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Abstract

A method for the multivariate analysis of statistical phase synchronization
phenomena in empirical data is presented. A first statistical approach is com-
plemented by a stochastic dynamic model, to result in a data analysis algorithm
which can in a specific sense be shown to be a generic multivariate statisti-
cal phase synchronization analysis. The method is applied to EEG data from
a psychological experiment, obtaining results which indicate the relevance of
this method in the context of cognitive science as well as in other fields.



1 Introduction

Synchronization phenomena are a classic subject of science (cf. Pikovsky et al.
[2001]). In the last years especially the investigation of phase synchronization
has received much attention following the study of Rosenblum et al. [1996], who
showed that there is a specific regime in the dynamics of two coupled chaotic oscil-
lators in which the phase difference of the oscillators is bounded while the ampli-
tudes remain uncorrelated and irregular. Phase synchronization effects have been
studied numerically, in laboratory experiments [Parlitz et al., 1996; Ticos et al.,
2000; Kiss & Hudson, 2001] as well as in data obtained from natural systems in-
cluding the human brain [Mormann et al., 2000; Lachaux et al., 1999]. In cases
like this, where the system dynamics is very complex and the data are noisy, the
definition of phase synchronization has to be given a quantitative statistical form,
measuring the “peakedness” of the distribution of the generalized phase difference
∆ϕ = mϕ2 − nϕ1 of two oscillators [Tass et al., 1998].

Until now, such statistical phase synchronization analysis has been constrained
to the bivariate case, while the examination of empirical multivariate data was ac-
complished by the simple repeated application of bivariate synchronization mea-
sures. For instance, Rodriguez et al. [1999] tested for significant increases and de-
creases in the strength of phase synchronization between signals obtained from
scalp EEG recordings in a visual attention task, separately for each pair of elec-
trodes, and displayed the results as colored lines between the sites in a schematic
map of the scalp. This approach gives detailed information on the topographic
structure of synchronization relations, but it has at least two drawbacks: The vi-
sualization can get incomprehensible if a large number of lines has to be drawn,
and this analysis in itself gives no information on a common integrating structure
that may be present in the data. In the other extreme, Haig et al. [2000] computed
an index of global phase synchronization which is meant to indicate synchroniza-
tion phenomena between all recording sites at once, but fails to give topographic
details and effectively destroys much of the information present in the data.

In this paper, we present an approach to genuinely multivariate phase synchro-
nization analysis that tries to combine the global with the topographically detailed
perspective. To this end, we introduce the concept of a statistical phase synchro-
nization cluster and derive a method to identify this structure in a given data set.
In contrast to other studies concerning the dynamics and stability of clusters of
perfect (phase) synchronization and the coexistence and interaction of multiple
clusters (cf. e.g. Osipov & Kurths [2001]; Osipov et al. [1997]), the present paper
tries to describe the form of a single statistical cluster, in which the oscillators par-
ticipate in different degrees, ranging from no to perfect agreement with the cluster
dynamics. Its goal is to derive a general structure whose application to empirical
data can be seen as a generic multivariate analysis in the field of phase synchro-
nization.

In the following mathematical derivations we will frequently refer to concepts
coming from the context of directional statistics. A short overview of this is given
by Allefeld & Kurths [this issue]; for a comprehensive introduction, see the mono-
graphs by Mardia [Mardia & Jupp, 2000; Mardia, 1972].

2 Synchronization Cluster Analysis

In statistical phase synchronization analysis, the relevant information is given by
the phase ϕik of the N oscillators i = 1 . . .N in a number of realizations k = 1 . . .n of
the stochastic process considered. The strength of synchronization between each
two oscillators can be measured by a statistic on the distribution of their phase
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difference; here we use the quantity

R̄i j =

∣∣∣∣∣ 1
n ∑

k
exp(i(ϕ jk −ϕik))

∣∣∣∣∣ . (1)

It takes on values in the range from 0 (no phase synchronization) to 1 (perfect phase
synchronization). The objective of multivariate phase synchronization analysis is
to derive from this matrix (R̄i j) of bivariate indices some information about the
synchronization state of the whole of N oscillators.

In the following sections, we will present our approach, the synchronization
cluster analysis, in three steps. The general definition of a synchronization cluster
is followed by its concretization in a very specific dynamical model, which moti-
vates a generally applicable method of data analysis. Each step does not directly
derive from the following, but introduces a significant modification.

2.1 The concept of a synchronization cluster

The basic idea of multivariate synchronization analysis introduced in this paper
is to conceive of the oscillators as constituting a cluster in which they participate
in different degrees ci. The cluster consists of a common rhythm, a mean of the
oscillations of the single oscillators, and it is described by the dynamics of a cluster
phase Φ.

In each realization, this reference phase of the cluster is defined as a circular
weighted mean of the oscillator phases,

Φk = arg∑
j

c j exp(iϕ jk), (2)

while the participation indices ci are calculated as a (monotonously increasing)
function of the synchronization strength between an oscillator and the cluster,

ci = f (R̄iC) with R̄iC =

∣∣∣∣∣ 1
n ∑

k
exp(i(ϕik −Φk))

∣∣∣∣∣ . (3)

In this way, the participation index quantifies both how close an oscillator follows
the common rhythm as well as how important it is in its contribution to the cluster.

A self-consistent solution of this set of equations would represent a synchro-
nization cluster analysis of the given data set ϕik. A problem for this ansatz is that
while the definition of the cluster phase is quite straightforward, it is not immedi-
ately obvious which function f should be chosen for the relation between the R̄iC
and the ci.

2.2 A dynamical perspective

To fill this gap, a look at the process leading to the formation of a synchronization
cluster may be helpful. The model we are looking at does not maintain the gen-
erality of the first approach, but clarifies the dynamical meaning of the statistical
quantities introduced above. As we will see, this concretization will also lead to a
modification of the given ansatz.

We use the following model of N coupled noisy phase oscillators as a starting
point:

ϕ̇i = ωi + ∑
j

ki j sin(ϕ j −ϕi) + ξi. (4)

It derives from the well-known Kuramoto model [Strogatz, 2000] with two impor-
tant differences: The strength of the coupling between two oscillators ki j is not the
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same for each pair, and the dynamics has been complemented by a stochastic part.
The ξi are taken to be independent Gaussian white noises with the same energy,
normalized to 1 by an appropriate choice of the time unit.

In the case that the coupling matrix factorizes, ki j = cic j, the differential equa-
tions can be decoupled by a mean field approach such that

ϕ̇i = ωi + ci M sin(Φ−ϕi) + ξi, (5)

where

M =

∣∣∣∣∣∑j
c j exp(iϕ j)

∣∣∣∣∣ and Φ = arg∑
j

c j exp(iϕ j) (6)

are the amplitude and the phase of the mean field, respectively. By this transfor-
mation, the coupling between oscillators has been formally replaced by a coupling
to the mean field. If the number of oscillators is large enough and the system is in
its stationary state, the mean field is approximately independent of the dynamics
of the individual oscillators, and so it can be treated as a common external driving
with a constant amplitude M = 〈M〉.

If the variation of the autonomous frequencies ωi is small, the difference be-
tween them and the frequency of the mean field Φ̇ can be neglected, and the dy-
namics of the phase difference between an oscillator and the mean field, ∆ϕi =
ϕi −Φ, obtains the form

˙∆ϕi = −ci M sin(∆ϕi) + ξi. (7)

The stationary distribution resulting from this stochastic dynamics is a von Mises
distribution, ∆ϕi ∼ M(0,2ci M), and the corresponding population value of the
oscillator-mean field synchronization strength is

ρiC = |〈exp(i ∆ϕi)〉| = A(2ci M) with A(κ) =
I1(κ)
I0(κ)

(8)

where Ip denotes the modified Bessel function of the first kind of order p.
The parts of this dynamical model can be easily identified with those of the

original approach. The synchronization cluster corresponds to the mean field,
which effectively rules the dynamics of the individual oscillators and the cluster
phase Φk is a realization of the phase of the mean field Φ. The “participation” of an
oscillator in the cluster is given by the coefficient ci, which specifies its contribution
as well as its coupling to the mean field. And the oscillator-cluster synchronization
strength R̄iC is an empirical estimator of ρiC, which depends on the participation
index.

As a modification of the original model, the relation between ci and ρiC is not a
simple function, but additionally depends on the amplitude of the mean field M,
whose value in the stationary state is a result of the couplings of all oscillators in
the cluster to each other. Because of the form of M as a weighted sum it can be
used to define a normalized index of the overall cluster strength

rCluster =
1

∑ |c j|
M =

∣∣∣∣∣ 1
∑ |c j| ∑j

c j exp(iϕ j)

∣∣∣∣∣ (9)

(values from 0 to 1), which can be seen as a generalization of the global synchro-
nization index rGlobal =

∣∣ 1
N ∑ exp(iϕ j)

∣∣ used by Haig et al. [2000]. Its expectation
value can be expressed as a weighted mean of the ρiC,

〈rCluster〉 =
1

∑ |c j| ∑j
|c j|ρ jC. (10)
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2.3 The data analysis algorithm

The dynamic approach did not lead to a simple specification of the function f , and
the first definition of the cluster phase (Eq. 2) is only in a specific model identical
to the phase of the mean field (Eq. 6). But the dynamical perspective enables us
to modify the idea of synchronization cluster analysis in a way that is much more
generally applicable (see below). It is based on another theoretical observation.
For the population values of the bivariate synchronization indices R̄i j holds

ρi j = |〈exp(i(ϕ j −ϕi))〉| = |〈exp(i(∆ϕ j − ∆ϕi))〉|. (11)

If in the given dynamics it is possible to introduce in some specific way a mean
field, then the dynamics of the phase differences are decoupled. If additionally
each oscillator is driven by noise independent of that acting on the other oscillators,
then ∆ϕi and ∆ϕ j become independent random variables, and so

ρi j = |〈exp(i ∆ϕ j)〉| |〈exp(−i ∆ϕi)〉| = ρiC ρ jC for i 6= j (ρii = 1), (12)

that is, the synchronization matrix (excepting the diagonal) factorizes.
This leads to a version of synchronization cluster analysis in which the quan-

tity to be estimated from the data is no longer the participation index ci, which de-
pends on the specific dynamics, but the strength of the synchronization between
an oscillator and the cluster ρiC. Like ci, this quantity is a measure of the degree
of participation of the oscillator in the cluster. The corresponding algorithm is as
follows:1 R̄i j is an empirical estimate of ρi j = ρiC ρ jC which can be shown to be
asymptotically normally distributed, R̄i j ∼ N(ρi j, σ

2
i j). A maximum likelihood esti-

mation of the ρiC then reduces to minimizing the sum of square weighted errors

∑
i, j>i

E2
i j with Ei j =

R̄i j − ρiC ρ jC

σi j
, (13)

where
σi j =

1√
2n

(1− ρ2
iC ρ

2
jC) (14)

is based on the assumption that due to the central limit theorem the difference of
two independent circular random variables can in sufficiently good approximation
be described by a wrapped normal distribution. The residual errors can then be
used to check whether the model may be applied to the given data set.

In this form, synchronization cluster analysis is independent of most of the de-
tails of the dynamical model used for its motivation. The basic premises that are
relevant to this approach are that the dynamics of the oscillators can be decou-
pled by introducing a mean field and that its stochastic part is independent for
each of them. In this sense, the factorization of the matrix of bivariate synchro-
nization indices R̄i j by estimating the synchronization strengths to the cluster ρiC
can be regarded as the generic multivariate phase synchronization analysis aimed
at in the beginning. This genericity does not mean that it is necessarily applica-
ble to every data set, since there still are specific assumptions—the feasibility of
decoupling being the most important, because it underlies the unity of the syn-
chronization cluster. But even in cases where the applied structure is not perfectly
adequate, it may serve as a first approximation and specific deviations from the
applied model may be detected by large values of the residual errors Ei j. Another
favourable characteristic of this analysis is that its result maintains a direct relation

1This derivation is based on results of directional statistics, cf. Allefeld & Kurths [this issue] or
Mardia & Jupp [2000].
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Figure 1: The stimuli: Kanizsa, Triangle, Non-Triangle, and Target. The cross at
the center is used to suppress eye movements. The first three stimuli correspond
to experimental conditions.

to the bivariate synchronization indices; an approximation of the synchronization
strength between two oscillators R̄i j is given by the product of the estimates of the
synchronization strengths to the cluster ρiC ρ jC. In the following we will see that it
can be successfully applied to an empirical data set.

3 Application to EEG Data

The analysis has been applied to event-related potentials recorded in a psycholog-
ical experiment following Tallon-Baudry et al. [1996]. Data was obtained from one
female subject of 23 years, right-handed and with normal vision. Four types of
stimuli (Fig. 1) were presented in a randomized order for 700 ms with a random
interstimulus interval of 2–3 seconds. The stimuli corresponding to experimental
conditions consisted of a Kanizsa triangle with an illusory contour (“Kanizsa”), a
similar shape with triangle edges drawn (“Triangle”), and a shape consisting of the
same parts as the Kanizsa without forming an illusory contour (“Non-Triangle”).
The task of the subject was to count silently the number of occurences of the fourth
stimulus (“Target”), a variant of the Kanizsa, per experimental block. There were
eight blocks of 90 stimulus presentations each.

EEG was recorded with a sampling rate of 500 Hz at 30 electrodes (see Fig. 5)
and artifact-free epochs from −300 ms to 650 ms relative to the stimulus presen-
tation were selected for processing. To decrease the correlation between nearby
electrodes and to obtain reference-free data, the scalp current density estimation
procedure described by Perrin et al. [1989] was applied assuming idealized 10–20
positions on the unit sphere and with spline order m = 4. The recorded time series
x(t) for each condition, electrode, and trial were convolved with a Morlet wavelet

ψ(t;ω0, σω) = 4

√
2
π

√
σω exp

(
−σ2

ωt2)exp(iω0t) (15)

to obtain complex wavelet coefficients

w(t, f ) =
∫ ∞

−∞
x(t′) ψ

(
t− t′; 2π f ,

2π f
10

)
dt′ (16)

that were used to define frequency-specific instantaneous phases

ϕ(t, f ) = arg w(t, f ). (17)
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The convolution was performed via FFT assuming periodic boundary conditions,
and the resulting data were reduced to epochs from −150 ms to 500 ms to remove
boundary effects. For each experimental condition, frequency, and time instant
separately, the phases ϕik at an electrode i in a trial k were taken as input to the
procedures of phase synchronization analysis described above. That is to say, the
electrodes were assumed to represent autonomous oscillators and the trials were
treated as realizations of the considered stochastic process.

4 Results

To get an overview of the processes in the different frequency bands, we calcu-
late three measures of the overall synchronization strength for each frequency and
time instant: 1) The mean of the bivariate synchronization indices for all pairs of
electrodes,

2
N(N − 1) ∑

i, j>i
R̄i j, (18)

2) the ratio of R̄i j whose t-statistic difference from the value at −150 ms exceeds a
certain threshold, corresponding to a significance test at a level of 5% (cf. Allefeld
& Kurths [this issue]), and 3) an estimate of the cluster strength

rCluster =
1

∑ A−1(ρ jC) ∑
j

A−1(ρ jC) ρ jC. (19)

The results for the Kanizsa condition are displayed in time-frequency plots in
Fig. 2. All of the quantities reveal two distinct increases in synchronization re-
lated to the stimulus presentation, one below 10 Hz with a latency of 100–200 ms,
and a second one around 13 Hz and a latency of about 300 ms. Interestingly, there
seem to be no other synchronization effects in the higher frequency bands. The
increased values of mean and rCluster around 50 Hz are a result of a direct influence
of the power line onto the EEG voltage recordings; this effect disappears in the
threshold ratio which describes the difference to the prestimulus level.

For a more detailed examination of the analysis results, we choose the band
around 13 Hz of the higher-frequency response. Since the cluster analysis delivers
indices ρiC attributed to the electrodes, their values can be displayed in a conven-
tional scalp map to give an easily apprehensible representation of the topographic
information obtained. Figure 3 shows the time evolution of the synchronization
topography for the Kanizsa condition. The emergence of the synchronization clus-
ter around 150 ms can be clearly seen. Its distribution seems to be almost constant
until its disappearance at 450 ms and involves mainly parietal as well as right
fronto-temporal areas, with a maximum in the left parietal region.

Figure 4 shows a comparison of the three overall measures introduced above
for the different experimental conditions. All of them indicate that there is a differ-
ence between the Kanizsa condition and the two other conditions. (A first statisti-
cal analysis of the threshold ratio at 300 ms shows strong significance p = 0.007 for
the difference between Kanizsa and Triangle and standard significance p = 0.05
for the difference between Kanizsa and Non-Triangle conditions; for the other two
measures the statistical differences are weaker.) Disregarding scaling, the informa-
tion given by mean and rCluster seems to be almost the same. This suggests that the
generic analysis giving the ρiC should possibly not be complemented by the index
of cluster strength, whose estimation introduces further details of the dynamical
model, but by the seemingly equivalent mean. The threshold ratio gives a slightly
different time structure and has the advantage that there is no apparent difference

7



0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0 200 400

10

15

20

25

30

35

40

45

50

t / ms

f /
 H

z

mean

0

0.1

0.2

0 200 400

10

15

20

25

30

35

40

45

50

t / ms

f /
 H

z

threshold ratio

0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

0 200 400

10

15

20

25

30

35

40

45

50

t / ms

f /
 H

z

r
Cluster

Figure 2: Time-frequency plots of three measures of the overall synchronization
state for the Kanizsa condition.
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Figure 3: Time evolution of the cluster synchronization topography at f = 13 Hz
for the Kanizsa condition. The continuous colors correspond to an interpolation
of the ρiC-values attributed to the electrodes, whose positions are marked by ×-
symbols. For a chart of the electrode names, see Fig. 5.
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between conditions in the prestimulus interval (and even until 200 ms). The differ-
ent synchronization clusters in the three conditions at 300 ms are shown in Fig. 5.
The basic topography seems to be the same in all conditions, with overall higher
values in the Kanizsa condition. The residual errors Ei j for these analyses are be-
tween −0.32 and 0.58 s.d.; these small values show that there is a basic agreement
between model and data.

5 Conclusion

We have introduced an approach to the statistical phase synchronization analysis
of multivariate data based on the concept of a synchronization cluster. The derived
algorithm has been shown to use only a small number of assumptions about the
dynamics underlying the data, which justifies its status as a generic data analysis.
It has been applied to human EEG data from a visual attention psychological ex-
periment, resulting in a common topography of synchronized behavior, but show-
ing differences in the overall strength of synchronization between experimental
conditions. The presented method is expected to give significant results in further
EEG studies in the field of cognitive sciences, obtaining additional information on
brain dynamics in a topographically, temporally, and frequency-specific way, as
well as in other fields concerned with multivariate oscillatory processes.

The application of the method presented in this paper served to demonstrate
its useability in the processing of empirical data; therefore we did not interpret our
results with respect to physiological or cognitive processes or the results of other
experiments following the same paradigm. Further studies trying to utilize our
method in the examination of brain activation associated with cognitive processes
are under way and will compare the results to other methods of EEG analysis.
Complementing this, further work will investigate the analysis of data sets with
multiple (disjunct or interacting) clusters and the statistical properties of the used
measures of overall synchronization.
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