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Abstract

We present an automatic control method for phase locking of regular and chaotic nonidentical oscillations, when all subsystems
interact via feedback. This method is based on the well known principle of feedback control which takes place in nature and is
successfully used in engineering. In contrast to unidirectional and bidirectional coupling, the approach presented here supposes
the existence of a special controller, which allows to change the parameters of the controlled systems. First we discuss general
principles of automatic phase synchronization (PS) for arbitrary coupled systems with a controller whose input is given by a
special quadratic form of coordinates of the individual systems and its output is a result of the application of a linear differential
operator. We demonstrate the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular
oscillators, (ii) coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb
models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators, (vii) ensembles
of locally coupled chaotic oscillators, and (viii) ensembles of globally coupled chaotic oscillators.
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1. Introduction

Synchronization is an important phenomenon observed in nature and science[1]. Synchronization in a dynamical
system is the phenomenon of the onset ofbalancebetween the phases of the subsystems’ state variables’ oscil-
lations, which is caused by an onset of the energy balance due to interaction. This phenomenon is called phase
synchronization (PS). Especially, PS is typical for many systems in biology and neuroscience[2,3] or physics[4].
The balance of the phases of oscillations can be accompanied with a balance of the corresponding amplitudes. In this
case generalized synchronization (GS) can be observed in dynamical systems and in the case of the full coincidence
of synchronized variables the complete (full) synchronization sets in (for a review see, e.g.[5]). Depending on the
type of coupling two main classical cases of synchronization can be distinguished: external and mutual. In the former
case a freely evolving master system, acting as an external force, drives the slave system. Often, the increasing of
the external force leads to locking-in, and synchronization occurs. Note that such a drive-response (or master-slave)
configuration is frequently used in chaotic communication[6]. Mutual synchronization can be observed in the case
of bidirectional coupling and is commonly accompanied by the hysteresis phenomenon[7].

We propose an automatic control method of phase locking of regular and chaotic nonidentical oscillations, when
all subsystems interact via a feedback. This method is based on the well known principle of feedback control which
takes place in nature and is successfully used in engineering. Considering the models of coupled systems in biology,
neuroscience or ecology, one can see that in many of them the coupling between interacting elements isnonlinear,
and it usually has the form of quadratic functions of the subsystem variables. Such a coupling serves as the basis
of an internal self-organization mechanism leading to a balanced motion in these systems. Coupled neurons[8],
phase transitions in human hand movement[9], ecological systems[10], or spinal generators of locomotion[11],
are only some well known examples of balanced cooperative oscillatory motion, caused by a nonlinear coupling.
In engineering, nonlinear coupling, is used, for example, in coupled lasers[12] or phase locked loops (PLL)[13].

Fig. 1. Three main schemes of inter-element coupling between two oscillators having natural frequenciesω1 andω2: (a) unidirectional, (b)
bidirectional, and (c) coupling via a feedback loop with controller composed of quadratic form(4) and linear operator(3).
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Different methods for controlling the behavior of dynamical systems have been used for chaos control[14]. An
adaptation of these methods for the stabilization of a chaotic trajectory of one system to a chaotic trajectory of another
identicalsystem, i.e. for acontrol of complete synchronization, was presented in[15]. In [16] it was shown that the
main problems ofcompletesynchronization being regarded as a control problem can be solved on the basis of control
theory methods. On the other hand, the problem ofphasesynchronization has not been formulated and hence consid-
ered before as a control theory problem. In contrast to the aforementioned methods, our novel approach is directed
at controlling the phases via characteristic time scales (CTS) of two (or many) different interacting oscillators.

In contrast to unidirectional (Fig. 1a) and bidirectional (Fig. 1b) coupling, the approach presented here supposes
the existence of a special controller, which allows to change the parameters of the controlled systems (Fig. 1c).
For this purpose we extract first the mutual correlation between the CTS, then filter the obtained signal, and finally
change the systems’ parameters which govern the CTS.

The paper is structured as follows: first we discuss general principles of automatic phase synchronization (PS) for
arbitrary coupled systems with a controller whose input is given by a special quadratic form of the coordinates of the
individual systems and its output is a result of the application of a linear differential operator. Then, we demonstrate
the effectiveness of our approach for controlled PS on several examples: (i) two coupled regular oscillators, (ii)
coupled regular and chaotic oscillators, (iii) two coupled chaotic Rössler oscillators, (iv) two coupled foodweb
models, (v) coupled chaotic Rössler and Lorenz oscillators, (vi) ensembles of locally coupled regular oscillators,
(vii) ensembles of locally coupled chaotic oscillators, (viii) ensembles of globally coupled chaotic oscillators, and
(ix) other forms of this control mechanism.

2. General principles of automatic synchronization

To begin with, we describe automatic phase locking for the case of two arbitrary regular or chaotic oscillators
given by the system:

ẋ1,2 = F1,2(x1,2, ω1,2), (1)

wherex1,2 andF1,2 aren-dimensional vectors,ω1,2 are parameters defining the time dependence rate (in some cases,
frequencies) of oscillatorsx1,2(t) [17]. Our purpose is to synchronize such two oscillators by using a feedback control
of the time scales of coupled oscillators in such a way that the new characteristic time scales�−1

1,2 become identical.
Here�1,2 are the mean observed frequencies of the controlled oscillators. In addition to the comparison of the
observed frequencies of the controlled systems, we are also interested in the evolution of their phase difference,
which is typically used in the study of PS. In order to synchronize the coupled subsystems, we apply a feedback
control in the following form:

ẋ1,2 = F1,2(x1,2, ω1,2(1 + α1,2u)),

Lu = Q(x1, x2).
(2)

HereL is a linear operator

L = γk
dk

dtk
+ γk−1

dk−1

dtk−1
+ · · · + γ1

d

dt
+ a0 (3)

acting as a low-pass filter, allγk are nonnegative constants.Q(x1, x2) is a quadratic form

Q = xT1Hx2, (4)

whereH is an × n matrix, which usually is taken as a diagonal matrix.α1,2 are the feedback controlling coefficients,
acting on the subsystems 1 and 2, respectively andu(t) is the control variable, which is added in(1) in such a way
that it is able to change the characteristic time scales of the interacting subsystems.
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The scheme modeled by Eqs.(2)–(4) works in the following simple manner: first, the two signalsx1 andx2
taken from both interacting systems are fed to themultiplier, Q(x1, x2), which is acting as a correlator between
the variables of the interacting systems (first partQ of the “Controller” presented inFig. 1c). The spectrum of
oscillationsQ(t) consists of a “low” part defined by the difference�2 − �1 and a “high” part defined by the sum
�2 + �1. Then, the signalQ(t) is conducted through the low-pass filter (second partL of the “Controller” presented
in Fig. 1c), which damps the “high” frequency part due to a specially designed transfer function. Hence, the control
variableu(t) becomes a slow-varying function in time, whose spectral band goes to zero. After the filtering,u(t) is
added to both interacting systems(2) in such a way that it may change their characteristic time scales. The main
goal is that this procedure provides a balance between the new time scales, i.e.�2 = �1. Note, that due to the
boundedness of the formQ(x∗

1, x
∗
2) at the attractor and due to the stability of the operatorL, the control variableu

is bounded too, i.e.‖u(t)‖ < K, whereK = const.
This principle of obtaining synchronization is effectively used in applications of PLL in a large number of radio-

and telecommunication devices, radio-location[13], coupled lasers[12], etc. It also takes place in a huge variety of
examples in nature, where the interaction of someoscillatoryobjects leads to theirbalancedbehavior. This balanced
behavior is achieved by anonlinear interactionof the elements[10,18–23]. Usually this coupling has the form of a
quadratic function of the interacting elements[24]. This type of coupling is able to minimize the oscillator’s phase
difference and therefore leads to synchronization. It is important to emphasize that this principle can be applied not
only to coupled self-oscillatory systems. This will be covered in the last section.

3. Two coupled Poincaŕe systems

As the simplest case, we consider feedback control of PS in two coupled Poincaré systems

ẋ1 = −ω1(1 + α1u)y1 − λ(x2
1 + y2

1 − p2)x1,

ẏ1 = ω1(1 + α1u)x1 − λ(x2
1 + y2

1 − p2)y1,

ẋ2 = −ω2(1 + α2u)y2 − λ(x2
2 + y2

2 − p2)x2,

ẏ2 = ω2(1 + α2u)x2 − λ(x2
2 + y2

2 − p2)y2,

τu̇ = −γu + βx1x2.

(5)

Here, (xi, yi) describe the two Poincaré systems andu is the control variable.ω1,2 are the frequencies,p is the
amplitude of oscillations andλ > 0 determines the relaxation to the limit cycle.β andγ are the parameters of
the controller. The constantsα1,2 determine the coupling scheme. By a simple modification ofαi it is possible
to realize both bi-directional (αi �= 0, i ∈ {1,2}) or uni-directional coupling (αi = 0, αj �= 0). Notice, that in this
scheme the coupling strengthαi may as well take negative numbers. In(5) we have taken very simple forms for
the quadratic formQ(x1, x2) = βx1x2 and the linear operatorL = τd/dt + γ. However, we note that also different,
more sophisticated, functions may be used with similar results. For example, we have checked that synchronization
indeed occurs with different quadratic forms such asQ(x1, x2) = (x1 − x2)2 or Q(x1, y2) = (x1 − y2)2.

Using polar coordinatesxi = ρi cosφi, yi = ρi sinφi, we rewrite system(5) in the form:

ρ̇1,2 = λρ1,2(p2 − ρ2
1,2),

φ̇1,2 = ω1,2(1 + α1,2u),

τu̇ = −γu + βρ1ρ2 cos(φ1) cos(φ2).

(6)

The product of cosine functions in(6) can be decomposed into a slow and a rapidly oscillating term. In the limit
ω1 + ω2 > γ, the low pass filterL is damping out the ‘high’ frequencies, which further simplifies the dynamics. Let
ω2 = ω1 + ∆. After relaxation of the radial equation,ρ̇i = 0, the amplitude of each oscillator is fixed toρi = p.
Thus, after averaging we arrive at the following simplified equations for the control variableu and the phase
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differenceθ = φ2 − φ1:

θ̇ = ∆ + (α2ω2 − α1ω1)u,

τu̇ = −γu + 1
2(β p2) cosθ.

(7)

Rewritten as a second order differential equation this leads to

τθ̈ + γθ̇ − γ∆ − 1
2(β)p2(α2ω2 − α1ω1) cosθ = 0. (8)

This pendulum-like equation for the evolution of the phase difference describes the synchronization regime of the
two oscillators interacting via feedback control. The existence of this regime is defined by a stable steady state in
(7) with the coordinates

cosθ∗ = 2γ

βp2
u∗, u∗ = ∆

α1ω1 − α2ω2
, (9)

which does exist in the range

βp2

2γ
>

∣∣∣∣ ∆

α2ω2 − α1ω1

∣∣∣∣ . (10)

Synchronization is achieved when the effective coupling strength, hereεeff = βp2/2γ, is larger than a function of
the frequencies, i.e.εeff > |∆/(α2ω2 − α1ω1)|. Further, the condition(10)depends on the amplitude of oscillation,
p. Larger values ofp lead to an onset of phase synchronization at smaller values of the coupling strengthβ. This
is in contrast to the usual case of linear diffusive coupling, i.e. instead of using our control scheme(5) the two
oscillators (x1, y1), (x2, y2) are coupled via introduction of the termβ(x2,1 − x1,2) into the equation for ˙x1,2. With
such diffusive coupling the synchronization threshold does not depend on the value of the amplitudep.

In Fig. 2the locking (or synchronization) regions of system(7), as described by condition(10), are plotted in the
parameter plane of effective coupling and natural frequency difference. By variations of different coupling schemes,
i.e. uni- and bi-directional coupling, basically four different scenarios for the form of the locking regions can be
found.

Obviously in the feedback coupling scheme, depending on the values ofαi, the locking regions are not defined
by straight lines. Furthermore there are specific values of natural frequencies (α2ω2 = α1ω1), which arise from the
singularities of(10)and for which synchronization can never be achieved. These special frequency values divide the
parameter plane into different locking regimes. In some regions of∆, synchronization is inhibited. In compensation,
in other regimes of parameter space the synchronization is strongly promoted and the border of synchronization is
moved towards smaller values of effective coupling strength.

Further indicated inFig. 2is also the phase difference of the two oscillators at the onset of synchronization. As a
consequence of the cosine term in Eq.(8), the phase difference may be either 0◦ or 180◦. Therefore, for the minimal
coupling strength when synchronization sets in, the time lag between two nearby maxima ofxi(t) is either 0 orπ/�̄,
where we have used the mean observed frequency

�̄ = 〈1
2(φ̇1 + φ̇2)〉. (11)

Consequently, at the onset of synchronization the two limit cycle oscillators are either fully synchronized or fully
anti-synchronized.

Before the synchronization sets in, the observed frequency difference in the small coupling regime can be
calculated in the caseτ � 1 as

#� = 2π∫ 2π
0 dθ/θ̇

=
√
∆2 − β2p4

4γ2
(α2ω2 − α1ω1)2. (12)
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Fig. 2. Synchronization regions (gray) of the system(8) as described by(10) for different coupling scenarios and fixedω1 = 1, γ = 1, p = 1.
(a)α1 = −α2 = 1, (b)α1 = α2 = 1, (c)α1 = 0, α2 = 1, (d)α1 = 1, α2 = 0. Further indicated is the phase difference of both oscillators at the
synchronization threshold, which is eitherθ∗ = 0◦ (solid line),θ∗ = 180◦ (dashed line), or undetermined, if the transition leads to oscillation
death (dotted line).

We want to compare this analytical approximation with numerical simulations of Eq.(5). The phase of a limit cycle
can be computed in the form

φ1,2 = arctan

(
y1,2

x1,2

)
, (13)

and the respective mean frequency as

�1,2 = lim
T→∞

φ1,2(T ) − φ1,2(0)

T
. (14)

The numerically calculated values of#� can also be used to visualize the locking regions. A numerically computed
synchronization surface is shown inFig. 3. Compare this to the analytically derivedFig. 2c. In order to ensure
synchronization, i.e. to avoid the multistability regime, we use the initial state in the middle of the two fixed points
θ = π on theθ̇ = 0 nullcline.

For parameter values ofβ in the transition regime near the bifurcation point, we find multistability. Depending
on the initial states of the two Poincaré systems, they may synchronize or not. For example, starting above the
nullclines in the phase space, the system is only able to reach a periodic, nonsynchronized state. Recall that such
bistable behaviour is absent in the Kuramoto model. However, similar bistability is known to arise in two coupled
oscillators with varying nonisochronicities[25].

3.1. Impossibility of synchronization with symmetrical couplingα1 = α2

We now study the special case of symmetrical coupling whereα1 = α2. Inspection ofFig. 2reveals the special
role which is played by this coupling scheme because seemingly the synchronization threshold in this case is
independent of the natural frequency difference between the oscillators. This result can also be found from Eq.(10).
However, the picture is somewhat misleading because as we now show in this case it is impossible to synchronize
the two oscillators at all. In order to calculate the mean observed frequency, defined in(11), of two Poincaŕe systems
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Fig. 3. Locking regions of(5) for uni-directional couplingα1 = 0, α2 = 1 in dependence on the coupling parameterβ and the natural frequency
difference∆. γ = 1, p = 1, ω1 = 1.

(6) in the locked state, we require

φ̇1 + φ̇2 = ω1 + ω2 + u∗(α1ω1 + α2ω2). (15)

After inserting the steady state value of the control variableu∗, Eq.(9), this results in

�̄ = ω1 + ω2

2
+ α1ω1 + α2ω2

α1ω1 − α2ω2

∆

2
, (16)

and replaces the usual formulā� = ω̄ for two simply symmetrically coupled phase oscillators.
In the case of symmetrical coupling this has the implication that the mean observed frequency disappears

α1 = α2 → �̄ = 1
2(φ̇1 + φ̇2) = 0. (17)

Since in the synchronized state further#� = 0, we follow that�1 = �2 = 0 and the oscillators effectively stop
to rotate. This result is also evident by going back to the feedback coupling scheme (Fig. 1). Whenα1 = α2, then
both oscillators always obtain identical feedback. The only way in which then the observed frequencies can become
identical is when they are controlled to zero, i.e. to oscillation death. This is also valid ifu is introduced only in the
second equation of(5), whereas for other oscillators in this case this does not hold, see Section6.

3.2. Anti-symmetrical coupling,α1 = −α2

A special interest attains the scheme of anti-symmetrical coupling, where the feedback to the two oscillators
has the same strength but opposite sign,α1 = −α2. Then, obviously the mean coupling strength disappears,ᾱ =
(α1 + α2)/2 = 0, which leads with ˙u = 0 to the simplified phase Eq.(7)

θ̇ = ∆ + α
β ω̄p2

γ
cos(θ). (18)
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Similar, the synchronization regime in the parameter space simplifies to

α
β ω̄p2

γ
> |∆|. (19)

This expression for synchronization threshold resembles very much the usual synchronization of two coupled
oscillators (see alsoFig. 2a). However, note that even in this case there remain important differences. For example,
synchronization sets in with a phase difference of either 0◦ or 180◦.

We again calculate the mean frequency difference in the synchronized state

φ̇1 + φ̇2 = ω1 + ω2 + (ω1 − ω2)2

ω1 + ω2
, (20)

which leads to

�̄ = ω2
1 + ω2

2

ω1 + ω2
. (21)

Therefore, in the case of anti-symmetrical coupling the observed mean frequency in general is not the arithmetic
mean of the natural frequencies.

It is also straightforward to calculate the forbidden frequency ratio, i.e. the ratio for which synchronization
cannot be achieved in the scheme with antisymmetrical coupling. We are led to the condition ¯ω = 0 orω2 = −ω1.
Therefore, synchronization cannot be achieved when both oscillators rotate in opposite direction with exactly the
same frequency. This is similar to the Kuramoto phase model[1,23], however, here in the limit ¯ω → 0 the mean
observed frequency goes to infinitȳ� → ∞ and not�̄ → 0.

4. Coupled van der Pol and R̈ossler oscillators

In the following we explore the feedback scheme for more complicated oscillator types. First, two structurally
different oscillators are coupled: a regular – van der Pol – oscillator and a chaotic – Rössler – oscillator[28]. The
equations describing the control scheme (sameL andQ as in previous section) for PS of such oscillators are:

ẋ1 = −ω1(1 + α1u)y1 − z1,

ẏ1 = ω1(1 + α1u)x1 + ay1,

ż1 = b − cz1 + x1z1,

ẋ2 = y2,

ẏ2 = −(ω2(1 + α2u))2x2 + ε(p2 − x2
2)y2,

u̇ = −γu + βx1x2,

(22)

wherex1, y1, z1 are the variables of the R̈ossler oscillator,x2, y2 are the variables of the van der Pol oscillator.u is
again the control variable added in both subsystems,α1,2, β andγ are control parameters. We setβ = γ = 1. For
the van der Pol oscillator we choose the following set of parameters:ω2 = 1, ε = 0.01, andp = 4. The parameters
of the R̈ossler oscillator will be chosen as:a ∈ [0.15 : 0.2], b = 0.1, c = 8.5, andω1 = 1 [29]. For these values the
topology of the chaotic R̈ossler attractor is rather simple, i.e. phase-coherent, and one can introduce the phase in
the form:

φ1 = arctan

(
y1

x1

)
. (23)
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For chosenε the phase trajectory of the van der Pol oscillator regularly monotonously oscillates around the origin,
so we can use a similar definition of the phase

φ2 = − arctan

(
y2

x2

)
. (24)

In order to test for the existence of phase synchronization between Rössler and van der Pol oscillators, we use as in
the previous chapters two criteria: PS sets in

(i) if the mean frequencies of both coupled subsystems become equal (frequency locking):

�2 = �1, (25)

where the frequencies are defined as:

�1,2 = lim
T→∞

φ1,2(T ) − φ1,2(0)

T
, (26)

(ii) and if the phase difference is bounded:

|φ2 − φ1| ≤ const. (27)

We consider two types of unidirectional (drive-response) feedback coupling:

(a) we control the characteristic time of the Rössler oscillator (α2 = 0 in (22)) (Fig. 4),
(b) or we control the characteristic time of the van der Pol oscillator (α1 = 0 in (22)) (Fig. 5). In both cases there

are critical values of the feedback control parametersα∗
1,2 corresponding to the onset of synchronization.

First, we study the case where the van der Pol oscillator is the drive system and the Rössler oscillator is the
controlled response system. We seta = 0.15, so that the chaotic attractor of the Rössler oscillator is phase-coherent.
To illustrate the transition to PS, we plot the mean frequency difference and the three largest Lyapunov exponents
versus the control parameterα1 (Fig. 4a), as well as a bifurcation diagram (Fig. 4b). We find that PS occurs at
α∗

1 = 0.00123. There the behavior of the Rössler oscillator remains chaotic but with the mean observed frequency
�1 equal to the frequencyω2 of the van der Pol oscillator. A similar situation of chaotic frequency locking was
observed in[30,31], where effects of PS were observed in a chaotic system forced by an external periodic signal.
In contrast to this, our interacting subsystems are autonomous and therefore without coupling two zero Lyapunov
exponents exist. In this case the transition to phase synchronization can be analyzed by means of the Lyapunov
exponents. As it can be seen fromFig. 4athe frequency locking occurs approximately (shortly after) at that value of
α1 for which one of the zero Lyapunov exponents becomes negative. Our numerical experiments (for other values
of a) show that usually the behavior of the controlled Rössler oscillator remains chaotic. But there are also intervals
of α1 where the behavior of the R̈ossler oscillator becomes periodic (Fig. 4). Thus, very small coupling allows to
control chaotic systems in such a way that (i) we can govern the mean frequency of chaotic oscillations and (ii) we
can get periodic oscillations too.

In the second case of unidirectional feedback coupling, the Rössler oscillator is the drive system and the van
der Pol oscillator is the controlled response system. Here we analyze not only the phase-coherent chaotic attractor
(a = 0.16) but also the funnel attractor (a = 0.24). In the latter case the topology of the attractor is much more
complex and the phase cannot be defined as in(23). Thus we introduce another phase definition[32]

φ1 = arctan

(
ẏ1

ẋ1

)
, (28)
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Fig. 4. Transition to phase synchronization for unidirectionally (α1 = 0 in (22)) feedback coupled R̈ossler and van der Pol oscillators. The van
der Pol oscillator is the drive system and the Rössler oscillator is the controlled response system. The mean observed frequency of the Rössler
oscillator�1 atα∗

1 = 0.00123 becomes equal to the frequency of the van der Pol oscillatorω2. (a) The three largest Lyapunov exponents, one
of which is always zero, and the difference of the mean observed frequencies�1 − ω2 (circles) vs. the control parameterα1. (b) Maxima ofx1

vs.α1.

and use the same two criteria(25) and (27)as in the previous case. We plot inFig. 5athe difference of the mean
observed frequencies�1 − �2 vs. the feedback control parameterα1 for different values ofa. In all cases PS occurs
at some critical valuesα∗

2, but with increasing ofaa larger valueα∗
2 is needed to achieve the locking. The onset of PS

is well manifested in the bifurcation diagrams (Fig. 5b–d). One can see that with increasing ofα2 the intervall of pos-
sible maximum values ofx2 becomes larger at first. But at the transition point to synchronization a strong shrinking
of the intervall is observed. That means that the variablesx2 andy2 become localized in a relatively small area.

We have also performed numerical simulations where the van der Pol and the Rössler oscillator are mutually
coupled by feedback (α1,2 �= 0). The effect of both regular and chaotic PS has been observed there as well.

5. Two coupled R̈ossler oscillators

In this section we will demonstrate feedback control of chaotic phase synchronization for two coupled Rössler
oscillators:

ẋ1,2 = −ω1,2(1 + α1,2u)y1,2 − z1,2,

ẏ1,2 = ω1,2(1 + α1,2u)x1,2 + ay1,2,

ż1,2 = b − cz1,2 + x1,2z1,2,

u̇ = −γu + βx1x2,

(29)

wherex1,2, y1,2, z1,2 are the variables of the first and second Rössler oscillator, respectively. We set:β = γ = 1,
a = 0.15, b = 0.1, c = 8.5, ω1 = 0.98, andω2 = 1.02. Hence, for both oscillators the phase definitions(23) can
be used. The existence of PS between Rössler oscillators is tested again by the criteria(25) and (27).
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Fig. 5. Transition to phase synchronization for unidirectionally (α2 = 0 in (22)) feedback coupled R̈ossler and van der Pol oscillators. The
Rössler oscillator is the drive system and the van der Pol oscillator is the controlled response system. The observed frequency of the van der
Pol oscillator�2 after someα∗

2 becomes equal to the mean frequency of the Rössler oscillator�1. (a) The difference of the mean observed
frequencies�1 − �2 (circles) vs. control parameterα2. (b–d) Maximal values ofx2 vs.α2. The parameters are: (b)a = 0.24, (c)a = 0.22 (for
a = 0.22 attractor in R̈ossler oscillator is periodic), and (d)a = 0.16.

We compute the spectrum of the Lyapunov exponents (Fig. 6a), the mean frequency difference (Fig. 6a), and
the evolution of the phase difference (Fig. 6b). PS sets in at the essentially small couplingα∗

1 = −α∗
2 ≈ 0.000415.

Note that shortly before PS one of the zero Lyapunov exponents becomes negative. With increasing ofα1, the
frequency difference decreases smoothly (without jump), i.e. a soft transition to PS takes place. This is manifested
in the evolution of the phase difference, namely for the control parameters close to the critical valueα∗

1 phase
locking at large time intervals is observed (Fig. 6b). In order to estimate the critical coupling strength corresponding
to the appearance of synchronization, we make a transformation to cylindrical coordinates:x1,2 = ρ1,2 cosφ1,2
andy1,2 = ρ1,2 sinφ1,2. Then for the feedback coupled oscillators(29), the averaged equation for the difference
θ = ψ2 − ψ1 of slow phasesψ1,2 = φ1,2 − ω0t reads as:

θ̈ + γθ̇ + αβρ1ρ2 sinθ = γ∆, (30)

where we have setα = α1ω1 = −α2ω2. If we neglect the fluctuations of the amplitude, Eq.(30)has the stationary
solution:

θ̄ = arcsin

(
γ∆

αβρ1ρ2

)
. (31)

This state exists and is stable if:∣∣∣∣ ∆

ρ1ρ2

∣∣∣∣ < α, (32)



12 V.N. Belykh / Physica D xxx (2004) xxx–xxx

Fig. 6. Synchronization of two coupled Rössler oscillators(29). The parameters are:a = 0.15, b = 0.1, c = 8.5, ω1 = 0.98, ω2 = 1.02, α1 =
−α2, andβ = γ = 1. (a) The four largest Lyapunov exponents and the difference of the mean observed frequencies�1 − �2 (circles) vs.
the control parameterα1. (b) Difference of the phasesφ2 − φ1 for nonsynchronous (α1 = 0.0004; 0.000405; 0.00041) and synchronous (α =
0.000415) regimes.

with β = γ = 1. Let us compare the effectiveness of the proposed coupling scheme with respect to the diffusive
coupling usually considered. In the latter case the equations of motions for two diffusively coupled Rössler oscillators
are (see[33]):

ẋ1,2 = −ω1,2y1,2 − z1,2 + α(x2,1 − x1,2),

ẏ1,2 = ω1,2x1,2 + ay1,2,

ż1,2 = b − cz1,2 + x1,2z1,2.

(33)

The equation for the phase difference can be recast in the form:

θ̇ − α

2

ρ2
1 + ρ2

2

ρ1ρ2
sinθ = ∆. (34)

Fig. 7. Synchronization of two coupled Rössler oscillators(38). The ratio of the mean observed frequencies�2/�1 vs. the control parameter
α1. The parameters of the individual oscillators are the same as inFig. 6.
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The stable stationary state

θ̄ = − arcsin
2∆ρ1ρ2

α(ρ2
1 + ρ2

2)
(35)

exists in the range

α >
|2∆ρ1ρ2|
ρ2

1 + ρ2
2

. (36)

If we take not strongly different oscillators (i.e.,ρ1 ≈ ρ2) this range is reduced to:

α > |∆|. (37)

Therefore, by equivalent parameters of the interacting oscillators, the synchronization range for the feedback cou-
pling (Eq.(29)) is p2α/γ = ρ1ρ2α/γ times larger than for the diffusive coupling (Eq.(33)). This estimation is in
very good agreement with our numerical results.

We have also analyzed the synchronization transitions for the simplest case of a linear operatorL. Forα � 1 the
filtered control variableu can be expressed by sin(φ2 − φ1), where the phasesφ1,2 are introduced by(23). Then Eq.
(29)can be rewritten as:

ẋ1,2 = −ω1,2[1 + α1,2 sin(φ2,1 − φ1,2)]y1,2 − z1,2,

ẏ1,2 = ω1,2[1 + α1,2 sin(φ2,1 − φ1,2)]x1,2 + ay1,2,

ż1,2 = b − cz1,2 + x1,2z1,2.

(38)

The dependency of the mean frequency ratio�2/�1 on the parameterα1 = −α2 for differenta shows the onset of
PS again for a very small coupling strength (Fig. 7).

In Fig. 8 we have analyzed the transition to synchronization in the two coupled Rössler systems for different
coupling schemes. Fastest synchronization is achieved for antisymmetrical (α1 = −α2) coupling. For unidirectional
coupling locking can also be obtained, but not for symmetrical coupling (α1 = α2).

Fig. 8. Synchronization of two coupled Rössler oscillators(38) for different coupling schemes. Plotted is the frequency of the mean observed
frequencies�2 − �1 vs. the control parameterα. The coupling parametersα1 andα2 are taken as explained in the figure. The parameters of the
individual oscillators are the same as inFig. 6.
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6. Coupled foodweb models

In this section we apply the automatic phase synchronization to foodweb models from ecology. First, we study
the synchronization of two coupled limit-cycle Lotka–Volterra[34] systems

ẋ1,2 = ax1,2

(
1−x1,2

K

)
− kfH (x1,2, y1,2),

ẏ1,2 = −b1,2(1 + α1,2u) y1,2 + kfH (x1,2, y1,2),

u̇ = −γu + βy1y2.

(39)

Here, x1,2 denotes the prey andy1,2 the predator species,a and b1,2 are the birth and death rates,K is the
prey carrying capacity,k the predation rate andκ the half saturation constant of the Holling type II func-
tional responsefH (x, y) = xy/(1 + κx). Throughout this section we use the parameter valuesa = 1, k = 3,K =
3, κ = 1. The two oscillators are nonidentical and vary in the value of predator death ratesb1 = 1.0 and
b2 = 0.95.

The control variableu is introduced into the model as in the previous models. Ecologically, quadratic formsQ
of Eq. (4) can arise very naturally as Lotka–Volterra interactions. Here,u represents a species that is affected and
grows only in the presence of the predatoryi of both sites, 1 and 2, and has a mortalityγ which represents the filter
L. However, the predators are not directly influenced byu, i.e. both species are in commensalism. Instead, the death
ratesb1,2 are modified by the abundance of the speciesu.

Without coupling, system(39) is well known to exhibit limit cycle oscillations with a frequency roughly deter-
mined byωi = √

abi. Nevertheless, feedback control is able to achieve synchronization (seeFig. 9). Depending on
the coupling scheme synchronization may or may not be achieved. Note that inFig. 9 the control parameterα is
varied in the whole range from negative to positive values.

Further, we want to stress that in system(39) synchronization can be achieved even in the symmetrical scheme
where the values ofα are identical, i.e.α1 = α2 = α. This is astonishing because then the parameters in the model
(and consequently also the natural frequencies) are modified by exactly the same amountbi(1 + αu). This is in
contrast to the simple theory with two Poincaré oscillators Eq.(5) where identicalαi only lead to oscillation death
(see Section3.1). Of course, in the foodweb caseu is only introduced into the second equation of(39) and not
also toẋ as in(5). However, the principal behaviour of the Poincaré system remains unchanged even ifu is only
introduced into the second equation, i.e. symmetrical coupling only results in oscillation death. Similar behaviour,
i.e. synchronization in symmetrical coupling, was also observed in the Rössler system, ifu is affecting only the
second equation of(29).

Fig. 9. Transition to synchronization for two limit cycle Lotka–Volterra models coupled via feedback loop. (Solid lines) Bidirectional coupling
with either symmetric (α1 = α2 = α) or antisymmetric (α1 = −α2 = α) coupling scheme; (dashed lines) unidirectional coupling (α1 = 0 or
α2 = 0).
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Fig. 10. Transition to synchronization for two chaotic foodweb models coupled via feedback loop. (a) Bidirectional coupling with either
symmetric (α1 = α2 = α) or antisymmetric (α1 = −α2 = α) coupling scheme; (b) unidirectional coupling (α1 = 0 orα2 = 0).

Next, we study feedback control in a model for chaotic predator–prey cycles, which has been proposed in[3,35]

ẋ1,2 = ax1,2 − efH (x1,2, y1,2),

ẏ1,2 = −b1,2(1 + α1,2u)y1,2 + efH (x1,2, y1,2) − g y1,2 z1,2,

ż1,2 = −c(z1,2 − z0) + g y1,2 z1,2,

u̇ = −γu + βy1y2.

(40)

This model describes a three trophic “vertical” food chain where the vegetationx is consumed by herbivoresy
which themselves are preyed upon by the top predatorz. In the absence of interspecific interactions the dynamics
is linearly expanded around the steady state (0,0, z0) with coefficientsa, b1,2 andc that represent the respective
nett growth and death rates of each species. Predator–prey and consumer–resource interactions are incorporated
into the equations via either the Lotka–Volterra termxy, or the Holling type II termfh(x, y) = xy/(1 + κx) with
strengths set by the coefficientseandg. Despite their minimal structure, the above equations might sketch the major
ecological transfers involved in the Canadian lynx-hare-vegetation foodweb[3,35].

For simulation runs reported here, parameter values are taken as in[3,35] (a = 1, c = 10, e = 0.2, g = 1, κ =
0.05, z0 = 0.006). The parameter mismatch between the two oscillators is given byb1 = 0.96; b2 = 0.98. In this
parameter range the model shows phase coherent chaotic dynamics, where the trajectory rotates with nearly constant
frequency in the (x, y)-plane but with chaotic dynamics that appear as irregular spikes in the top predatorz. This
behaviour of the foodweb model is reminiscent to the Rössler system(29) and therefore one might expect similar
synchronization properties in both systems.

Simulation results are shown inFig. 10. Also in the chaotic ecological model synchronization in phase can be
obtained. However, we find a rich behaviour. In the unidirectional coupling scheme for positiveα, synchronization
is achieved in both cases. For negativeα synchronization is achieved only in the caseα2 = 0 (seeFig. 10b).

In the bidirectional coupling schemes, depicted inFig. 11a, synchronization is found in all cases if the absolute
value ofα is sufficiently large. In the antisymmetric coupling scheme, e.g.α1 = −α2 = α, for positive values ofα
the transition to synchronization is characterized by the fact that with the onset of coupling the frequency difference
is first increasing with a maximal difference for intermediate values (hereα ≈ 0.00025). Whereas frequencies
become attracted and locking arises only for larger values of the coupling strength. Similar behaviour is known to
arise also in two diffusively coupled foodweb models and has been called anomalous phase synchronization[36].

7. Coupled R̈ossler and Lorenz oscillators

Now we will apply the automatic phase synchronization to the coupled Rössler and Lorenz[27] oscillators, i.e.
chaotic oscillators with a well pronounced difference in topology (see Sections4 and 5). The model is:
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Fig. 11. Synchronization of coupled Rössler and Lorenz oscillators(41). The parameters are:a = 0.15, b = 0.1, c = 8.5, ω = 0.98, σ = 10, r =
28, b = 8/3, α1 = −α2 = α, andβ = γ = 1. The difference of the mean observed frequencies�1 − �2 vs. the control parameterα.

ẋ1 = τ(−ω(1 + α1u)y1 − z1),

ẏ1 = τ(ω(1 + α1u)x1 + ay1),

ż1 = b − cz1 + x1z1,

ẋ2 = σ(y2 − x2),

ẏ2 = rx2 − y2 − x2z2,

ż2 = (1 + α2u)(−bz2 + x2y2),

u̇ = −γu + x1z2,

(41)

wherex1,2, y1,2, z1,2 are the variables of the R̈ossler and Lorenz oscillators, respectively. The parametersa, b, c

and the phase of the Rössler oscillator are the same as in the previous case;ω = 0.98, τ = 8.3, σ = 10, r = 28,
andb = 8/3 and the phase of the Rössler oscillator is measured as before. The phase of the Lorenz oscillator is

calculated asθ = arctan((z2 − 27)/(
√
x2

2 + y2
2 − 12)) [31]. In Fig. 11we present results of the transition to chaotic

PS between R̈ossler and Lorenz oscillators. One can see an interval ofα where PS occurs.
In summary, using the proposed automatic scheme we are able to achieve chaotic PS between oscillators with a

strong difference in their topology. Here, we mostly concentrated on the case of phase coherent oscillators, where
a phase is easily defined. However at the end of Section4, synchronization was established between a limit-cycle
van der Pol oscillator and a funnel Rössler oscillator. Thus, we demonstrated that our method even works for phase
noncoherent chaotic oscillators. Thus, we conclude that the automatic control of synchronization is a very robust
method. Further investigation of our technique applied to noncoherent oscillators will be a interesting project for
future research.

8. Principles of automatic synchronization in networks of coupled oscillators

It is easy to extent the control scheme proposed for two coupled oscillators to a network of oscillators. Let us
consider an ensemble of arbitrary regular or chaotic oscillators given by the system:

ẋj = Fj(xj, ωj), j = 1, . . . , N, (42)

wherexj andFj aren-vectors,ωj are parameters defining the time dependence rate of oscillationsxj(t) andN is
the number of oscillators.
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Fig. 12. Local feedback coupling in a chain of oscillators.

In order to synchronize these systems, we apply a feedback control between all of them in the following form:

ẋj = Fj(xj, ωj + αjuj),

Luj = Qj(x1, . . . , xN ), j = 1, . . . , N,
(43)

whereL is again a linear operator acting as a low-pass filter; the functionQj(x1, . . . , xN ) is:

Qj(x1, . . . , xN ) =
N∑

k=1,k �=j

Qk(xj, xk), (44)

whereQk is a quadratic formQk = xTj Hxk which characterizes the coupling between thejth and thekth oscillators.
Now we study whether the control variableuj(t) added to each oscillator can provide a synchronous behavior

between the interacting elements.Fig. 12presents a simple scheme which roughly describes the proposed coupling
technique.

We demonstrate the method of feedback control for PS for ensembles of (i) locally coupled regular oscillators
(Section9), (ii) locally coupled chaotic oscillators (Section10), and (iii) globally coupled chaotic oscillators (Section
11).

9. Synchronization of locally coupled regular oscillators

As the simplest case, we consider feedback control of PS in an ensemble oflocally mutually coupled Poincaré
systems:

ẋj = −(αjuj + ωj)yj − λ(x2
j + y2

j − p2)xj,

ẏj = (αjuj + ωj)xj − λ(x2
j + y2

j − p2)yj,

u̇j = −uj + βj+1xjyj+1 + βj−1xjyj−1,

(45)

wherej = 1, . . . , N, ωj are the frequencies,p is the amplitude of oscillations andλ > 0 is a damping parameter
of the oscillators,uj is the control variable,αj andβj are the parameters of thejth controller. We assume free-end
boundary conditions:β0 = βN+1 = 0. For the quadratic formQj we take the simplest form of coupling with nearest
neighbors

Qj = βj+1xjyj+1 + βj−1xjyj−1. (46)
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In this example we take the linear operatorL in the formL = d/dt + 1. Using polar coordinatesxj = ρj cosφj, yj =
ρj sinφj, we rewrite(45) in the form:

ρ̇j = λρj(p2 − ρ2
j ),

φ̇j = αjuj + ωj,

u̇j = −uj + βj+1ρjρj+1 cosφj sinφj+1 + βj−1ρjρj−1 cosφj sinφj−1, j = 1, . . . , N.

(47)

We take a linear increasing distribution of individual frequenciesωj = ω1 + ∆(j − 1), andαj = α, βj = β. Then
by introducing the phase difference variableθj = φj − φj+1, α̂ = αβ/2 and averaging the system(47), we obtain:

φ̈1 + φ̇1 = ω1 + α̂p2 sinθ1, (48)

θ̈j + θ̇j = ∆ + α̂p2(sinθj+1 − 2 sinθj + sinθj−1), j = 1, . . . , N − 1 (49)

with the boundary conditions:θ0 = θN = 0. These equations describe the synchronization regime in an ensemble
of coupled Poincaré systems. The existence of a PS regime is defined by a stable steady state in(49). This state
(θ̄1, . . . , θ̄j, . . . , θ̄N−1) in system(49) corresponds to a regime of global synchronization in the chain. Hence, the
system of equations for the stationary phase differencesθ̄n can be written as:

∆ + α̂p2(sin θ̄2 − 2 sinθ̄1) = 0,

∆ + α̂p2(sin θ̄j+1 − 2 sinθ̄j + sin θ̄j−1) = 0, j = 2, . . . , N − 2,

∆ + α̂p2(sin θ̄N − 2 sinθ̄N−1) = 0.

(50)

The distribution of̄θj is [37]:

sin θ̄j = ∆

2α̂p2
(Nj − j2). (51)

It follows from (51) that the system(49) can have 2N−1 steady states. But only one of them (θ̄j ∈ [−π/2;π/2] for
all j = 1, . . . , N − 1) can be stable. As the frequency mismatch∆ is increased, the condition for the existence of
steady states∣∣∣∣ ∆

2α̂p2
(Nj − j2)

∣∣∣∣ < 1 (52)

is violated first forj = N/2 at evenN, i.e. for the middle element in the chain. Thus, the condition for the existence
of a stable steady state in theN-element chain is given by the inequality∣∣∣∣∆N2

8α̂p2

∣∣∣∣ < 1. (53)

The frequency of global synchronization�s may be determined from Eq.(49), such that

�s = ω1 + 1
2∆(N − 1). (54)

Then the frequencies for all elements are equal to the mean frequency of the elements in the ensemble. With an
increase of the frequency mismatch∆ (or decrease of the couplingα), a loss of global synchronization takes place.
For a long chain two synchronization clusters occur, i.e. the chain is divided into two clusters each of size (N/2),
both consisting of mutually synchronized oscillators. Further increase of∆ (decrease ofα) leads to a sequence of
destruction of the one cluster structure of the synchronized elements and to the appearance of another structure.
This sequence obtained in numerical experiments is presented inFig. 13. From this figure we recognize two types of
transitions between cluster structures. In the first type a “hard” transition without intermediate structures occurs from
the state withn (n + 1) clusters to the state withn + 1 (n) clusters (see, for example, the interval [0.019 : 0.023]).
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Fig. 13. Observed frequencies�j in a chain of Poincaré systems (Eq.45) with linear distribution of individual frequencies versusα. N = 20,
p = 1,ω1 = 0.98,∆ = 0.001.

In the second type, a “soft” transition happens with a smooth transition of intermediate structures one into the other.
As follows from Fig. 13, the theoretically and numerically obtained condition of global synchronization and the
global synchronization frequency are in very good agreement.

10. Synchronization of locally coupled chaotic oscillators

Now we will demonstrate feedback control of chaotic PS in ensembles oflocally coupled R̈ossler oscillators:

ẋj = −(ωj + αjuj)yj − zj,

ẏj = (ωj + αjuj)xj + ayj,

żj = b − czj + xjzj,

u̇j = −γjuj + βj+1xjyj+1 + βj−1xjyj−1, j = 1, . . . , N.

(55)

We set:a = 0.15, b = 0.1, c = 8.5, αj = α, γj = βj = 1. Like in the Poincaŕe systems, we introduce a gradient
distribution of natural frequenciesωj = ω1 + ∆(j − 1) with ω1 = 0.98, and∆ = 0.0001. Another variant consid-
ered below is a random distribution of natural frequencies in the range [ω1, ω1 + ∆(N − 1)]. We again assume
free-end boundary conditions:β0 = βN+1 = 0. The control schemeQj is the same as in the previous section
andL = d/dt + γj. As a condition of synchronization, we again consider the coincidence of the observed partial
frequencies defined according to(26).

We have performed numerical simulations with a chain of 100 elements with a linear and a random distribution
of the individual frequencies. For each element for differentα the frequency�j has been calculated. We find that
in both cases all frequencies�j become equal with increasing couplingα, which means global chaotic PS sets in.

We have also analyzed synchronization transitions in the simplest case of a linear operatorL. For γj � 1 the
filtered control variableuj can be expressed as

uj = sin(φj+1 − φj) + sin(φj−1 − φj), (56)
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Fig. 14. Mean frequencies�j in a chain of R̈ossler oscillators with a linear distribution of individual frequencies for differentα. The number
of elementsN = 100,ω1 = 0.98,∆ = 0.0001.

where the phasesφj are introduced via(23). Then Eq.(55)can be rewritten as:

ẋj = −ωjyj − zj − ωjα(sin(φj+1 − φj) + sin(φj−1 − φj))yj,

ẏj = ωjxj + ayj + ωjα(sin(φj+1 − φj) + sin(φj−1 − φj))xj,

żj = b − czj + xjzj, j = 1, . . . , N.

(57)

The dependencies of the mean frequencies�j on the parameterαwith linear (Fig. 14), respectively random (Fig. 15)
distributions of the individual frequencies exhibit the onset of PS for a small coupling term. The critical valueα∗
of a chain of R̈ossler oscillators is greater than the one for two Rössler oscillators, already hinted by Eq.(53).

Fig. 15. Mean frequencies�j in a chain of R̈ossler oscillators with randomly distributed frequencies in the interval [0.98,1] for differentα. The
number of elementsN = 100.
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11. Synchronization of globally coupled chaotic oscillators

Finally we study the potential of the presented method forgloballycoupled R̈ossler oscillators:

ẋj = −(ωj + αjuj)yj − zj,

ẏj = (ωj + αjuj)xj + ayj,

żj = b − czj + xjzj,

u̇j = −γjuj + xj
∑N

k=1,k �=j βkyk, j = 1, . . . , N.

(58)

We take the same parameters of individual elements as in the previous section and randomly distributed frequencies
ωj. Let us choose again allγj � 1. Then the filtered control variableuj can be described in the form:

uj =
N∑

k=1,k �=j

sin(φj − φk), (59)

and(58)can be rewritten as:

ẋj = −ωjyj − zj − ωjα
∑N

k=1,k �=j sin(φj − φk)yj,

ẏj = ωjxj + ayj + ωjα
∑N

k=1,k �=j sin(φj − φk)xj,

żj = b − czj + xjzj, j = 1, . . . , N.

(60)

Following [23], we characterize the degree of synchronization by means of theorder parameter:

R = lim
N→∞

Nl

N
, (61)

whereNl is the size of the largest cluster of synchronized oscillators. This frequency order parameter is for fully
incoherent oscillatorsR = 0, and reaches for globally synchronized behavior the maximumR = 1. The order pa-
rameterRaveraged over 10 samples of randomly distributed frequenciesωj is presented inFig. 16. We see that there

Fig. 16. Frequency entrainment in the ensemble of globally feedback coupled Rössler oscillators with randomly distributed frequencies in the
interval [0.98,1] vs.α. The number of elements isN = 100.
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exists a critical valueα∗ when all oscillators become synchronized. This transition from a fully incoherent behavior
to a fully coherent (synchronized one) has been typically observed in ensembles of globally coupled elements.

12. Other forms of this control mechanism

It is important to emphasize that this principle can be applied not only to coupled self-oscillatory systems. For
example, let us consider a simple controlled linear oscillator:

ẋ = y,

ẏ = (ω2 + αu)x + λy,

τu̇ = −u + βxy.

(62)

As a result of the control (α �= 0 in (62)), a stable limit cycle appears. So the balance of phase and amplitude is
achieved by the same mechanisms of frequency control as in(2). Note, that atτ = 0, i.e.u = βxy, the system(62)
becomes the classical van der Pol equation related to a natural self-excited generator. This observation may be
interpreted asself-controlleading to a synchronization of voltage (x) and current (y) in the generator circuit.

Another control principle very similar to Eq.(2) can be used for system(1), when the variablex1(x2) increasing
(decreasing) with some characteristic exponentω1(ω2) for some bounded interval. Then, the system(1) describes a
growth-decayprocess. In order to manage this process we apply the same type of feedback control, i.e. we use the
quadratic form, but, here we add our control variableu directly to the process velocities:

ẋ1,2 = F1,2(x1,2, ω1,2) + α1,2u,

Lu = Q(x1, x2),
(63)

where we state that some chosen (L,Q)-pair in Eq.(63) leads to the emergence of balanced (synchronized) oscil-
lations ofx1 andx2. As an example let us consider a“predator–prey” system[26]:

ẋ1 = ω1x1(1 − x1) + α1u,

ẋ2 = −ω2x2 + α2u,

τu̇ = −u + βx1x2.

(64)

This system has a globally stable limit cycle, i.e. variablesx1 andx2 become balanced. Forτ = 0 the system(64)
is the Lotka–Volterra-type equation from mathematical ecology. They demonstrate the role of a hidden self-control
interactionβx1x2, causing the self-organization between predator’s growth and prey’s decay.

In the proposed control schemes the control in the form of some quadratic form is applied multiplicatively in
order to achieve the PS and additively in order to achieve the growth-decay rates balance.

13. Conclusions

In this paper we have presented a novel feedback control method for automatic phase locking of regular and
chaotic oscillators. The main advantages of this method compared to more conventional schemes are the following:

• The effect of the amplitudesof the interacting subsystems on the difference of their phases provides a high
efficiency of this approach: large amplitudes lead to a small phase difference.

• The proposed method can be used for automatic synchronization of oscillators of different nature (regular and
chaotic), and different topology (e.g. coupled Rössler and Lorenz oscillators) and complexity (e.g. chaotic and
hyper-chaotic R̈ossler oscillators).
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• Phase synchronization already sets in at very small values of control parameters, which is very important from
an energetical point of view. On the other hand, for specific parameter values synchronization cannot be obtained
at all, that seems to be a trade-off.

• The method can be used to synchronize elements coupled in small (two units) and large (chains and lattices)
ensembles. In the latter case the coupling can be local or global.

This presented approach can be helpful (i) for the understanding of self-organization mechanisms in many
systems in nature and (ii) for the design of different schemes of automatic synchronization and could be applied to
communication, engineering, ecology, and medicine.
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