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Abstract

We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems
interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is
successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes
the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general
principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a
special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential
operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular
oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chadigsRr oscillators, (iv) two coupled foodweb
models, (v) coupled chaoticdRsler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles
of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.
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1. Introduction

Synchronization is an important phenomenon observed in nature and gdiprf®@chronization in a dynamical
system is the phenomenon of the onsebafancebetween the phases of the subsystems’ state variables’ oscil-
lations, which is caused by an onset of the energy balance due to interaction. This phenomenon is called phas
synchronization (PS). Especially, PS is typical for many systems in biology and neurod@i@ice physicq4].

The balance of the phases of oscillations can be accompanied with a balance of the corresponding amplitudes. In thi
case generalized synchronization (GS) can be observed in dynamical systems and in the case of the full coincidenc
of synchronized variables the complete (full) synchronization sets in (for a review sef@]e.Bepending on the

type of coupling two main classical cases of synchronization can be distinguished: external and mutual. In the former
case a freely evolving master system, acting as an external force, drives the slave system. Often, the increasing c
the external force leads to locking-in, and synchronization occurs. Note that such a drive-response (or master-slave
configuration is frequently used in chaotic communicaft&jnMutual synchronization can be observed in the case

of bidirectional coupling and is commonly accompanied by the hysteresis phenoifii@non

We propose an automatic control method of phase locking of regular and chaotic nonidentical oscillations, when
all subsystems interact via a feedback. This method is based on the well known principle of feedback control which
takes place in nature and is successfully used in engineering. Considering the models of coupled systems in biology
neuroscience or ecology, one can see that in many of them the coupling between interacting eleroelite&;
and it usually has the form of quadratic functions of the subsystem variables. Such a coupling serves as the basi
of an internal self-organization mechanism leading to a balanced motion in these systems. Coupled@gurons
phase transitions in human hand moveni8htecological systemi.0], or spinal generators of locomoti¢hl],
are only some well known examples of balanced cooperative oscillatory motion, caused by a nonlinear coupling.
In engineering, nonlinear coupling, is used, for example, in coupled |fs8rer phase locked loops (PLIJ3].
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Fig. 1. Three main schemes of inter-element coupling between two oscillators having natural frequeratidsy,: (a) unidirectional, (b)
bidirectional, and (c) coupling via a feedback loop with controller composed of quadrati¢4pamd linear operatdi3).
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Different methods for controlling the behavior of dynamical systems have been used for chaog[tdhtfol
adaptation of these methods for the stabilization of a chaotic trajectory of one system to a chaotic trajectory of another
identicalsystem, i.e. for @ontrol of complete synchronizatipwas presented if15]. In [16] it was shown that the
main problems ofompletesynchronization being regarded as a control problem can be solved on the basis of control
theory methods. On the other hand, the problephaisesynchronization has not been formulated and hence consid-
ered before as a control theory problem. In contrast to the aforementioned methods, our novel approach is directed
at controlling the phases via characteristic time scales (CTS) of two (or many) different interacting oscillators.

In contrast to unidirectionaHig. 19 and bidirectionalfig. 1b coupling, the approach presented here supposes
the existence of a special controller, which allows to change the parameters of the controlled syseft. (

For this purpose we extract first the mutual correlation between the CTS, then filter the obtained signal, and finally
change the systems’ parameters which govern the CTS.

The paper is structured as follows: first we discuss general principles of automatic phase synchronization (PS) for
arbitrary coupled systems with a controller whose input is given by a special quadratic form of the coordinates of the
individual systems and its output is a result of the application of a linear differential operator. Then, we demonstrate
the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii)
coupled regular and chaotic oscillators, (iii) two coupled chaotisdRer oscillators, (iv) two coupled foodweb
models, (v) coupled chaoticd®sler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators,
(vii) ensembles of locally coupled chaotic oscillators, (viii) ensembles of globally coupled chaotic oscillators, and
(ix) other forms of this control mechanism.

2. General principles of automatic synchronization

To begin with, we describe automatic phase locking for the case of two arbitrary regular or chaotic oscillators
given by the system:

x12 = F12(x1,2, w1,2), 1)

wherex1 2 andFy 2 aren-dimensional vectorsys 2 are parameters defining the time dependence rate (in some cases,
frequencies) of oscillatoos, »(r) [17]. Our purpose is to synchronize such two oscillators by using a feedback control

of the time scales of coupled oscillators in such a way that the new characteristic timesgatescome identical.

Here Q1 » are the mean observed frequencies of the controlled oscillators. In addition to the comparison of the
observed frequencies of the controlled systems, we are also interested in the evolution of their phase difference,
which is typically used in the study of PS. In order to synchronize the coupled subsystems, we apply a feedback
control in the following form:

x12 = F12(x12, w12(1 + a1,2u)),

)

Lu = Q(x1, x2).

HereL is a linear operator
k k—1
L + d +-F d + (3)
= —_— 1 e —_ a
Vkgk T Ve1ga—1 Yig, Ta0

acting as a low-pass filter, gl are nonnegative constant@(x1, x2) is a quadratic form

Q = x1 Hxa, 4)

whereH is an x n matrix, which usually is taken as a diagonal malisix, are the feedback controlling coefficients,
acting on the subsystems 1 and 2, respectively:gryds the control variable, which is added(b) in such a way
that it is able to change the characteristic time scales of the interacting subsystems.
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The scheme modeled by Eq®)—(4) works in the following simple manner: first, the two signailsand x,
taken from both interacting systems are fed totdtiplier, Q(x1, x2), which is acting as a correlator between
the variables of the interacting systems (first parof the “Controller” presented ifrig. 19. The spectrum of
oscillationsQ(z) consists of a “low” part defined by the differen@e — Q21 and a “high” part defined by the sum
Q2 + Q1. Then, the signaD(¢) is conducted through the low-pass filter (second pafithe “Controller” presented
in Fig. 19, which damps the “high” frequency part due to a specially designed transfer function. Hence, the control
variableu(t) becomes a slow-varying function in time, whose spectral band goes to zero. After the filiérng,
added to both interacting systerf®y in such a way that it may change their characteristic time scales. The main
goal is that this procedure provides a balance between the new time scal@s,+e24. Note, that due to the
boundedness of the for@(x7, x5) at the attractor and due to the stability of the operatdhe control variable
is bounded too, i.gju(r)|| < K, whereK = const.

This principle of obtaining synchronization is effectively used in applications of PLL in a large number of radio-
and telecommunication devices, radio-locafib8], coupled laserfl2], etc. It also takes place in a huge variety of
examples in nature, where the interaction of sasllatoryobjects leads to thelralancedehavior. This balanced
behavior is achieved byreonlinear interactiorof the element§l0,18-23] Usually this coupling has the form of a
guadratic function of the interacting elemefitd]. This type of coupling is able to minimize the oscillator’'s phase
difference and therefore leads to synchronization. It is important to emphasize that this principle can be applied not
only to coupled self-oscillatory systems. This will be covered in the last section.

3. Two coupled Poincagé systems

As the simplest case, we consider feedback control of PS in two coupled Fosystems

1= —o1(1+ awu)ys — A(6F + y§ — pPaa,

y1 = w1(1 + aqu)x1 — )»(XE + y% — PAy1.

X2 = —w2(l+ aou)ys — A(x% + y% — pA)x2. ®)
v2 = w2(1 + agu)x — k(x% + y% - PZ))’Z

Tu = —yu + fxixz.

Here, (;, y;) describe the two Poincarsystems and is the control variablew; 2 are the frequencieg is the
amplitude of oscillations and > 0 determines the relaxation to the limit cycfgandy are the parameters of
the controller. The constantg > determine the coupling scheme. By a simple modificatior;at is possible
to realize both bi-directionabtf # 0, i € {1, 2}) or uni-directional couplingd; = 0, «; # 0). Notice, that in this
scheme the coupling strength may as well take negative numbers.(6) we have taken very simple forms for
the quadratic fornQ(x1, x2) = Bx1x2 and the linear operatdr = td/dr + y. However, we note that also different,
more sophisticated, functions may be used with similar results. For example, we have checked that synchronizatior
indeed occurs with different quadratic forms suchds1, x2) = (x1 — x2)2 or Q(x1, y2) = (x1 — y2)%.

Using polar coordinates = p; cos¢;, y; = p; Sing;, we rewrite systenf5) in the form:

p12 = rp12(p? — P2 ),

p1.2 = w12(1+ a1.2u), (6)

Tu = —yu + fp1p2 COSE1) COSkH2).
The product of cosine functions {6) can be decomposed into a slow and a rapidly oscillating term. In the limit
w1 + w2 > y, the low pass filtek is damping out the ‘high’ frequencies, which further simplifies the dynamics. Let

w2 = w1 + A. After relaxation of the radial equatiop; = 0, the amplitude of each oscillator is fixedgpo= p.
Thus, after averaging we arrive at the following simplified equations for the control vatiehiel the phase
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differenced = ¢ — ¢1:
0=A+ (2w — a1w1)u, @)
= —yu-+ %(ﬁ p?) cosh.

Rewritten as a second order differential equation this leads to
w0 + y0 — yA — 5(B)p*(aowz — a101) c0SH = 0. ®

This pendulum-like equation for the evolution of the phase difference describes the synchronization regime of the
two oscillators interacting via feedback control. The existence of this regime is defined by a stable steady state in
(7) with the coordinates

2y A

cosh* = ——u", = ,
Bp a1w1 — 2w

which does exist in the range

A

2
Bp
PE— > —_—
2w — 1w

2y ’ (10)

Synchronization is achieved when the effective coupling strength,eagre Sp?/2y, is larger than a function of
the frequencies, i.@eff > |A/(a2w2 — a1w1)|. Further, the conditio(iL0) depends on the amplitude of oscillation,
p. Larger values op lead to an onset of phase synchronization at smaller values of the coupling stserigils

is in contrast to the usual case of linear diffusive coupling, i.e. instead of using our control s(3)etme two
oscillators &1, y1), (x2, y2) are coupled via introduction of the terfifx2 1 — x1,2) into the equation fok1 2. With
such diffusive coupling the synchronization threshold does not depend on the value of the ampplitude

In Fig. 2the locking (or synchronization) regions of systéf)y as described by conditid0), are plotted in the
parameter plane of effective coupling and natural frequency difference. By variations of different coupling schemes,
i.e. uni- and bi-directional coupling, basically four different scenarios for the form of the locking regions can be
found.

Obviously in the feedback coupling scheme, depending on the valugstbg locking regions are not defined
by straight lines. Furthermore there are specific values of natural frequesgies=£ «1w1), which arise from the
singularities 0f10)and for which synchronization can never be achieved. These special frequency values divide the
parameter plane into different locking regimes. In some regions sfnchronization is inhibited. In compensation,
in other regimes of parameter space the synchronization is strongly promoted and the border of synchronization is
moved towards smaller values of effective coupling strength.

Further indicated iffrig. 2is also the phase difference of the two oscillators at the onset of synchronization. As a
consequence of the cosine term in EB), the phase difference may be eithéd 180 . Therefore, for the minimal
coupling strength when synchronization sets in, the time lag between two nearby maxifapistither 0 orr/2,
where we have used the mean observed frequency

Q = (3(d1+ ). (11)

Consequently, at the onset of synchronization the two limit cycle oscillators are either fully synchronized or fully
anti-synchronized.

Before the synchronization sets in, the observed frequency difference in the small coupling regime can be
calculated in the case« 1 as

2 2 4
Q= 2—71 = \/Az - ﬂ—pz(aza)z — a1w1)2. (12)
o do/6 4y
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Fig. 2. Synchronization regions (gray) of the syst@yas described by10) for different coupling scenarios and fixad =1,y =1, p = 1.
@a1=—-a2=1,(b)ar =a2 =1, (c)a1 = 0,a2 = 1, (d)as = 1, 2 = 0. Further indicated is the phase difference of both oscillators at the

synchronization threshold, which is eith#&r= 0° (solid line),6* = 180" (dashed line), or undetermined, if the transition leads to oscillation
death (dotted line).

We want to compare this analytical approximation with numerical simulations qblEq-he phase of a limit cycle
can be computed in the form

¢12= arctan<y> ;

(13)
X1,2
and the respective mean frequency as
T) —
Q1o = lim M (14)
’ T—o00 T

The numerically calculated values &f2 can also be used to visualize the locking regions. A numerically computed
synchronization surface is shown kig. 3. Compare this to the analytically deriv&ily. 2c In order to ensure
synchronization, i.e. to avoid the multistability regime, we use the initial state in the middle of the two fixed points
6 = 7 on thed = 0 nullcline.

For parameter values @fin the transition regime near the bifurcation point, we find multistability. Depending
on the initial states of the two Poin@systems, they may synchronize or not. For example, starting above the
nullclines in the phase space, the system is only able to reach a periodic, nonsynchronized state. Recall that suc

bistable behaviour is absent in the Kuramoto model. However, similar bistability is known to arise in two coupled
oscillators with varying nonisochroniciti¢25].

3.1. Impossibility of synchronization with symmetrical coupling= >

We now study the special case of symmetrical coupling where 2. Inspection of-ig. 2reveals the special
role which is played by this coupling scheme because seemingly the synchronization threshold in this case is
independent of the natural frequency difference between the oscillators. This result can also be foundtoin Eq.
However, the picture is somewhat misleading because as we now show in this case it is impossible to synchronize
the two oscillators at all. In order to calculate the mean observed frequency, def{t&) of two Poincagé systems
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Fig. 3. Locking regions of5) for uni-directional couplinges = 0, @2 = 1 in dependence on the coupling paramgtand the natural frequency
differenceA.y =1, p=1 w1 = 1.

(6) in the locked state, we require
P1+ 2 = w1 + w2 + 1 (@101 + c2w2). (15)

After inserting the steady state value of the control variableEq. (9), this results in

g + wp n 1wy + oWy é (16)
2 1wl — awo 2

and replaces the usual formula= @ for two simply symmetrically coupled phase oscillators.
In the case of symmetrical coupling this has the implication that the mean observed frequency disappears

a1 =02 — Q= 3(¢1+¢2) = 0. 17)

Since in the synchronized state furthef2 = 0, we follow that2; = Q2 = 0 and the oscillators effectively stop

to rotate. This result is also evident by going back to the feedback coupling schemé&) (Whena1 = a2, then

both oscillators always obtain identical feedback. The only way in which then the observed frequencies can become
identical is when they are controlled to zero, i.e. to oscillation death. This is also valiglifitroduced only in the

second equation db), whereas for other oscillators in this case this does not hold, see Séction

3.2. Anti-symmetrical coupling;; = —a2

A special interest attains the scheme of anti-symmetrical coupling, where the feedback to the two oscillators
has the same strength but opposite sign= —a2. Then, obviously the mean coupling strength disappeass,
(a1 + @2)/2 = 0, which leads with: ‘= 0 to the simplified phase E(7)

B wp?

0=A+a cosf). (18)
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Similar, the synchronization regime in the parameter space simplifies to

Bwp?
o

> |Al. (29)

This expression for synchronization threshold resembles very much the usual synchronization of two coupled
oscillators (see alsbig. 2g9. However, note that even in this case there remain important differences. For example,
synchronization sets in with a phase difference of eitlesrQ.80°.

We again calculate the mean frequency difference in the synchronized state

2
: : w1 — W2
¢1+¢2=w1+w2+¥, (20)
w1 + w2
which leads to
2 2
=t (1)
w1+ wy

Therefore, in the case of anti-symmetrical coupling the observed mean frequency in general is not the arithmetic
mean of the natural frequencies.

It is also straightforward to calculate the forbidden frequency ratio, i.e. the ratio for which synchronization
cannot be achieved in the scheme with antisymmetrical coupling. We are led to the cowd#i®ror wy = —ws.
Therefore, synchronization cannot be achieved when both oscillators rotate in opposite direction with exactly the
same frequency. This is similar to the Kuramoto phase mddes], however, here in the limi& — 0 the mean
observed frequency goes to infinfy — oo and not2 — 0.

4. Coupled van der Pol and Rossler oscillators

In the following we explore the feedback scheme for more complicated oscillator types. First, two structurally
different oscillators are coupled: a regular — van der Pol — oscillator and a chaofissleR— oscillatof28]. The
equations describing the control scheme (shraadQ as in previous section) for PS of such oscillators are:

x1 = —o1(1 + cau)y1 — z1,

y1 = w1(1+ aau)xy + ay1,

721 =b —cz1 + x121,

X2 = y2,

Y2 = —(w2(1 + a2u))?x2 + e(p? — x3)y2,
U= —yu + pxixz,

(22)

wherex1, y1, z1 are the variables of thedsler oscillatoryy, y» are the variables of the van der Pol oscillatois

again the control variable added in both subsystems, g andy are control parameters. We get= y = 1. For

the van der Pol oscillator we choose the following set of parameters: 1, = 0.01, andp = 4. The parameters

of the Rbssler oscillator will be chosen ase [0.15 : 02], 5 = 0.1,¢ = 8.5, andw1 = 1[29]. For these values the
topology of the chaotic Bssler attractor is rather simple, i.e. phase-coherent, and one can introduce the phase in
the form:

P11 = arctan<ﬂ> . (23)

x1
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For chosern the phase trajectory of the van der Pol oscillator regularly monotonously oscillates around the origin,
S0 we can use a similar definition of the phase

¢ = — arctan(2> . (24)

X2

In order to test for the existence of phase synchronization betwéssi€t and van der Pol oscillators, we use as in
the previous chapters two criteria: PS sets in

(i) if the mean frequencies of both coupled subsystems become equal (frequency locking):
Qo = Q1, (25)

where the frequencies are defined as:

o $12(T) — ¢1.2(0)
12 = fim PEELEES @)
(ii) and if the phase difference is bounded:
2 — ¢1| < const (27)

We consider two types of unidirectional (drive-response) feedback coupling:

(a) we control the characteristic time of théd$8ler oscillatord, = 0 in (22)) (Fig. 4),
(b) or we control the characteristic time of the van der Pol oscillaip=f 0 in (22)) (Fig. 5. In both cases there
are critical values of the feedback control parametq,@corresponding to the onset of synchronization.

First, we study the case where the van der Pol oscillator is the drive system andg$lerRoscillator is the
controlled response system. Weget 0.15, so that the chaotic attractor of théd8ler oscillator is phase-coherent.
To illustrate the transition to PS, we plot the mean frequency difference and the three largest Lyapunov exponents
versus the control parametei (Fig. 49, as well as a bifurcation diagrarkiy. 4. We find that PS occurs at
a7 = 0.00123. There the behavior of thé@8sler oscillator remains chaotic but with the mean observed frequency
Q1 equal to the frequency; of the van der Pol oscillator. A similar situation of chaotic frequency locking was
observed if30,31] where effects of PS were observed in a chaotic system forced by an external periodic signal.
In contrast to this, our interacting subsystems are autonomous and therefore without coupling two zero Lyapunov
exponents exist. In this case the transition to phase synchronization can be analyzed by means of the Lyapunov
exponents. As it can be seen fréfig. 4athe frequency locking occurs approximately (shortly after) at that value of
a1 for which one of the zero Lyapunov exponents becomes negative. Our numerical experiments (for other values
of a) show that usually the behavior of the controlledisRler oscillator remains chaotic. But there are also intervals
of @1 where the behavior of thed8sler oscillator becomes periodigid. 4). Thus, very small coupling allows to
control chaotic systems in such a way that (i) we can govern the mean frequency of chaotic oscillations and (ii) we
can get periodic oscillations too.

In the second case of unidirectional feedback coupling, tiesRr oscillator is the drive system and the van
der Pol oscillator is the controlled response system. Here we analyze not only the phase-coherent chaotic attractor
(a = 0.16) but also the funnel attracto# & 0.24). In the latter case the topology of the attractor is much more
complex and the phase cannot be defined 823h Thus we introduce another phase definitid2]

¢1= arctan<:y—1) , (28)

X1
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Fig. 4. Transition to phase synchronization for unidirectionatly £ 0 in (22)) feedback coupled &sler and van der Pol oscillators. The van
der Pol oscillator is the drive system and th@sRler oscillator is the controlled response system. The mean observed frequencyasdles R
oscillator$2; ata; = 0.00123 becomes equal to the frequency of the van der Pol osciiatda) The three largest Lyapunov exponents, one
of which is always zero, and the difference of the mean observed frequéhgcieso; (circles) vs. the control parameter. (b) Maxima ofxy
VS.aq.

and use the same two critelfa5) and (27)as in the previous case. We plothig. 5athe difference of the mean
observed frequencie®; — Q25 vs. the feedback control parametgrfor different values o#. In all cases PS occurs
atsome critical valueg3, but with increasing o& a larger valuec is needed to achieve the locking. The onset of PS
is well manifested in the bifurcation diagranfsd. 5b—d. One can see that with increasingwfthe interval of pos-
sible maximum values of; becomes larger at first. But at the transition point to synchronization a strong shrinking
of the intervall is observed. That means that the variabhieandy, become localized in a relatively small area.

We have also performed numerical simulations where the van der Pol an@#iseeRoscillator are mutually
coupled by feedbaclef » # 0). The effect of both regular and chaotic PS has been observed there as well.

5. Two coupled Rbssler oscillators

In this section we will demonstrate feedback control of chaotic phase synchronization for two cotptgerR
oscillators:
x12 = —w12(1+a12u)y12 — 21,2,
V1.2 = w12(1+ a12u)x12 + ayi 2,
712 =b —cz12 + x1221.2,
u = —yu + pxix,

(29)

wherexy 2, y1.2, z1,2 are the variables of the first and seconisRer oscillator, respectively. We sgt=y =1,
a=0.15b=0.1,c =85, w1 = 0.98, andw, = 1.02. Hence, for both oscillators the phase definiti(2®) can
be used. The existence of PS betwe@s$er oscillators is tested again by the crit¢?ia) and (27)
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Fig. 5. Transition to phase synchronization for unidirectionally £ 0 in (22)) feedback coupled &ssler and van der Pol oscillators. The

Rossler oscillator is the drive system and the van der Pol oscillator is the controlled response system. The observed frequency of the van der
Pol oscillator$2; after somex; becomes equal to the mean frequency of tidedker oscillatog?;. (a) The difference of the mean observed
frequencies?; — Q (circles) vs. control parametep. (b—d) Maximal values of; vs.a>. The parameters are: (b)= 0.24, (c)a = 0.22 (for

a = 0.22 attractor in Rssler oscillator is periodic), and (d)= 0.16.

We compute the spectrum of the Lyapunov exponehitg. 69, the mean frequency differencEig. 69, and
the evolution of the phase differendéd. 6b). PS sets in at the essentially small couplirjg= —o ~ 0.000415.
Note that shortly before PS one of the zero Lyapunov exponents becomes negative. With increasgintpef
frequency difference decreases smoothly (without jump), i.e. a soft transition to PS takes place. This is manifested
in the evolution of the phase difference, namely for the control parameters close to the criticakygbase
locking at large time intervals is observedd. 6b). In order to estimate the critical coupling strength corresponding
to the appearance of synchronization, we make a transformation to cylindrical coordinates:p; 2 CoS¢1 2
andy1 2 = p1,2Sin¢1.2. Then for the feedback coupled oscillat¢e®), the averaged equation for the difference
0 = Y2 — Y1 Of slow phaseg/1 2 = ¢1.2 — wot reads as:

6+ y0 + afp1p2 Sin = yA, (30)

where we have set = a1w1 = —awo. If we neglect the fluctuations of the amplitude, E2Q) has the stationary
solution:

— . A
0= arcsm( Y ) . (32)
aBp102
This state exists and is stable if:
A
—| < a, (32)
0102
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Fig. 6. Synchronization of two coupledBsler oscillator§29). The parameters are:= 0.15,» = 0.1, ¢ = 8.5, w1 = 0.98, wp = 1.02, o1 =
—ap, and B = y = 1. (a) The four largest Lyapunov exponents and the difference of the mean observed freq@gnei®s (circles) vs.
the control parameter;. (b) Difference of the phases — ¢1 for nonsynchronousxy = 0.0004; 0000405; 000041) and synchronoua &
0.000415) regimes.

with 8 = y = 1. Let us compare the effectiveness of the proposed coupling scheme with respect to the diffusive
coupling usually considered. In the latter case the equations of motions for two diffusively codgkddiscillators
are (sed33]):

X12 = —w12y12 — 21,2 + a(x2,1 — X12),

Y12 = w12x12 + ayi 2, (33)

712 =b —cz12 + x1221.2.

The equation for the phase difference can be recast in the form:

2, 2
- ap;t+ e .
6— - "25ing = A. (34)
2 p1p2
1.05
1.04 F° .
——e a=0.15 |
_ 1o — a=0.16
S 1.02 —— a=0.17 g
al s g=|
S 101 a=0.18 |
1.00
0.99 ‘ ‘
0.00 0.02 0.04 0.06

Fig. 7. Synchronization of two coupledBsler oscillator$38). The ratio of the mean observed frequendieg 2; vs. the control parameter
ay. The parameters of the individual oscillators are the same Eig)ir6.
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The stable stationary state
— . 2A
0=— arcsm% (35)
01(101 + :02)
exists in the range
2A
a > % (36)
pr1+ 05

If we take not strongly different oscillators (i.e4 ~ p2) this range is reduced to:
a > |Al. (37)

Therefore, by equivalent parameters of the interacting oscillators, the synchronization range for the feedback cou-
pling (Eq.(29)) is p?a/y = p1p2a/y times larger than for the diffusive coupling (E&3)). This estimation is in
very good agreement with our numerical results.
We have also analyzed the synchronization transitions for the simplest case of a linear apémters> 1 the
filtered control variablel can be expressed by siia(— ¢1), where the phases » are introduced by23). Then Eqg.
(29) can be rewritten as:

x12 = —w12[1 4+ a1,2SiN[P2,1 — ¢1.2)]y1.2 — 21,2,
v1.2 = w12[1 + a12SiN(p2,1 — ¢1.2)]x12 + ay1 2, (38)
212 =b —cz12+ X1,221.2.

The dependency of the mean frequency r&tig 21 on the parameter; = —a> for differenta shows the onset of
PS again for a very small coupling strengkig(. 7).

In Fig. 8 we have analyzed the transition to synchronization in the two couplsdI& systems for different
coupling schemes. Fastest synchronization is achieved for antisymmetiieal-{«2) coupling. For unidirectional
coupling locking can also be obtained, but not for symmetrical coupting= «2).

0.045

o——0 0,=—0,,=0>0

o, ==0t,=0>0 -
— o,=0>0 0,=0
s 0,=0>0 0,=0
v o,=0,=0>0

0.035

0.025

Q,-Q,

0.015

0.005

_0.005 L 1 1 L
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010

o

Fig. 8. Synchronization of two coupledBsler oscillator$38) for different coupling schemes. Plotted is the frequency of the mean observed
frequencief2; — Q3 vs. the control parameter The coupling parametess ande; are taken as explained in the figure. The parameters of the
individual oscillators are the same adHiy. 6.
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6. Coupled foodweb models

In this section we apply the automatic phase synchronization to foodweb models from ecology. First, we study
the synchronization of two coupled limit-cycle Lotka—\Voltef8d] systems

. 1—
X12 = axip ( ;1,2) — kfu(x1.2, y1,2),

y1,2 = —b12(1 + ax2u) y12 + kfr(x1,2, ¥1,2), (39)

U= —yu+ Byryz.

Here, x1 2 denotes the prey ang; » the predator species, and b1 2 are the birth and death rates, is the
prey carrying capacityk the predation rate and the half saturation constant of the Holling type Il func-
tional responseg’y(x, y) = xy/(1 + kx). Throughout this section we use the parameter vaiuesl, k = 3, K =
3,k =1. The two oscillators are nonidentical and vary in the value of predator death irptes.0 and
by = 0.95.

The control variables is introduced into the model as in the previous models. Ecologically, quadratic @rms
of Eq. (4) can arise very naturally as Lotka—Volterra interactions. Herepresents a species that is affected and
grows only in the presence of the predagpof both sites, 1 and 2, and has a mortajitwhich represents the filter
L. However, the predators are not directly influencedhiye. both species are in commensalism. Instead, the death
ratesb; » are modified by the abundance of the speaies

Without coupling, systeni39)is well known to exhibit limit cycle oscillations with a frequency roughly deter-
mined byw; = +/ab;. Nevertheless, feedback control is able to achieve synchronizatioRitsed. Depending on
the coupling scheme synchronization may or may not be achieved. Note thigt dthe control parameter is
varied in the whole range from negative to positive values.

Further, we want to stress that in systé38) synchronization can be achieved even in the symmetrical scheme
where the values af are identical, i.ex; = ap = «. This is astonishing because then the parameters in the model
(and consequently also the natural frequencies) are modified by exactly the same aifiotniu). This is in
contrast to the simple theory with two Poinearscillators Eq(5) where identicak; only lead to oscillation death
(see SectiorB.1). Of course, in the foodweb caseis only introduced into the second equation(89) and not
also tox as in(5). However, the principal behaviour of the Poireaystem remains unchanged even i$ only
introduced into the second equation, i.e. symmetrical coupling only results in oscillation death. Similar behaviour,
i.e. synchronization in symmetrical coupling, was also observed in tssIB system, it is affecting only the
second equation ¢29).

0.060 T T

0.040 -

AQ

0.020

Fig. 9. Transition to synchronization for two limit cycle Lotka—Volterra models coupled via feedback loop. (Solid lines) Bidirectional coupling
with either symmetricd1 = a2 = «) or antisymmetric¢s = —a2 = «) coupling scheme; (dashed lines) unidirectional coupling=£ O or
az = 0).
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Fig. 10. Transition to synchronization for two chaotic foodweb models coupled via feedback loop. (a) Bidirectional coupling with either
symmetric 1 = a2 = «) or antisymmetric¢1 = —a2 = «) coupling scheme; (b) unidirectional coupling; (= 0 ora, = 0).

Next, we study feedback control in a model for chaotic predator—prey cycles, which has been prop@8&d in

x12 = ax12 — efg(x1,2, y1,2),

y12 = —b12(1+a1u)y12 +efu(x12, y1.2) — g y1.221.2,
712 = —c(z1,2 — 20) + g y1.2 71,2,

U= —yu+ pyiyz.

(40)

This model describes a three trophic “vertical” food chain where the vegetaimieonsumed by herbivorgs
which themselves are preyed upon by the top predatiorthe absence of interspecific interactions the dynamics
is linearly expanded around the steady stat€(@o) with coefficientsa, b1 2> andc that represent the respective
nett growth and death rates of each species. Predator—prey and consumer—resource interactions are incorporate
into the equations via either the Lotka—\olterra tetynor the Holling type Il termfy,(x, y) = xy/(1 + «x) with
strengths set by the coefficiemtandg. Despite their minimal structure, the above equations might sketch the major
ecological transfers involved in the Canadian lynx-hare-vegetation foof8y&h).

For simulation runs reported here, parameter values are takerf®8%fi(a = 1,c =10,¢e =02, g =1,k =
0.05, zo = 0.006). The parameter mismatch between the two oscillators is givén £y0.96; b, = 0.98. In this
parameter range the model shows phase coherent chaotic dynamics, where the trajectory rotates with nearly constan
frequency in the X, y)-plane but with chaotic dynamics that appear as irregular spikes in the top predbhis
behaviour of the foodweb model is reminiscent to tlisster systeni29) and therefore one might expect similar
synchronization properties in both systems.

Simulation results are shown kig. 10 Also in the chaotic ecological model synchronization in phase can be
obtained. However, we find a rich behaviour. In the unidirectional coupling scheme for pesisiyachronization
is achieved in both cases. For negativeynchronization is achieved only in the case= 0 (seeFig. 100.

In the bidirectional coupling schemes, depictedFig. 113 synchronization is found in all cases if the absolute
value ofw is sufficiently large. In the antisymmetric coupling scheme, &.g= —a2 = «, for positive values o
the transition to synchronization is characterized by the fact that with the onset of coupling the frequency difference
is first increasing with a maximal difference for intermediate values (hexe0.00025). Whereas frequencies
become attracted and locking arises only for larger values of the coupling strength. Similar behaviour is known to
arise also in two diffusively coupled foodweb models and has been called anomalous phase synchr{@tiation

7. Coupled Rssler and Lorenz oscillators

Now we will apply the automatic phase synchronization to the couptestier and Loren27] oscillators, i.e.
chaotic oscillators with a well pronounced difference in topology (see Sectiand 5. The model is:
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Fig. 11. Synchronization of coupledBsler and Lorenz oscillatofl). The parameters are= 0.15, b = 0.1,¢c = 8.5,w = 0.98, 0 = 10, r =
28, b =8/3,01 = —a2 = a, andp = y = 1. The difference of the mean observed frequen@gs- Q2 vs. the control parameter

x1 = t(—o(l + a1u)y1 — z1),

y1 = t(@(1 + a1u)x1 + ay1),

z1 = b —cz1 + x121,

X2 = o(y2 — x2), (41)
V2 =Trx2 — y2 — X222,

22 = (1 + agu)(—bz2 + x2y2),

U= —yu+x122,

wherex1 2, y1.2, z1.2 are the variables of the@8sler and Lorenz oscillators, respectively. The parametérsc
and the phase of thedRsler oscillator are the same as in the previous ¢ase0.98,t = 8.3, 0 = 10,r = 28,
andb = 8/3 and the phase of thedRsler oscillator is measured as before. The phase of the Lorenz oscillator is

calculated a8 = arctan(fz — 27)/( x% + y% — 12))[31]. In Fig. 11we present results of the transition to chaotic
PS between Bssler and Lorenz oscillators. One can see an intervabdfiere PS occurs.

In summary, using the proposed automatic scheme we are able to achieve chaotic PS between oscillators with :
strong difference in their topology. Here, we mostly concentrated on the case of phase coherent oscillators, where
a phase is easily defined. However at the end of Sedtisgnchronization was established between a limit-cycle
van der Pol oscillator and a funnebBsler oscillator. Thus, we demonstrated that our method even works for phase
noncoherent chaotic oscillators. Thus, we conclude that the automatic control of synchronization is a very robust
method. Further investigation of our technique applied to noncoherent oscillators will be a interesting project for
future research.

8. Principles of automatic synchronization in networks of coupled oscillators

It is easy to extent the control scheme proposed for two coupled oscillators to a network of oscillators. Let us
consider an ensemble of arbitrary regular or chaotic oscillators given by the system:

wherex; and F; aren-vectors,w; are parameters defining the time dependence rate of oscillatjgnsandN is
the number of oscillators.
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Fig. 12. Local feedback coupling in a chain of oscillators.

In order to synchronize these systems, we apply a feedback control between all of them in the following form:

jcszj(xj,wj—l—ajuj),

, (43)
Lu; = Qj(x1,...,xn), j=1,...,N,
whereL is again a linear operator acting as a low-pass filter; the fun@igiy, . .., xy) is:
N
Qj(xr,....xn) = Y Olx), xx), (44)
k=1k+]

whereQy is a quadratic fornQ; = x]Tka which characterizes the coupling betweenjthend thekth oscillators.

Now we study whether the control variable(r) added to each oscillator can provide a synchronous behavior
between the interacting elemerfiy. 12presents a simple scheme which roughly describes the proposed coupling
technique.

We demonstrate the method of feedback control for PS for ensembles of (i) locally coupled regular oscillators
(Sectior), (ii) locally coupled chaotic oscillators (Secti@f), and (iii) globally coupled chaotic oscillators (Section
11).

9. Synchronization of locally coupled regular oscillators

As the simplest case, we consider feedback control of PS in an ensenidaidf mutually coupled Poincér
systems:

xj=—(oju;+wj)yj— )»(x? + y]2_ — pz)xj,

yj = (@juj+o)x; =15+ y5 = p2)y;, (45)
wj=—uj+Pir1x;yjr1+ Bj-1xyj-1,
wherej =1,..., N, w; are the frequencieg, is the amplitude of oscillations arid> 0 is a damping parameter

of the oscillatorsy ; is the control variabley; and8; are the parameters of i controller. We assume free-end
boundary conditiong8y = By+1 = 0. For the quadratic forn® ; we take the simplest form of coupling with nearest
neighbors

Qj = Bjr1xjyj+1+ Bj—1x;yj-1. (46)



DTD 5

18 V.N. Belykh / Physica D xxx (2004) XXx—XXX

In this example we take the linear operdtan the formL = d/dr + 1. Using polar coordinates = p; cosg;, y; =
pjSing;, we rewrite(45) in the form:
pj = roj(p* = p%),
¢j=ajuj+ wj, (47)
uj=—uj+pBj+10jpj+1C08p;SiNg;r1+ Bj-1pjpj-1008¢;sing; 1,  j=1.....N.
We take a linear increasing distribution of individual frequenaies= w1 + A(j — 1), ande; = o, ; = . Then
by introducing the phase difference variable= ¢; — ¢;11, @ = «f/2 and averaging the systei7), we obtain:
¢1+ ¢1 = w1+ ap’singy, (48)
0j+0j = A+ap’(sin;y1 — 2sing; +sind;_1),  j=1,...,N—1 (49)
with the boundary condition®y = 6y = 0. These equations describe the synchronization regime in an ensemble
of coupled Poincd systems. The existence of a PS regime is defined by a stable steady §4&e Tiis state

(61, ...,0j,...,0y_1) in System(49) corresponds to a regime of global synchronization in the chain. Hence, the
system of equations for the stationary phase differeficean be written as:

A + &p?(sinf, — 2sindy) = 0,
A+ ap¥(singjig — 2sing; +sind;_1) =0,  j=2,...,N—2, (50)
A + &p?(sinfy — 2sindy_1) = 0.
The distribution o®; is [37]:
— A
in6; = ——(Nj — j?). 51
sing; 2&p2(1 i) (51)
It follows from (51) that the systend9) can have 2 ~1 steady states. But only one of thea_) €[—n/2;7/2] for
all j=1,..., N —1) can be stable. As the frequency mismafcis increased, the condition for the existence of

steady states

<1 (52)

A 2
A
2&p2( =)

is violated first forj = N/2 at everN, i.e. for the middle element in the chain. Thus, the condition for the existence
of a stable steady state in theelement chain is given by the inequality

AN?
_8&])2 <1 (53)
The frequency of global synchronizatié}y may be determined from E¢49), such that
Q= w1+ AN - 1). (54)

Then the frequencies for all elements are equal to the mean frequency of the elements in the ensemble. With ar
increase of the frequency mismatdh(or decrease of the coupling, a loss of global synchronization takes place.

For a long chain two synchronization clusters occur, i.e. the chain is divided into two clusters each d¥/2ze (

both consisting of mutually synchronized oscillators. Further increage(decrease of) leads to a sequence of
destruction of the one cluster structure of the synchronized elements and to the appearance of another structure
This sequence obtained in numerical experiments is presenfggl ih3 From this figure we recognize two types of
transitions between cluster structures. In the first type a “hard” transition without intermediate structures occurs from
the state witm (n + 1) clusters to the state with+ 1 (n) clusters (see, for example, the intervaldD9 : 0023]).
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Fig. 13. Observed frequenci€x; in a chain of Poincdr systems (E(5) with linear distribution of individual frequencies versusN = 20,
p=101=098,4=0.001.

In the second type, a “soft” transition happens with a smooth transition of intermediate structures one into the other.
As follows from Fig. 13 the theoretically and numerically obtained condition of global synchronization and the
global synchronization frequency are in very good agreement.

10. Synchronization of locally coupled chaotic oscillators
Now we will demonstrate feedback control of chaotic PS in ensembliesally coupled Rssler oscillators:

xj=—(wj+aju;)yj—2zj

v = (wj+ajuj)x;+ay;,

'zj =b—czj+xjzj,

wj=—yjuj+ Bjt1x;yj+1+ Bj-1x;yj-1, j=1...,N

(55)

We setia = 0.15,b =0.1,c =85, = a, y; = B; = 1. Like in the Poinca systems, we introduce a gradient
distribution of natural frequencies; = w1 + A(j — 1) withw; = 0.98, andA = 0.0001. Another variant consid-
ered below is a random distribution of natural frequencies in the rangevj + A(N — 1)]. We again assume
free-end boundary conditiongy = Sny+1 = 0. The control schem@); is the same as in the previous section
andL = d/dt + y;. As a condition of synchronization, we again consider the coincidence of the observed partial
frequencies defined according(&6).

We have performed numerical simulations with a chain of 100 elements with a linear and a random distribution
of the individual frequencies. For each element for differettte frequency2; has been calculated. We find that
in both cases all frequenci€s; become equal with increasing coupliagwhich means global chaotic PS sets in.

We have also analyzed synchronization transitions in the simplest case of a linear opeFatoy; > 1 the
filtered control variable: ; can be expressed as

uj=sin@;+1 — ¢;) +sinfg;—1 — ¢;), (56)
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Fig. 14. Mean frequencie®; in a chain of Rssler oscillators with a linear distribution of individual frequencies for diffescerithe number
of elementsV = 100,w; = 0.98, A = 0.0001.

where the phaseg; are introduced vig23). Then Eq.(55) can be rewritten as:

Xj=—wjyj—zj—j(Sin@;i1—¢;) +sin@;-1—¢;))y;,
yj=wjxj+ayj+ wja(singi1 — ¢;) +sin;-1 — ¢)))x;, (57)
Zij-CZj-F)Cij, j=1...,N.

The dependencies of the mean frequen@igen the parameterwith linear Fig. 14), respectively randonig. 19

distributions of the individual frequencies exhibit the onset of PS for a small coupling term. The criticabifalue
of a chain of Ryssler oscillators is greater than the one for tvis§ter oscillators, already hinted by E§3).
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Fig. 15. Mean frequencie; in a chain of Rissler oscillators with randomly distributed frequencies in the interval [0.98,1] for differdrite
number of element& = 100.
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11. Synchronization of globally coupled chaotic oscillators

Finally we study the potential of the presented methodyfobally coupled Rssler oscillators:
xj=—(wj+oju;)yj—2zj
yj = (o) +ajujxj+ayj,
zj =b—czj+xjzj,

. N H
ujz—yjuj+x]-2k:1,k¢j/3kyk, j=1....N.

(58)

We take the same parameters of individual elements as in the previous section and randomly distributed frequencies
wj. Let us choose again all; > 1. Then the filtered control variabig can be described in the form:

N

uj= Z sin(g; — éx). (59)

k=1 k#j

and(58) can be rewritten as:

Xj=—wjyj—zj— wj lecvzl,k;ﬁj Sin@; — ¢x)y;»
¥j = wjxj + ay; + 0ja Yy g SING; — $)x ). (60)
zj=b—czj+xjzj, j=1...,N.

Following [23], we characterize the degree of synchronization by means oirtlee parameter

. N
R= lim =L, (61)
N—oo N
whereN; is the size of the largest cluster of synchronized oscillators. This frequency order parameter is for fully
incoherent oscillator® = 0, and reaches for globally synchronized behavior the maxiRuml. The order pa-

rameteR averaged over 10 samples of randomly distributed frequengiisspresented ifrig. 16 We see that there

1.0
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L 1 n 1 L L 1
0.0 0.000005 0.00001 0.000015 0.00002
o

0.0

Fig. 16. Frequency entrainment in the ensemble of globally feedback couptsieRoscillators with randomly distributed frequencies in the
interval [0.98,1] vsa. The number of elements ¢ = 100.
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exists a critical value* when all oscillators become synchronized. This transition from a fully incoherent behavior
to a fully coherent (synchronized one) has been typically observed in ensembles of globally coupled elements.

12. Other forms of this control mechanism

It is important to emphasize that this principle can be applied not only to coupled self-oscillatory systems. For
example, let us consider a simple controlled linear oscillator:

X =y,
y = (w? + au)x + Ay, (62)
i = —u + Bxy.

As a result of the controlo( £ 0 in (62)), a stable limit cycle appears. So the balance of phase and amplitude is
achieved by the same mechanisms of frequency control@3.iNote, that at = 0, i.e.u = Bxy, the systen{62)
becomes the classical van der Pol equation related to a natural self-excited generator. This observation may b
interpreted aself-controlleading to a synchronization of voltage @nd currenty)) in the generator circuit.

Another control principle very similar to EQ2) can be used for syste(t), when the variable(x2) increasing
(decreasing) with some characteristic exponerito;) for some bounded interval. Then, the sys{@ndescribes a
growth-decayprocess. In order to manage this process we apply the same type of feedback control, i.e. we use the
quadratic form, but, here we add our control variabbirectly to the process velocities:

x12 = F12(x12, w1,2) + o1 ou,
Lu = Q(x1, x2),

where we state that some chosén Q)-pair in Eq.(63) leads to the emergence of balanced (synchronized) oscil-
lations ofx1 andx,. As an example let us considef@redator—prey” systeni26]:

(63)

X1 = wlxl(l — xl) + o1u,
X2 = —wox2 + aou, (64)
i = —u + Bxixo.

This system has a globally stable limit cycle, i.e. variabhleandx, become balanced. Fer= 0 the systen{64)
is the Lotka—Volterra-type equation from mathematical ecology. They demonstrate the role of a hidden self-control
interactionBxyx2, causing the self-organization between predator’s growth and prey’s decay.

In the proposed control schemes the control in the form of some quadratic form is applied multiplicatively in
order to achieve the PS and additively in order to achieve the growth-decay rates balance.

13. Conclusions

In this paper we have presented a novel feedback control method for automatic phase locking of regular and
chaotic oscillators. The main advantages of this method compared to more conventional schemes are the following:

e The effect of the amplitudexf the interacting subsystems on the difference of their phases provides a high
efficiency of this approach: large amplitudes lead to a small phase difference.

e The proposed method can be used for automatic synchronization of oscillators of different nature (regular and
chaotic), and different topology (e.g. coupleddRler and Lorenz oscillators) and complexity (e.g. chaotic and
hyper-chaotic Rssler oscillators).
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e Phase synchronization already sets in at very small values of control parameters, which is very important from
an energetical point of view. On the other hand, for specific parameter values synchronization cannot be obtained
at all, that seems to be a trade-off.

e The method can be used to synchronize elements coupled in small (two units) and large (chains and lattices)
ensembles. In the latter case the coupling can be local or global.

This presented approach can be helpful (i) for the understanding of self-organization mechanisms in many
systems in nature and (ii) for the design of different schemes of automatic synchronization and could be applied to
communication, engineering, ecology, and medicine.
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