information is contained in a recurrence plot?
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Abstract

Recurrence plots have recently been recognized as a powerful tool for the analysis of data. Not only the visuali
structures of the time series but also thepossibility to estimate invariants from them and the possibility to analyze non-stationary
data sets are remarkable. However, the question of how much information is encoded in such a two-dimensional a
representation has not been discussed so far. In this Letter we show that—under some conditions—it is possible to reconstruc
an attractor from the recurrence plot, at least topologically. This means that all relevant dynamical information is con
the plot.
 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Using recurrence plots (RPs) for the analysis
time series, allows not only to visualize but also
quantify structures hidden in the data. However,
question arises, how much information can be
tracted from such a plot. But the results presen
here on this problem will not only give an answer
this rather theoretical question. They could also be
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0375-9601/$ – see front matter 2004 Elsevier B.V. All rights reserved
doi:10.1016/j.physleta.2004.07.050
bases for the issue of generating appropriate surrog
from RPs.

RPs visualize the behavior of trajectories in ph
space[1,2]. They are a graphical representation of
matrix

(1)Ri,j = Θ
(
ε − ‖�xi − �xj‖

)
, i, j = 1, . . . ,N,

where�xi ∈ Rd stands for the point in phase space
which the system is situated at timei, ε is a prede-
fined threshold andΘ(·) is the Heaviside function
One assigns a “black” dot to the value one an
“white” dot to the value zero. The two-dimension
graphical representation ofRi,j then is called a RP
.
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An unthresholded RP is not binary but its matrixRu
i,j

is given by the (real valued) distances of the vect
�xi and �xj . The matrix then is usually represented in
two-dimensional colored plot. It has been shown[3]
that from an unthresholded RP it is possible to rec
struct the time series. But unthresholded RPs are m
difficult to quantify than binary RPs. For this reaso
in data analysis usually binary RPs are used.

To quantify complex structures that occur in RP
Webber and Zbilut have proposed several meas
in their seminal paper[4], that constitute the recu
rence quantification analysis (RQA). Basing on th
measures, RPs have become very popular and
been applied to various experimental data, espec
in physiology and earth science[4–9]. A further poten-
tial advantage of RPs is that they enable the comp
tion of dynamical invariants, such as the correlat
entropy K2 and correlation dimensionD2 [10–13].
One crucial point in the analysis based even on
nary RPs is whether the estimates of the invaria
depend on the parameters used in the computation
calculate an RP, one has to fix three parameters in
vance. One of them is the thresholdε. Recently a lower
bound forε in the presence of noise has been de
mined[14]. It has been shown that, in order to reso
fine structures,ε should not be chosen too large eith
[6,10]. So upper and lower bounds forε are known,
at least theoretically. However, up to now it was n
known for what choice ofε the information conten
of the RP is somewhat optimal. In this Letter we w
show for which range of thresholds the RP contains
topological information about the underlying attract

A further important point is that in the case of e
perimental data there is often only one compon
(i.e., a univariate time series) available. Hence, e
bedding is used to reconstruct the phase space. U
delay embedding, the embedding dimensiond and the
delayτ needed for the embedding of the time serie

(2)�xi = (xi, xi+τ , . . . , xi+(d−1)τ )
T

have additionally to be fixed[15]. To estimate the
“optimal” embedding dimensiond and the delayτ
methods are presented in[16–18]. Fig. 1presents RPs
for three different systems (uniformly distributed a
independent noise, a sine function and the cha
Rössler system with standard parameters) and for
ferent embedding parameters. The plots show that th
embedding via Eq.(2) influences the structure in th
Fig. 1. RPs for uniformly distributed noise (a), the sine function (b
and the Rössler system (c). The left panel shows the plots ford = 1.
The right panel represents the plots ford = 14,d = 2 andd = 3, re-
spectively, from top to bottom,ε is chosen so that the recurrence ra
(percentage of black point in the plot) is the same for the embed
and non-embedded time series.

RPs drastically. The most important feature to quan
the predictability of the system is the distribution
diagonals[19], which seems to depend on the emb
ding,Fig. 1(c). Hence, it seems to be obvious, that
a quantification of these structures a suitable emb
ding has to be used. However, we have recently sho
that dynamical invariants can be estimate from the
even if no embedding is used[10]. In this Letter we
will demonstrate that a binary RP obtained from o
one component of a system, all dynamical informat
about the underlying system is contained. Theref
we reconstruct the time series from the RP and t
use Takens theorem to reconstruct the attractor.

The outline of the Letter is as follows. First, we w
introduce an algorithm to reconstruct the (univaria
time series from its RP. Then, we will show the resu
of this algorithm when applied to time series from d
ferent paradigmatic systems (logistic map, the Rös
system, and independent noise). In a discussion o
algorithm we give limits forε and discuss limitation
of the reconstructability.
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2. Reconstruction of time series from an RP

In this section we want to study how to reconstr
a time series{x1, x2, x3, . . . , xn} from a binary (i.e.,
black and white) RPRi,j Eq. (1). Let us further as-
sume that the values ofxi , are distributed rather con
tinuously between the minimumxmin and the maxi-
mumxmax of the time series with respect to the thres
old ε. By this, we mean that there is no subinterva
[xmin;xmax] of lengthε which does not contain at lea
one point of the time series. In other words we assu
that the following condition is fulfilled:

Condition for the reconstructability. If it is impos-
sible to divide the entries of the time series in two
subsets, such that no point of one of the sets has a
neighbour (with respect to its ε-neighbourhood) in the
second set, then the time series is reconstructible.

We will show that then the following algorithm ca
be used to reconstruct the (univariate) time series f
the RP. It is important to note that the so reconstruc
time series has the same rank order and the same
ber of entries as the one underlying the RP. Addition-
ally reconstructing by Takens theorem[15] an attractor
from this time series yields a topologically identic
object.

The algorithm to reconstruct the time series fro
the RP consists of three main phases and a total o
steps.

(1) Sort
(a) If n columns of the matrixRi,j are identical,

store the indices of the columns and can
n−1 of them, so that every column is uniqu

(b) Compute for all pairs of neighbouring poin
with coordinatesi, j (i.e.,Ri,j = 1) the num-
ber of neighbours ofxj which are not neigh
bours ofxi . We will call this numberni,j ;

(c) There exist exactly two points, sayxj1 and
xj2, so thatni,j1/2 = 0∀i. These two points ar
the maximum and the minimum of the tim
series;

(d) Choose one of these two indices as star
point. (We will call this indexk.)

(2) Iteration
(a) Denote the last index which has been ran

in the reconstruction of the time series so
-

by k. If there is a unique minimum in the s
of {ni,k}i , i.e., there is aimin so thatnimin,k <

ni,k ∀i �= imin, take the point with the inde
imin as the second point;

(b) If there is no unique minimum in the{nl,k}l ,
i.e., there is a set ofm indices{µ1, . . . ,µm},
so thatnµ1,k = · · · = nµm,k � ni,k ∀i, choose
the minimumw = min{nk,µi }i . The next point
for the reconstruction then isxw;

(c) Iterate the two steps (a) and (b) of this pha
until all indices are ranked. Then, you have
rank order of the points of the time seriesnord

i

which underlies the RP.
(3) Final reconstruction

(a) Generate random numbers so that for each
try in the ordered series there is one numb
Then rank order these random numbersyi ;

(b) Generate a time series by putting the valueyi

at the positionnord
i . Then you obtainynord

i
;

(c) Reintroduce at the position of the “identic
columns” obtained in step 1 the values of t
points at the corresponding indices which
mained in the RP.

In Appendix Awe will illustrate the use of this algo
rithm by an easy example.

3. Application of the algorithm to three different
systems

Now we show, that the algorithm works well fo
very different systems, both dynamical and stocha
ones. The algorithm does not depend on the dynam
of the underlying system.

(A) We start with the reconstruction of the time s
ries of a logistic map(xn+1 = 4xn(1− xn)), Fig. 2(a).
Given only the RP from a simulation of the logi
tic map (in this case we usedε = 0.1, length of
the time seriesN = 1000), we reconstruct based o
the upper algorithm the time series which is d
played inFig. 2(b). Plotting the original and the reco
structed time series one on top of the other, one obt
Fig. 2(c). Note, that the reconstruction is much mo
precise than the error bounds given by the threshoε.
Actually, the precision increases with the length of
underlying time series. The main dynamical prop
ties of the time series (e.g., the correlation entropy
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Fig. 2. Reconstruction of a time series of a logistic map from an
(a) Original time series, (b) reconstructed time series, (c) both
series: original one (line) reconstructed one (points).

Fig. 3.xn vs.xn+1 diagram for the reconstructed logistic map. D
to the different distribution of the time series it is not a parabola

dimension) are captured. This can also be seen i
xn vs.xn+1 plot (Fig. 3). Plotting this diagram for the
original time series yields a parabola. For the rec
structed time series one finds a graph which seem
be a continuously deformed parabola. This effec
mainly due to the different distribution of the origin
and the reconstructed time series. However, it is
a one humped map and also its correlation entrop
unchanged.

(B) The reconstruction also works for continuo
systems, such as the Rössler system[20]. Fig. 4(a)
shows a portion of the time series of thex-component
of the Rössler attractor with standard paramet
Fig. 4. Reconstruction of a time series of thex-component of the
Rössler system from a recurrence plot. (a) Original time se
(b) reconstructed time series (for better comparability the stan
deviation and the mean have been adapted), (c) both time s
original one (line) reconstructed one (points).

The reconstruction coincides nearly perfectly with
original time series,Fig. 4(c).

(C) The next case we want to present is independ
uniformly distributed noise. This system is not d
namical, but the reconstruction of the trajectory ba
on the algorithm still works.Fig. 5(a) represents th
original time series.Fig. 5(b) and (c) represent th
reconstructed time series. There is nearly perfect
incidence.

In all the cases the algorithm succeeded in rec
structing the time series from the RP. In the next s
tion we will discuss more of the characteristics a
limitations of the algorithm.

4. Discussion of the algorithm

The reconstruction algorithm works by consideri
the neighbourhoods of the points of the time ser
Condition for the reconstructability assures, that
neighbourhood overlap sufficiently. This makes it p
sible to reconstruct the time series. It is equivalen
the condition that in the projection of the values th
is noε-interval void of points.

Assuming that the values are uniformly distri
uted, one can estimate the number of points wh
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Fig. 5. Reconstruction of a time series of independent uniformly dis
tributed noise. (a) Original time series, (b) reconstructed time se
(c) both time series: original one (line) reconstructed one (points).

are needed to reconstruct the time series for a g
thresholdε. The distanced of two neighbouring points
in the interval of the values[xmin, xmax] is then expo-
nentially distributed

(3)p(d) = N · e−N∗d ,

whereN is the length of the time series. Let us, wit
out loss of generality, assume that the interval in wh
the values are distributed is the unit interval. Th
there areN + 1 intervals, which have to be all small
thanε. One obtains the following relation between t
numberN of points in the time series, the thresho
ε and the probability to find a void interval which
larger than the thresholdp.

(4)P = (
1− e−Nε

)N+1
.

This formula allows to estimate that in order to be a
(with a probability of about0.999) to reconstruct th
time series (and the attractor) for an RP which has a
currence rate of 1%, one should have more than a
1400 points in the time series. Usingε = 0.1 one only
needs about 90 points to reconstruct the time serie

Hence, ifε is larger, one needs less points for t
algorithm to reconstruct the time series. If, on t
other hand,ε is too large, the reconstruction alg
rithm works but cannot distinguish different poin
properly. Let us take example (C) of values which
distributed uniformly in the unit interval. Then, ifε is
0.5 + δ, a band of width 2δ around 0.5 has all point
of the time series as neighbours. All these points h
equal columns in the RP and are not distinguisha
(They are “canceled” in the first step of the algorithm
Whenever,ε < 0.5, i.e., half the interval width of the
value of the time series, the time series can be re
structed as accurately as one wishes by conside
sufficiently long time series.

Note, that based on Takens theorem[15], it is possi-
ble to reconstruct the attractor from the reconstruc
time series. Hence, the attractor can be recovered
the RP (of only one component) of the system, at le
topologically.

This means, that the RP contains all topologi
information of the underlying system, even though
is only computed from one of its components.Fig. 6
shows the reconstruction of the Rössler attractor fr
the reconstructed time series. However, the recons
tion of the time series from the RP of more than o
component of the system, e.g., the three-dimensi
vectors of the Rössler system, is not possible with
algorithm. Such a plot is the point-wise product of t
RP of the single components, if one uses the m
mum norm in Eq.(1). Hence, one loses informatio
The open question is, if it is possible to reconstruct
attractor from such a multidimensional RP. This is
important problem as the RP of only one compon
(i.e., the projection of the attractor onto one coor
nate axis) contains seemingly less information th
the wholen-dimensional phase space. It even do
not represent real recurrences but due to the pro
tion also false ones (“false nearest neighbours”).

5. Conclusions

In this Letter we have shown—based on Take
theorem—that it is possible to reconstruct an attr
tor from its RP obtained from one component. T
result is an extension of the work[3], where it was
shown that the attractor can be reconstructed from
unthresholded RP. It must be noted that with our
gorithm it is also possible to reconstruct time ser
which have a stochastic component from an RP, i.e
does not matter whether the time series is stocha
dynamical or a dynamical system corrupted by noi
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the
Fig. 6. (a) Reconstruction of the phase space by Takens theorem, based on thex-component of the Rössler system (b) reconstruction of
attractor of the Rössler system from the RP of a time series of itsx-component.
m-
s is

tion
hm
rac-
me
can

as
in-
uct
ela-
.g.,
r-

th-
RP.
so
ta

, is
th-

ity
n-

ries.

ral

p-
s
n

ec-
An interesting point is that the RP of only one co
ponent is sufficient to reconstruct the attractor. Thi
linked to the fact presented in[10] that the RP of one
component is sufficient to estimate both the correla
entropy and dimension. Also note, that the algorit
presented in this Letter cannot reconstruct the att
tor from a RP of a vector valued, i.e., embedded ti
series. It is an open question if such an algorithm
be constructed.

Our results are of mainly theoretical relevance
they show that also in a binary RP all topological
formation is conserved. The algorithm to reconstr
the time series allows to state some fundamental r
tions for information theoretical considerations, e
how to choose the thresholdε so that based on recu
rences the attractor can be reconstructed.

However, our results could be the basis for a for
coming study on generating of surrogates from an

Beyond the topological information, there is al
some information about the distribution of the da
contained in the RP. To extract this information, too
an open problem and will be the objective of a for
coming paper.

Acknowledgements

This project was supported by the “DFG Prior
Program 1114” and the “Internationales Promotio
Fig. 7. Toy recurrence plot obtained from a time series of ten ent

skolleg Computational Neuroscience of Behavio
and Cognitive Dynamics”.

Appendix A. Practical reconstruction a time
series from an RP

To illustrate how the algorithm works, we a
ply it to the RP of the following toy time serie
{3,2,4,8,2,5,7,6,0,2}. The threshold is chose
ε = 2. The corresponding RP is represented inFig. 7.
Now we apply the algorithm described in the last s
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Table 1

i 1 1 1 2 2 2 3 3 3 3 4 4 6 6 6 6 7 7 7 8 8 8 8
j 2 3 6 1 3 9 1 2 6 8 7 8 1 3 7 8 4 6 8 3 4 6 7
ni,j 1 1 2 1 2 0 0 1 1 2 1 2 1 1 1 1 0 2 1 2 0 1 0

tion. First, we notice that the columns 2, 5, 10 a
identical (here marked in grey). Following the instru
tion in step “1” we cancel columns 5 and 10, i.e.,
will ignore them carrying out the next steps of the
gorithm.

Next, we compute theni,j for all neighbours. See
Table 1.

Following step “3” we search the two indicesj1
and j2 for which ni,j1,2 = 0 ∀i. We find j1 = 9 and
j2 = 4. This means that one of the valuesx9 andx4 is
the largest and one is the smallest of the time se
We choose one of them, e.g.,j1 = 9 respectivelyx9
(step 4).

Then (step 5), we search all neighbours ofx9. There
is only one such valuex2. This is the next value in th
rank order. Hence, we havex9 < x2 (or x9 > x2).

Next, we search all neighbours ofx2. These arex1,
x3, x9 andx9 is already arranged. Hence, we consi
n2,1 = 1 andn2,3 = 2. The minimum isn2,1 = 1, i.e.,
x1 is next in the series. We havex9 < x2 < x1 (or x9 >

x2 > x1).
The neighbours ofx1 arex2, x3, x9. x2 is already

arranged in the reconstructed time series. Then,
considern1,3 = 1 andn1,6 = 2. This means thatx3 is
the next value in the time series:x9 < x2 < x1 < x3 (or
x9 > x2 > x1 > x3). Proceeding with the neighbou
of x3, we findn3,6 = 1 andn3,8 = 2. Hence, we have
x9 < x2 < x1 < x3 < x6 (or x9 > x2 > x1 > x3 > x6).

The next step is different from the last steps. T
two relevant neighbours ofx6 are x7 and x8. As
n6,7 = 1 andn6,8 = 1, we have to apply step “6” o
the algorithm and considern7,6 = 2 andn8,6 = 1. The
minimum isn8,6 = 1. Hence, we getx9 < x2 < x1 <

x3 < x6 < x8 (or x9 > x2 > x1 > x3 > x6 > x8).
In the next iteration we considern8,4 = 0 and

n8,7 = 0. Again, we must follow step “6”. The min
imum of n4,8 = 2 andn7,8 = 1 is n7,8. Hence, the
next point isx7 and the last onex4. We obtain the
time seriesx9 < x2 < x1 < x3 < x6 < x8 < x7 < x4
(or x9 > x2 > x1 > x3 > x6 > x8 > x7 > x4).

Next, one generates 9 random numbers and or
them. Thenx9 is identified with the smallest numbe
x2 with the smallest but one and so on.

Finally, one reintroducesx5 and x10 which have
been canceled in the first step. Both are set equal tox2.

Then, the algorithm is finished and one has a t
series{xi} which is reconstructed from the RP.
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