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Line structures in recurrence plots
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Abstract

Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slop
line structures is connected with a specific transformation of the time scales of different segments of the phase-space
This provides us a better understanding of the structures occurring in recurrence plots. The relationship between
scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross r
plots, the time-scales of differently sampled or time-transformed measurements can be adjusted. An application to ge
measurements illustrates the capability of this method for the adjustment of time-scales in different measurements.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decade of data analysis an impres
increase of the application of methods based on
currence plots (RP) can be observed. Introduced
Eckmann et al.[1], RPs were firstly only a tool fo
the visualization of the behaviour of phase-space
jectories. The following development of a quantific
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tion of RPs by Zbilut and Webber[2,3] and later by
Marwan et al.[4], has consolidated the method as
tool in nonlinear data analysis. With this quantificati
the RPs have become more and more popular wi
a growing group of scientists who use RPs and th
quantification techniques for data analysis. Last
velopments have extended the RP to a bivariate
multivariate tool, as the cross recurrence plot (CR
or the multivariate joint recurrence plot (JRP)[5–7].
The main advantage of methods based on RPs is
they can also be applied to rather short and even n
stationary data.
.
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The initial purpose of RPs was the visual inspect
of higher-dimensional phase-space trajectories.
view on RPs gives hints about the time evolution
these trajectories. The RPs exhibit characteristic la
scale and small scale patterns. Large scale patt
can be characterized as homogeneous, periodic,
and disrupted. They obtain the global behaviour
the system (noisy, periodic, auto-correlated, etc.).
quantification of RPs and CRPs uses the small-s
structures which are contained in these plots. The m
important ones are the diagonal and vertical/horizo
straight lines because they reveal typical dynam
features of the investigated system, such as rang
predictability or properties of laminarity. However, u
der a closer view a large amount of bowed, continu
lines can also be found. The progression of such a
represents a specific relationship within the data
this Letter we present a theoretical background of
relationship and discuss a technique to infer the
justment of time-scales of two different data seri
Finally, an example from earth sciences is given.

2. Recurrence plots

A recurrence plot (RP) is a two-dimensional squ
red matrix with black and white dots and two tim
axes, where each black dot at the coordinates(t1, t2)

represents a recurrence of the system’s state�x(t1) at
time t2:

(1)R(t1, t2) = Θ
(
ε − ∥∥�x(t1) − �x(t2)

∥∥)
, �x(t) ∈ R

m,

wherem is the dimension of the system (degrees
freedom),ε is a small threshold distance,‖ · ‖ a norm
andΘ(·) the Heaviside function. This definition of
RP is only one of several possibilities (an overview
recent variations of RPs can be found in[8]).

SinceR(t1, t1) = 1 by definition, the RP has a blac
main diagonal line, theline of identity (LOI), with an
angle ofπ/4. It has to be noted that a single recurren
point at(t1, t2) in a RP does not contain any inform
tion about the actual states at the timest1 and t2 in
phase space. However, it is possible to reconstruct
namical properties of the data from the totality of
recurrence points[9].
3. Line structures in recurrence plots

The visual inspection of RPs reveals (among ot
things) the following typical small scale structure
single dots, diagonal lines as well asvertical andhori-
zontal lines (the combination of vertical and horizont
lines plainly forms rectangular clusters of recurren
points).

Single, isolated recurrence points can occur if
states are rare, if they do not persist for any tim
or if they fluctuate heavily. However, they are no
clear-cut indication of chance or noise (for examp
in maps).

A diagonal line R(t1 + τ, t2 + τ) = 1 (for τ =
1 . . . l, where l is the length of the diagonal line i
time units) occurs when a segment of the traject
runs parallel to another segment, i.e., the trajec
visits the same region of the phase space at diffe
times. The length of this diagonal line is determin
by the duration of such a similar local evolution
the trajectory segments. The direction of these d
onal structures can differ. Diagonal lines parallel
the LOI (angleπ/4) represent the parallel running
trajectories for the same time evolution. The diago
structures perpendicular to the LOI represent the
allel running with contrary times (mirrored segmen
this is often a hint of an inappropriate embedding if
embedding algorithm is used for the reconstruction
the phase space). Since the definition of the Lyapu
exponent uses the time of the parallel running of
jectories, the relationship between the diagonal li
and the Lyapunov exponent is obvious (but this re
tionship is more complex than usually mentioned
literature, cf.[10]).

A vertical (horizontal) line R(t1, t2 + τ) = 1 (for
τ = 1 . . . v, with v the length of the vertical line in tim
units) marks a time length in which a state does
change or changes very slowly. It seems, that the s
is trapped for some time. This is a typical behaviour
laminar states[4].

4. Slope of the line structures

In a more general sense the line structures in
currence plots exhibit locally the time relationship b
tween the current trajectory segments. A line str
ture in a RP of lengthl corresponds to the closene
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of the segment�x(T1(t)) to another segment�x(T2(t)),
whereT1(t) and T2(t) are two local time-scales (o
transformations of an imaginary absolute time-scalt)
which preserve that�x(T1(t)) ≈ �x(T2(t)) for some time
t = 1 . . . l. Under some assumptions (e.g., piecew
existence of an inverse of the transformationT (t), the
two segments visit the same area in the phase sp
a line in the RP can be simply expressed by the tim
transfer function

(2)ϑ(t) = T −1
2

(
T1(t)

)
.

Especially, we find that the local slopeb(t) of a line
in a RP represents the local time derivative∂t of the
inverse second time-scaleT −1

2 (t) applied to the first
time-scaleT1(t)

(3)b(t) = ∂tT
−1
2

(
T1(t)

) = ∂tϑ(t).

This is the fundamental relation between the lo
slopeb(t) of line structures in a RP and the time sc
ing of the corresponding trajectory segments. From
slopeb(t) of a line in a RP we can infer the relatio
ϑ(t) between two segments of�x(t) (ϑ(t) = ∫

b(t) dt).
Note that the slopeb(t) depends only on the transfo
mation of the time-scale and is independent from
considered trajectory�x(t).

This feature is, e.g., used in the application of CR
as a tool for the adjustment of time-scales of two d
series[6,11] and will be discussed later. Next, w
present the deforming of line structures in RPs du
different transformations of the time-scale.
,

5. Illustration line structures

For illustration we consider some examples of ti
transformations for different one-dimensional traje
toriesf (t) (i.e., functions; no embedding). We stu
the recurrence behaviour between two segmentsf1
andf2 of these trajectories, where we apply differe
time transformations to these segments (Table 1). In
order to illustrate that the found relation(3) is inde-
pendent from the underlying trajectory, we will use
first the functionf (t) = t2 (Fig. 1A1, B1, C1, etc.) and
thenf (t) = sin(πt) (Fig. 1A2, B2, C2, etc.) as a tra
jectory. The local representation of RPs between th
segments corresponds finally to cross recurrence p
(CRP) between two different trajectories/functions
will be mentioned later.

Assuming that the second segment of a trajec
f2 is twice as fast as the first segmentf1 (Fig. 1A), i.e.,
the time transformations areT1(t) = t andT2(t) = 2t ,
we get a constant slopeb = 0.5 by using Eq.(3).
A line in a RP which corresponds to these both s
ments followsϑ(t) = 0.5t (Fig. 1A1, A2). This re-
sult corresponds with the solution we had already
cussed in[11] using another approach. In[11] we
considered a simple case of two harmonic functi
f1(t) = sin(T1(t)) andf2(t) = sin(T2(t)) with differ-
ent time transformation functionsT1 = ϕ · t + α and
T2 = ψ · t + β. Using the inverseT −1

2 = t−β
ψ

and
Eq. (3), we get the local slope of lines in the R
(or CRP)b = ∂tT

−1
2 (T2(t)) = ϕ/ψ , which equals the

ratio between the frequencies of the considered
monic functions.

In the second example we will transform the tim
scale of the second segment with the square func
T2(t) = 5t2. Using Eq.(3) we getb(t) = √

0.2/t and
Table 1
Examplary time transformation functionsT1(t) andT2(t), the inverseT −1

2 (t ′), their corresponding slopesb(t) and time-transfer functionsϑ(t)

for lines in RPs shown inFig. 1

Fig. T1(t) T2(t) T −1
2 (t ′) b(t) ϑ(t)

A t 2t 0.5t ′ 0.5 0.5t

B t 5t2
√

0.2t ′
√

0.2
t

√
0.2t

C t 1−
√

1− t2
√

1− (1− t ′)2 1−t√
1−(1−t)2

√
1− (1− t)2

D t2 t3
3√

t ′ 1

3
3√

t2

3√
t2

E sin(πt) t3
3√

t ′ π cos(πt)

3 3
√

sin2(πt)

3√sin(πt)
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Fig. 1. Details of recurrence plots for trajectoriesf (t) whose sub-sectionsf1(t) andf2(t) undergo different transformations in time-sca
(Table 1). Black areas correspond to times wheref1(t) ≈ f2(t). The dash-dotted lines represent the time-transfer functionsϑ(t). Note that
these are not the entire RPs, only a small detail of them (an entire RP cannot contain only these structures—there are more featu
line of identity (diagonal line from lower left to upper right) and a more or less symmetric plot around this line). RPs were constructed
the Euclidean norm,ε = 0.1 and without embedding (for embedding dimensionsm > 1, line segments running from upper left to lower rig
will disappear, but line segments from lower left to upper right will remain, even if they are bowed). (Continued on next page)
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Fig. 1. (Continued)
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ϑ(t) = √
0.2t , which corresponds with a bowed line

the RP (Fig. 1B1, B2). Since sin(πt) has some period
in the considered interval, we get some more line
the RP (Fig. 1B2). These lines underly the same re
tionship, but we have to take higher periodicities in
account:ϑ(t) = √

0.2kπt (k ∈ Z).
The third example refers to a hyperbolic time tra

formationT2(t) = 1 − √
1− t2. The resulting line in

the RP has the slopeb(t) = (1 − t)/
√

1− (1− t)2

and followsϑ(t) = √
1− (1− t)2, which corresponds

with a segment of a circle (Fig. 1C1, C2). We can
use this information in order to create a full circ
in a RP. Let us consider a one-dimensional syst
where the trajectory is simply the functionf (T ) =
T (t), and with a section of a monotonic, linear i
creaseTlin = t and another (hyperbolic) section whic
follows Thyp = −√

r2 − t2. After these both section
we append the same but mirrored sections (Fig. 2A).
Since the inverse of the hyperbolic section isT −1

hyp =
±√

r2 − t2, the line in the corresponding RP fo
lows ϑ(t) = T −1

hyp(Tlin(t)) = ±√
r2 − t2, which corre-

sponds with a circle of radiusr (Fig. 2B).
An examplary data series from earth science rev

that such structures are not only restricted to artifi
models. Let us consider the January solar insola
for the last 100 kyr on the latitude 44◦N (Fig. 3A). The
corresponding RP shows a circle (Fig. 3B), similar as
in Fig. 2B. From this geometric structure we can inf
that the insolation data contains a more-or-less s
metric sequence and that subsequent sequence
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Fig. 2. Illustrative example of the relationship between the sl
of lines in a RP and the local derivatives of the involved traj
tory segments. Since the local derivative of the transformation o
time-scales of the linear and the hyperbolic sections (A) corresp
to the derivative of a circle line, a circle occurs in the RP (B). T
gray coloured recurrence plot is derived from the one-dimensi
phase space (no embedding used). For higher embedding d
sions segments of the line structures which are more or less
pendicular to the line of identity disappear (black recurrence p
embedding dimensionm = 3 and delayτ = 0.2N , whereN is the
data length). Nevertheless, the remaining line segments hav
slope of the circle.

equal after a suitable time transformation which f
lows the relationT −1

2 (T1) = √
r2 − t2. For instance

the subsequent sequences could be a linear inc
ing and a hyperbolic decreasing followed by a reve
of this sequence, a hyperbolic increasing and a lin
decreasing part. Such bowed line structures are
pected in RPs applied to data from biology, ecolo
and economics as well (e.g.,[12–15]). These deforma
tions can obtain hints about the change of frequen
during the evolution of a process and may be of ma
interest especially in the analysis of sound data (an
ample of a RP of speech data containing pronoun
bowed lines can be found in[16]).
-

Fig. 3. A corresponding structure found in experimental data:
the solar insolation on the latitude 44◦N for the last 100 kyr (data
from [17]) and its corresponding recurrence plot (B). The recurre
plot parameters werem = 1 andε = 2 (black) andε = 3.5 (gray).

Whereas in the examples above only the sec
section of the trajectory undergoes a time trans
mation, in the last two examples (Fig. 1D and E) the
time-scale of the first section is also transformed. N
ertheless, the time-transfer function can be again
termined with Eq.(2) as well.

From these examples we can conclude that the
in a recurrence plot follows Eq.(2) and depends onl
on the transformations of the time-scale.

Although we considered only examples in a on
dimensional phase space, these findings hold also
higher-dimensional phase space and for discrete
tems (see the example in the section about cross re
rence plots). The line structures in recurrence pl
which are more or less perpendicular to the LO
will disappear for higher-dimensional phase sp
(Fig. 2B). Nevertheless, the remaining lines reveal
relation between the corresponding time-scales.
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Fig. 4. Rock-magnetic measurements of lake sediments with different time-scales. Corresponding sections are marked with diff
values.

Fig. 5. Cross recurrence plot between rock-magnetic data shown inFig. 4. The dash-dotted line is the resolved LOS which can be used
re-adjustment of the time-scales of both data sets.
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6. Cross recurrence plots

The relationship between the local slope of li
structures in RPs and the corresponding different s
ments of thesame phase-space trajectory holds a
for the structures in CRPs,

(4)CR(t1, t2) = Θ
(
ε − ∥∥�x(t1) − �y(t2)

∥∥)
.
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re
Fig. 6. Geological profiles after re-adjustment using the LOS which was found with the CRP shown inFig. 5. Corresponding sections a
marked with different gray values.
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which are based ontwo different phase-space trajecto
ries �x(t1) and �y(t2). This relationship is more impor
tant for theline of identity (LOI) which then become
a line of synchronization (LOS) in a CRP[6,11].

We start with two identical trajectories, i.e., th
CRP is the same as the RP of one trajectory and
tains an LOI. If we now slightly modify the ampli
tudes of the second trajectory, the LOI will becom
somewhat disrupted. This offers a new approach to
CRPs as a tool to assess the similarity of two syst
[5]. However, if we do not modify the amplitudes b
stretch or compress the second trajectory slightly,
LOI will remain continuous but not as a straight lin
with an angle ofπ/4. The line of identity (LOI) now
becomes theline of synchronization (LOS) and may
eventually not have the angleπ/4. This line can be
rather bowed. Finally, a time shift between the traj
tories causes a dislocation of the LOS, hence, the L
may lie rather far from the main diagonal of the CR

Now we deal with a situation which is typical i
earth sciences and assume that two trajectories
resent the same process but contain some tran
mations in their time-scales. The LOS in the CR
between the two trajectories can be described with
found relation(2). The functionϑ(t) is the transfer or
rescaling function which allows to readjust the tim
scale of the second trajectory to that of the first o
in a non-parametrical way. This method is useful
all tasks where two time-series have to be adjuste
the same scale, as in dendrochronology or sedime
ogy [6].

Next, we apply this technique in order to re-adju
two geological profiles (sediment cores) from the It
ian lakeLago di Mezzano [18]. The profiles cover ap
proximately the same geological processes but h
different time-scales due to variations in the sedim
tation rates. The first profile (LMZC) has a length
about 5 m and the second one (LMZG) of about 3.5
(Fig. 4). From both profiles a huge number of geoph
ical and chemical parameters were measured. Her
focus on the rock-magnetic measurements of the
malized remanent magnetization intensity (NRM) a
the susceptibilityκ .

We use the time-series NRM andκ as compo-
nents for the phase-space vector, resulting in a t
dimensional system. However, we apply an additio
embedding using the time-delay method[19] (we do
not ask about the physical meaning here). A rat
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small embedding decreases the amount of line st
tures representing the progress with negative time[8].
Using embedding parameters dimensionm = 3 and
delayτ = 5 (empirically found for these time-series
the final dimension of the reconstructed system is
The corresponding CRP reveals a partly disrup
swollen and bowed LOS (Fig. 5). This LOS can be au
tomatically resolved, e.g., by using the LOS-track
algorithm as described in[11]. The application of this
LOS as the time-transfer function to the profile LMZ
re-adjusts its time-series to the same time-scale
LMZC (Fig. 6). This method offers a helpful tool fo
an automatic adjustment of different geological p
files, which offers advantages compared to the ra
subjective method of “wiggle matching” (adjustme
by harmonizing maxima and minima by eye) used
far.

7. Conclusion

Line structures in recurrence plots (RPs) and cr
recurrence plots (CRPs) contain information ab
epochs of a similar evolution of segments of pha
space trajectories. Moreover, the local slope of s
line structures is directly related with the difference
the velocity the system changes at different times.
have demonstrated that the knowlege about this r
tionship allows a better understanding of even bow
structures occurring in RPs. This relationship can
used to analyse changes in the time domain of data
ries (e.g., frequencies), as it is of major interest, e.g
the analysing of speech data. We have used this fea
in a CRP based method for the adjustment of tim
scales between different time-series. The potentia
this technique is finally shown for experimental da
from geology.

Although it is obvious that the discussed line stru
tures become more interrupted due to an increa
amount of noise, the influence of noise still need
more systematic work.
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