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Abstract

Recurrence plots exhibit line structures which represent typical behaviour of the investigated system. The local slope of these
line structures is connected with a specific transformation of the time scales of different segments of the phase-space trajectory.
This provides us a better understanding of the structures occurring in recurrence plots. The relationship between the time-
scales and line structures are of practical importance in cross recurrence plots. Using this relationship within cross recurrence
plots, the time-scales of differently sampled or time-transformed measurements can be adjusted. An application to geophysical
measurements illustrates the capability of this method for the adjustment of time-scales in different measurements.
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1. Introduction tion of RPs by Zbilut and WebbdR,3] and later by
Marwan et al.[4], has consolidated the method as a
In the last decade of data analysis an impressive tool in nonlinear data analysis. With this quantification
increase of the application of methods based on re- the RPs have become more and more popular within
currence plots (RP) can be observed. Introduced by a growing group of scientists who use RPs and their
Eckmann et al[1], RPs were firstly only a tool for  quantification techniques for data analysis. Last de-
the visualization of the behaviour of phase-space tra- velopments have extended the RP to a bivariate and
jectories. The following development of a quantifica- multivariate tool, as the cross recurrence plot (CRP)
or the multivariate joint recurrence plot (JRP)-7].
- . The main advantage of methods based on RPs is that
Corresponding author. .
E-mail address: marwan@agnld.uni-potsdam.de they can also be applied to rather short and even non-
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The initial purpose of RPs was the visual inspection 3. Linestructuresin recurrence plots
of higher-dimensional phase-space trajectories. The
view on RPs gives hints about the time evolution of The visual inspection of RPs reveals (among other
these trajectories. The RPs exhibit characteristic large things) the following typical small scale structures:
scale and small scale patterns. Large scale patternssingledots, diagonal linesas well asvertical andhori-
can be characterized as homogeneous, periodic, driftzontal lines(the combination of vertical and horizontal
and disrupted. They obtain the global behaviour of lines plainly forms rectangular clusters of recurrence
the system (noisy, periodic, auto-correlated, etc.). The points).
quantification of RPs and CRPs uses the small-scale Sngle, isolated recurrence points can occur if
structures which are contained in these plots. The moststates are rare, if they do not persist for any time,
important ones are the diagonal and vertical/horizontal or if they fluctuate heavily. However, they are not a
straight lines because they reveal typical dynamical clear-cut indication of chance or noise (for example,
features of the investigated system, such as range ofin maps).
predictability or properties of laminarity. However, un- A diagonal line R(t1 + 7,12 + 1) = 1 (for = =
der a closer view a large amount of bowed, continuous 1.../, where! is the length of the diagonal line in
lines can also be found. The progression of such a line time units) occurs when a segment of the trajectory
represents a specific relationship within the data. In runs parallel to another segment, i.e., the trajectory
this Letter we present a theoretical background of this visits the same region of the phase space at different
relationship and discuss a technique to infer the ad- times. The length of this diagonal line is determined
justment of time-scales of two different data series. by the duration of such a similar local evolution of
Finally, an example from earth sciences is given. the trajectory segments. The direction of these diag-
onal structures can differ. Diagonal lines parallel to
the LOI (anglerr/4) represent the parallel running of
trajectories for the same time evolution. The diagonal
structures perpendicular to the LOI represent the par-
allel running with contrary times (mirrored segments;

A recurrence p|0t (RP) is a two-dimensional squa- this is often a hint of an inappropriate embedding if an
red matrix with black and white dots and two time- €embedding algorithm is used for the reconstruction of

2. Recurrence plots

axes, where each black dot at the Coordinatggz) the phase SpaCE). Since the definition of the LyapunOV
represents a recurrence of the System’s S't’@tﬁ at exponent uses the time of the parallel running of tra-
time to: jectories, the relationship between the diagonal lines

and the Lyapunov exponent is obvious (but this rela-
tionship is more complex than usually mentioned in
). X@®)eR™, (1) literature, cf[10]).

A vertical (horizontal) line R(t1, 2 + t) = 1 (for
wherem is the dimension of the system (degrees of 7 =1...v, with v the length of the vertical line in time
freedom),¢ is a small threshold distanc; || a norm units) marks a time length in which a state does not
and ® (-) the Heaviside function. This definition of a change or changes very slowly. It seems, that the state
RP is only one of several possibilities (an overview of is trapped for some time. This is a typical behaviour of
recent variations of RPs can be found&h). laminar state$4].

SinceR(r1, 11) = 1 by definition, the RP has a black
main diagonal line, théne of identity (LOI), with an
angle ofr /4. It has to be noted that a single recurrence 4. Slope of theline structures
point at(#1, 2) in a RP does not contain any informa-
tion about the actual states at the timgsaandr in In a more general sense the line structures in re-
phase space. However, it is possible to reconstruct dy- currence plots exhibit locally the time relationship be-
namical properties of the data from the totality of all tween the current trajectory segments. A line struc-
recurrence pointg)]. ture in a RP of lengtli corresponds to the closeness

R(11,12) = O (e — | X(11) — X(12)|
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of the segmenk (T1(r)) to another segment(7»(z)), 5. Illustration line structures

where T1(¢) and T»(t) are two local time-scales (or

transformations of an imaginary absolute time-scale

which preserve that(71 (1)) ~ ¥(T»(t)) for some time For illustration we consider some examples of time
t=1...1. Under some assumptions (e_g_, piecewise transformations for different one-dimensional trajec-
existence of an inverse of the transformatio), the tories f(¢) (i.e., functions; no embedding). We study
two segments visit the same area in the phase space)the recurrence behaviour between two segmefts

a line in the RP can be simply expressed by the time- and /2 of these trajectories, where we apply different
transfer function time transformations to these segmeriiahle J). In

order to illustrate that the found relati¢B) is inde-
pendent from the underlying trajectory, we will use at
1 first the functionf (r) = ¢? (Fig. 1A1, B1, C1, etc.) and
D(6) =T, ~(T1(0). @ then £ (¢) = sin(t) (Fig. 1A2, B2, C2, etc.) as a tra-
jectory. The local representation of RPs between these
Especially, we find that the local slopgt) of a line segments corresponds finally to cross recurrence plots

in a RP represents the local time derivatb/eof the (CRP) between two different trajectories/functions as
inverse second time-scals (r) applied to the first ~ will be mentioned later.
time-scalery(r) Assuming that the second segment of a trajectory

f2istwice as fast as the first segmeint(Fig. 1A), i.e.,

the time transformations af@ (1) =t and7»(t) = 2r,

we get a constant slopk = 0.5 by using Eq.(3).

A line in a RP which corresponds to these both seg-

ments follows® (¢r) = 0.5¢ (Fig. 1A1, A2). This re-

This is the fundamental relation between the local sult corresponds with the solution we had already dis-

slopeb(t) of line structures in a RP and the time scal- cussed in[11] using another approach. [i1] we

ing of the corresponding trajectory segments. From the considered a simple case of two harmonic functions

slopeb(t) of a line in a RP we can infer the relation  f1(¢) = sin(T1(¢)) and f2(¢) = sin(T»(¢)) with differ-

¥ () between two segments 8tr) (9 (r) = [ b(1) dr). ent time transformation functiori, = ¢ - t + « and

Note that the slopé(z) depends only on the transfor- 7> = ¢ -t + 8. Using the inverserz‘1 = =£ and

mation of the time-scale and is independent from the Eg. (3), we get the local slope of lines in the RP

considered trajectory(z). (or CRP)b = 9, Tz_l(Tz(t)) = ¢/v, which equals the
This feature is, e.g., used in the application of CRPs ratio between the frequencies of the considered har-

as a tool for the adjustment of time-scales of two data monic functions.

b(1) = 8, T, (To(1)) = 3,0 (1) ©)

series[6,11] and will be discussed later. Next, we In the second example we will transform the time-
present the deforming of line structures in RPs due to scale of the second segment with the square function
different transformations of the time-scale. T»(r) = 5¢2. Using Eq.(3) we getb () = /0.2/7 and
Table 1

Examplary time transformation functiof(z) and7>(z), the inverséfz_l(t/), their corresponding slopésr) and time-transfer function$(r)
for lines in RPs shown ifrig. 1

Fig. Ty(t) Ty (1) T, b(t) 9 (1)

A t 2t 0.5t 0.5 0.5¢

B ' 52 Jozr 02 Joz

C t 1-V1-12 Vi—@1—-1)? ﬁ 1-(1-1)2
E sin(rt) 3 NG 7 codnt)

¥sin(zn)
3si2(rr)
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Fig. 1. Details of recurrence plots for trajectorig¢&r) whose sub-sectiong; (r) and f>(z) undergo different transformations in time-scale

(Table 1. Black areas correspond to times whekdr) ~ fo(¢). The dash-dotted lines represent the time-transfer functigns Note that

these are not the entire RPs, only a small detail of them (an entire RP cannot contain only these structures—there are more features, like the
line of identity (diagonal line from lower left to upper right) and a more or less symmetric plot around this line). RPs were constructed by using
the Euclidean normg = 0.1 and without embedding (for embedding dimensiens 1, line segments running from upper left to lower right
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will disappear, but line segments from lower left to upper right will remain, even if they are bov@auh}irfued on next page)
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Fig. 1. Continued)

9 (¢t) = +/0.2¢, which corresponds with a bowed linein  creaseTji, = ¢ and another (hyperbolic) section which
the RP Fig. 1B1, B2). Since sifir7) has some periods  follows Thyp = —+/r2 — 2. After these both sections
in the considered interval, we get some more lines in we append the same but mirrored sectidrig.(2A).
the RP Fig. 1B2). These lines underly the same rela- Since the inverse of the hyperbolic sectiorﬂ@é =
tionship, but we have to take higher periodicities into +Vr2 =12,

the line in the corresponding RP fol-
account (1) = +/0.2knt (k € Z). g J

_ o lows ¥ (t) = Ty > (Tiin (1)) = £+/72 — 12, which corre-
The third example refers to a hyperbolic time trans- sponds with aycpircle of radius(Fig. 2B).

. - 5 A : .
formation 75(1) = 1 — /1 — 1. The resulting line in An examplary data series from earth science reveals

the RP has the slope(r) = (1 — 1)/v/1—(1—1)? that such structures are not only restricted to artificial
and follows? (1) = /1 — (1 — )2, which corresponds  models. Let us consider the January solar insolation
with a segment of a circleF{g. 1C1, C2). We can for the last 100 kyr on the latitude 48 (Fig. 3A). The

use this information in order to create a full circle corresponding RP shows a circlgig. 3B), similar as

in a RP. Let us consider a one-dimensional system, in Fig. 2B. From this geometric structure we can infer
where the trajectory is simply the functiofi(T) = that the insolation data contains a more-or-less sym-
T(¢), and with a section of a monotonic, linear in- metric sequence and that subsequent sequences are
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Fig. 3. A corresponding structure found in experimental data: (A)
Fig. 2. lllustrative example of the relationship between the slope the solar insolation on the latitude 2K for the last 100 kyr (data
of lines in a RP and the local derivatives of the involved trajec- from[17]) and its corresponding recurrence plot (B). The recurrence
tory segments. Since the local derivative of the transformation of the plot parameters wera = 1 ande = 2 (black) and: = 3.5 (gray).
time-scales of the linear and the hyperbolic sections (A) corresponds
to the derivative of a circle line, a circle occurs in the RP (B). The
gray coloured recurrence plot is derived from the one-dimensional
phase space (no embedding used). For higher embedding dimen-
sions segments of the line structures which are more or less per-

pendicular to the line of identity disappear (black recurrence plot, Whereas in the examples above only the second
embedding dimensiom = 3 and delayr = 0.2N, whereN is the section of the trajectory undergoes a time transfor-
data Iength)._NevertheIess, the remaining line segments have the mation, in the last two exampleEig. 1D and E) the
slope of the circle. . . .

time-scale of the first section is also transformed. Nev-

ertheless, the time-transfer function can be again de-
equal after a suitable time transformation which fol- termined with Eq(2) as well.
lows the reIationTzfl(Tl) = /r2 — 2. For instance, From these examples we can conclude that the line
the subsequent sequences could be a linear increasin a recurrence plot follows E@2) and depends only
ing and a hyperbolic decreasing followed by a reverse on the transformations of the time-scale.
of this sequence, a hyperbolic increasing and a linear  Although we considered only examples in a one-
decreasing part. Such bowed line structures are ex-dimensional phase space, these findings hold also for
pected in RPs applied to data from biology, ecology higher-dimensional phase space and for discrete sys-
and economics as well (e.§l2—15). These deforma-  tems (see the example in the section about cross recur-
tions can obtain hints about the change of frequenciesrence plots). The line structures in recurrence plots,
during the evolution of a process and may be of major which are more or less perpendicular to the LOI,
interest especially in the analysis of sound data (an ex- will disappear for higher-dimensional phase space
ample of a RP of speech data containing pronounced (Fig. 2B). Nevertheless, the remaining lines reveal the
bowed lines can be found [46]). relation between the corresponding time-scales.
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Fig. 5. Cross recurrence plot between rock-magnetic data shoWwigil. The dash-dotted line is the resolved LOS which can be used for
re-adjustment of the time-scales of both data sets.

ments of thesame phase-space trajectory holds also
for the structures in CRPs,

6. Crossrecurrence plots

The relationship between the local slope of line R .
structures in RPs and the corresponding different seg- CR(11, 72) = O(e — |¥(r1) — ¥ @2))- (4)
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Fig. 6. Geological profiles after re-adjustment using the LOS which was found with the CRP sh&ign 1 Corresponding sections are
marked with different gray values.

which are based otwo different phase-space trajecto-
riesx(¢1) andy(r2). This relationship is more impor-
tant for theline of identity (LOI) which then becomes

found relation(2). The function? (¢) is the transfer or

rescaling function which allows to readjust the time-
scale of the second trajectory to that of the first one
aline of synchronization (LOS) in a CRH6,11]. in a non-parametrical way. This method is useful for

We start with two identical trajectories, i.e., the all tasks where two time-series have to be adjusted to
CRP is the same as the RP of one trajectory and con-the same scale, as in dendrochronology or sedimentol-
tains an LOI. If we now slightly modify the ampli- ogy[6].
tudes of the second trajectory, the LOI will become Next, we apply this technique in order to re-adjust
somewhat disrupted. This offers a new approach to usetwo geological profiles (sediment cores) from the Ital-
CRPs as a tool to assess the similarity of two systems ian lakeLago di Mezzano [18]. The profiles cover ap-
[5]. However, if we do not modify the amplitudes but proximately the same geological processes but have
stretch or compress the second trajectory slightly, the different time-scales due to variations in the sedimen-
LOI will remain continuous but not as a straight line tation rates. The first profile (LMZC) has a length of
with an angle ofr/4. The line of identity (LOI) now about 5 m and the second one (LMZG) of about 3.5 m
becomes théine of synchronization (LOS) and may (Fig. 4). From both profiles a huge number of geophys-
eventually not have the angte/4. This line can be ical and chemical parameters were measured. Here we
rather bowed. Finally, a time shift between the trajec- focus on the rock-magnetic measurements of the nor-
tories causes a dislocation of the LOS, hence, the LOS malized remanent magnetization intensity (NRM) and
may lie rather far from the main diagonal of the CRP. the susceptibility.

Now we deal with a situation which is typical in We use the time-series NRM and as compo-
earth sciences and assume that two trajectories rep-nents for the phase-space vector, resulting in a two-
resent the same process but contain some transfor-dimensional system. However, we apply an additional
mations in their time-scales. The LOS in the CRP embedding using the time-delay methid®] (we do
between the two trajectories can be described with the not ask about the physical meaning here). A rather
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small embedding decreases the amount of line struc-as by the Microgravity Application Programme AO-
tures representing the progress with negative {Bhe 99-030 of the European Space Agency (ESA). We
Using embedding parameters dimension= 3 and gratefully acknowledge N. Nowaczyk and U. Frank
delayt =5 (empirically found for these time-series), (GeoForschungsZentrum Potsdam) for the helpful dis-
the final dimension of the reconstructed system is six. cussions and for providing the geophysical data. The
The corresponding CRP reveals a partly disrupted, recurrence plots and cross recurrence plots were cre-
swollen and bowed LOSHg. 5). This LOS can be au-  ated by using the CRP toolbox for Matldittp://tocsy.
tomatically resolved, e.g., by using the LOS-tracking agnld.uni-potsdam.ge

algorithm as described {i1]. The application of this

LOS as the time-transfer function to the profile LMZG

re-adjusts its time-series to the same time-scale as

LMZC (Fig. 6). This method offers a helpful tool for References
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