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In the last decade, there has been an increasing interest in compensating thermally induced errors to
improve the manufacturing accuracy of modular tool systems. These modular tool systems are
interfaces between spindle and workpiece and consist of several complicatedly formed parts. Their
thermal behavior is dominated by nonlinearities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoretically. Due to the dominant nonlinear nature
of this behavior the so far used linear regression between the temperatures and the displacements is
insufficient. Therefore, in this study we test the hypothesis whether we can reliably predict such
thermal displacements via nonlinear temperature-displacement regression functions. These
functions are estimated first from learning measurements using the alternating conditional
expectation~ACE! algorithm and then tested on independent data sets. First, we analyze data that
were generated by a finite element spindle model. We find that our approach is a powerful tool to
describe the relation between temperatures and displacements for simulated data. Next, we analyze
the temperature-displacement relationship in a silent real experimental setup, where the tool system
is thermally forced. Again, the ACE algorithm is powerful to estimate the deformation with high
precision. The corresponding errors obtained by using the nonlinear regression approach are 10-fold
lower in comparison to multiple linear regression analysis. Finally, we investigate the thermal
behavior of a modular tool system in a working milling machine and again get promising results.
The thermally induced errors can be estimated with 1–2mm accuracy using this nonlinear
regression analysis. Therefore, this approach seems to be very useful for the development of new
modular tool systems. ©2004 American Institute of Physics.@DOI: 10.1063/1.1622351#

Manufacturing processes are highly complex systems—
predicting, controlling and optimizing of such processes
is rather difficult. A major challenge is an optimum de-
sign of the manufacturing processes to consistently
achieve quality targets. Here we investigate especially
thermal influences on machine tools which are essential
to get stabilized manufacturing processes with tolerances
in the micrometer range. The modular tool systems, con-
sidered in this study, are interfaces between spindle and
workpiece and consist of several complicatedly formed
parts. Their thermal behavior is dominated by nonlin-
earities, delay and hysteresis effects even in tools with
simpler geometry and it is difficult to describe it theoreti-
cally. Due to the dominant nonlinear nature of this be-
havior the so far used linear regression between the tem-
peratures and the displacements is insufficient.
Therefore, we introduce a concept of maximal correlation
which is a very powerful criterion to measure the depen-
dence of two especially nonlinear related variables. In
this study, we show that we can significantly improve the
prediction of thermal displacements via nonlinear

temperature-displacement regression functions, which
are estimated using the alternating conditional expecta-
tion algorithm, a recently developed approach of nonlin-
ear time series analysis. The practical applicability of this
method was proven on a working milling machine—the
thermally induced errors could be estimated with 1–2
mm accuracy. Therefore, this approach seems to be very
useful not only for the development of new modular tool
systems but also for other interdisciplinary applications.

I. INTRODUCTION

In the recent decade, much attention has been devoted to
the investigation of the thermal influence on complete ma-
chine tools to get thermally stabilized processes with toler-
ances in the micrometer range.1–12 Modular tool systems as
interfaces between spindle and workpiece, however, affect to
a great extent the accuracy of machining. Therefore, the ther-
mal behavior of modular tool systems has to be thoroughly
investigated, especially using nonlinear-dynamical ap-
proaches, which turned out to be very promising in
engineering.13,14
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processing’’ without the use of any lubricants and coolants.
However, the stronger thermal influence in dry processing
due to friction causes displacements up to 100mm. Over the
past few decades, the compensation for defects due to a ther-
mal impact has attracted steadily increasing interest. These
investigations comprise a wide range of methods ranging
from computer simulations15 and internal monitoring in neu-
ral networks16,17 to thermal error modeling.2,3,7,15,18,19The
relation between temperatures and displacements is very
complex even in simple tools.9 A modular machine tool con-
sists of several complicatedly formed interfaces. Therefore, it
is difficult to describe thermal displacements theoretically.
The state of the art in the description of thermal displace-
ments is represented today by a linear regression between the
temperatures and the displacements.20 One disadvantage of
this approach is that it cannot describe hysteresis behavior,
especially for very fast heating or cooling. In that case the
temperatures measured on the surface of the modular tool
systems are different from the real temperatures inside the
system, which leads to time delays in the temperature propa-
gation.

The purpose of this paper is, therefore, to use nonlinear
regression methods to model the relation between tempera-
tures and inelastic displacements and finally to predict the
thermal displacements quantitatively in a high precision. The
paper is organized as follows. In Sec. II we shortly describe
the nonlinear regression approach we are using. In Sec. III
we present the application of this approach to data that were
generated by a finite element spindle model. Section IV con-
tains the application to a silent real experimental setup,
where the tool system was thermally forced. In Sec. V we
investigated the thermal behavior of a modular tool system in
a working milling machine and, finally, in Sec. VI we discuss
our results.

II. MAXIMAL CORRELATION AND OPTIMAL
TRANSFORMATIONS

We generally assume that there are measurementsTi ,
i 51, . . . , ni of the temperature andSj , j 51, . . . , nj of the
axial displacement atni , resp.,nj points ~e.g., Fig. 1!. We
use these different measurement points, e.g., at the cutting
edge, to describe the thermal process in the whole modular
tool system. The main aim is then to reconstruct the displace-
mentsSj on the basis of manufacturing parameters, espe-
cially the temperaturesTi . Because of well-known hyster-
esis effects,9 it is necessary to consider a response
transformation model, which is of the type

u j~Sj !5f j~T1 , . . . ,Tni
!, j 51, . . . ,nj . ~1!

The regression functionsf j are high dimensional surfaces
and cannot be displayed for dimensions greater than 2.
Moreover, they do not provide a geometrical description of
the regression relationship between the temperatures and the
displacements. To overcome this problem, we consider the
following models:

u j~Sj !5(
i 51

ni

f j ,i~Ti !, j 51, . . . ,nj , ~2!

and apply the alternating conditional expectations~ACE!
algorithm,21 described below, as a nonparametric approach to
estimate the transformationsf j ,i andu j in Eq. ~2!.

The concept of maximal correlation is a very powerful
criterion to measure the dependence of two especially non-
linear related variables.22 The main idea of this approach is
to measure the maximized correlation of properly trans-
formed variables.

Given a real variableSj and anni-dimensional vector
T5(T1 , . . . ,Tni

) in the additive model~2!. Then, the maxi-
mal correlation is defined by

C j~Sj ,T!ªur„u j* ~Sj !,f j* ~T!…u5max
u,f

ur„u~Sj !,f~T!…u,

~3!

wherer denotes the correlation coefficient. The functionsu j*
andf j* , which fulfill the maximal condition~3!, are called
optimal transformation and represent an estimation of the
model ~2!. To estimate them nonparametrically, we use the
ACE algorithm.21 This iterative procedure is nonparametric
because the optimal transformations are estimated by local
smoothing of the data using kernel estimators. We use a
modified algorithm in which the data are rank-ordered before
the optimal transformations are estimated. This makes the
result less sensitive to the data distribution. For more details
see Appendix A.

The maximal correlation and optimal transformation ap-
proach have been recently applied to nonlinear dynamical
systems especially to identify a delay in lasers23 and partial
differential equations in fluid dynamics.24 The ACE algo-
rithm turned out to be a very efficient tool for nonlinear data
analysis.23,25,26

III. RECONSTRUCTION OF THERMALLY INDUCED
DISPLACEMENTS IN A FINITE ELEMENT
SPINDLE MODEL

To investigate whether the nonlinear regression approach
described above is appropriate also for modular tool systems,
which are used in milling and drilling machines, we first
analyze simulated data from finite element models~FEM!.
The tool system is the connecting part between the main
spindle and the milling tool. Its main target is the production
of clamping forces for an accurate machining. There are dif-
ferent types of clamping systems; in this work we focus on
power shrinking and hydraulic chucks tools. These data sets
obtained with the FEM model are used to find an optimal
number and optimal locations of measurement points and to
study the influence of the controlling parameters. In the FEM
model, a given regime of rotations leads to the temperatures
Ti and the displacementsSj at several measurement points.
In the following, we are investigating a main spindle tool
design~Fig. 1! with two different simulations. We use the
first measurement as a learning set$St, j% t51, . . . ,n ,
j 51, . . . , nj , $Tt,i% t51, . . . ,n , i 51, . . . , ni to compute the
optimal transformations and the second as a test series
$St, j8 % t51, . . . ,n , j 51, . . . , nj , $Tt,i8 % t51, . . . ,n , i 51, . . . , ni to
check how well the optimal transformations obtained by the
reference series describe the temperature-displacement rela-
tion. The only difference between both series is given with
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different manufacturing schemes, especially with different
time scales and regimes of rotations. We apply a two step
strategy.

~i! Computation of the optimal transformationsu j* and
f j* in the model

uj~St,j!5fj~Tt,iiPI
!

~4!
j51, . . . ,nj5 (

i 51, . . . ,ni

f j ,i~Tt,i !,

from the training series$St, j% t51, . . . ,n , j 51, . . . , nj ,
$Tt,i% t51, . . . ,n , i 51, . . . , ni .

~ii ! Reconstruction of the displacementsSt, j8 , j 51, . . . ,
nj of the test series using the temperaturesTt,i8 ,
i 51, . . . , ni of the test series and the optimal trans-
formationsu j* andf j* of the training series computed
in ~i!,

Ŝt,j8 5ûj*
21S(

iPI
f̂j,i* ~Tt,i8 !D, j51, . . . ,nj , ~5!

and a comparison of the realSt, j8 with the estimated
Ŝt, j8 displacements.

The hat overu andf denotes a nonparametric estimation
for these functions. Practically, we use a nearest-neighbor-
estimation withk52 nearest neighbors27 to estimate these
functions. We have tested different numbers of nearest neigh-
borsk51,..,10, however, there are only slight differences in
the estimates.

For two different regimes of rotations we have a simu-
lated data set with values of temperatures (Tt,i ,i 52,3,4) and
displacements (St, j , j 53,4) belonging to different parts of
the tool. Each series consists ofn5199 points with a sam-
pling time ofDt5100 s. The reference series, which is used
as a training set, is shown in Fig. 2~a!.

We present here only the estimations forS4 at the front
tip of the tool ~Fig. 1! because the displacements at the cut-
ting edge are the most interesting ones. The results are
shown in Fig. 2~b!, i.e., the estimations for the optimal trans-
formationsu4* andf4,2* , . . . , f4,4* . The nonlinearity of these
functions is a clear evidence that linear regression is not
sufficient to model the relation between temperatures and
displacements—otherwise the optimal transformations

should be close to linear. The graph on the lower left corner
2~b!~v! shows u4* (St,4) versus ( i 52

4 f4,i* (Tt,i) which
should be the identity in the optimal case. In Fig. 2~b!~vi!
on the lower right side, we plot the residuals
u4* (St,4)2( i 52

4 f4,i* (Tt,i). Assuming the existence of func-
tionsu andf in the model, the residuals should vanish and in
fact, the high value obtained for the maximal correlation
C50.9994 indicates a very good estimation. Furthermore,
this value is quite high in comparison with the maximal cor-
relation in other applications of the ACE algorithm.22,28

Next, we compute the estimation of displacements of the
test data set using the optimal transformations estimated
above and the temperatures from the test data set as in Eq.
~5!. The estimated curves are quite close to the original ones
~Fig. 3! except for the cropped peaks. Looking at the original
time series and the optimal transformations in Fig. 2, we see
immediately that the support in the displacement series of the
training set is not as wide as the range of the test series.
Therefore, for data from real modular tool systems we have
to consider this problem. Moreover, we have to find minimal
measurement points with optimal predictability of the dis-
placements to reduce the dimensionality of the task.

FIG. 1. Design of the main spindle model~output of the commercial FE-
modeling program ANSYS!.

FIG. 2. Simulated data for the model of Fig. 1:~a! Training time series~top:
temperatureT2 , T3 , T4 , bottom: axial displacementsS3 , S4); ~b! optimal
transformations~arbitrary units! for S4 with respect to the model Eq.~4!: ~i!
u4* (St,4), ~ii ! f4,2* (Tt,2), ~iii ! f4,3* (Tt,3), ~iv! f4,4* (Tt,4), ~v! plotting u4* ver-
susSf4,i ; ~vi! plotting the residualsu4* 2Sf4,i .
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IV. THE APPLICATION TO A SILENT REAL
EXPERIMENTAL SETUP

In the last section it was possible to demonstrate that the
presented nonlinear regression approach is able to predict
displacements which were generated using a FEM model.
Now, its applicability to measured data from real modular
tool systems have to be validated. Therefore, a tool system
with a corresponding recording system was designed which
is able to measure temperatures and displacements at several
tool positions~see Fig. 4!. However, as a first step, the tool
system was resting, i.e., not active. On a body, a fixed main
spindle shaft with the hydraulically actuated tool chucking
system HSK 63 is fixed. Electrically driven heating elements
enable the intentional introduction of dimensioned heat flows
into the tools at the tool chuck via the roller bearing fit of the
main spindle shaft. Heating of the cutting edges, which origi-
nally results from the cutting procedure, is generated with a
shuttered hot air gun in an approximately point-wise manner
or at the tool tip with a soldering copper. Then, to avoid
external error sources, in a thermal cell temperatures at nine
locations and displacements at three locations were simulta-
neously recorded. In this thermal cell, predefined room and
foundations temperatures, including local temperature gradi-
ents, can be generated.

Let Sj , j 51,..,3 denote the measured displacements and
Ti , i 51,..,9 the temperatures measured. Then, we can as-
sume the following additive model:

u j~Sj !5(
i 51

9

f j ,i~Ti !, j 51, . . . ,3. ~6!

As in the previous section we apply a two step strategy:
First, the optimal transformations are estimated based on a
learning data base. Afterwards, the temperature-displacement
relationship is tested on an independent measurement. In this
work, only the temperature measuring pointsT1 , T2 andT8

were taken into account for modeling~i.e., f j ,i[0 for
iÞ1,2,8, j 51, . . . ,3)—this combination of measuring
points has proven to be very efficient in predicting the dis-
placements~the algorithm for the selection of optimal mea-
suring locations is explained in Appendix B!. In Figs. 5 and
6, two representative measurements are given. The only dif-
ference between the two measurements is a break in the

FIG. 3. Estimation of the displacementS4 for the test time series, top: the
original temperatures, bottom: the original and the estimated axial displace-
ments of the main spindle model.

FIG. 4. Scheme of the resting tool system on a fixed shaft with measurement
positionsSj , j 51,..,3 for the displacements andTi , i 51,..,9 for the tem-
peratures (T9 is the room temperature!.

FIG. 5. Measurement for the ‘‘resting tool system’’~training set!, which was
thermally forced—Ti , i 51,2,8 are the temperatures,Si , i 51,..,3 the mea-
sured axial displacements.

FIG. 6. Measurement for the ‘‘resting tool system’’~test set!—Ti ,
i 51,2,8 are the temperatures,Si , i 51,..,3 the measured axial displace-
ments.
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neighborhood of the measuring point No. 400 during the
measurement for learning~Fig. 5!. This break was performed
to get a sufficient range of values in the learning series, es-
pecially in the fast heating region (30– 50 °C).

Figure 7~a! shows the estimated displacements at the tip
of the toolS1 using multiple linear regression~based on the
least square method! as well as using our nonlinear regres-
sion approach. In Fig. 7~b! the differences to the original
measured displacements are plotted. The displacements esti-
mated upon nonlinear regression are very close to the origi-
nal, the RMS~root mean square! failure is up to 10-fold
lower than with multiple linear regression, especially in the
active warming region at the beginning of the series. The
total RMS error for multiple linear regression amounts to
5.7 mm and to 1.0mm for nonlinear regression.

V. THE THERMAL BEHAVIOR OF A MODULAR TOOL
SYSTEM IN A WORKING MILLING MACHINE

Finally, after successfully applying the nonlinear regres-
sion approach to the measured data from a silent experimen-
tal setup, we investigate now the thermal behavior of a
modular tool system in a working milling machine. In this
final section, the thermally caused displacements within the
modular tool system were compensated as a demonstrator.
On a laptop near the machine, the temperatures measured in
the process were entered. Now, using these temperatures, the
computer online calculated the displacements based on the
temperature-displacement learning set given in Fig. 8. Here,
four successive measurements from four different days were
taken as the training set to include several manufacturing
schemes and finally to have a sufficiently large range of val-
ues. It was possible to compare simultaneously the calculated
displacements with the measured ones in the cutting proce-
dure. During this demonstration test, the cutting speed values
were repeatedly changed in order to generate deviations from
the training measurements and, thus, to reinforce the com-
pensating calculations. The cutting speed values varied from
vc5120 m/min, 200 m/min and 370 m/min. For a compari-

son of the measured displacements and the estimated ones,
see Fig. 9. As it can be seen, the nonlinear estimation of the
displacement and the original one vary only slightly from
each other—the total RMS error is 2.2mm. Avoiding dis-
placement determination errors as those around measurement
point 17 leads to estimations with 1–2mm accuracy. In con-
trast, the estimation using multiple linear regression is sig-
nificantly worse—the RMS error amounts to 5.0mm. The
multiple linear regression tends to a systematic overestima-
tion of the displacements between measurement points 10
and 40, whereas it is underestimated from measurement
point 60 on.

VI. CONCLUSIONS

The main purpose of this paper was to test whether we
could predict thermal displacements by using a nonlinear

FIG. 7. Estimation of the displacementS1 of the test set based on the
estimated optimal transformations of the training set and the temperatures
from the test set~top!. On the bottom the residuals to the original displace-
mentS1 are plotted.

FIG. 8. Measurement for the ‘‘working tool system’’~training set, four
successive measurements!—Ti , i 51,2,3 are the temperatures,S1 the mea-
sured displacement on the tip of the tool system.

FIG. 9. Thermal error modeling of the test set based on the estimated opti-
mal transformations of the training set~see Fig. 8! and the temperatures
from the test set~top!. On the bottom the nonlinear and multiple linear
estimations of the displacementS1 as well as the original measured series
are plotted.
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regression analysis. The data analyzed were generated by a
finite element spindle model of modular tool systems, were
measured on a silent real experimental setup and finally re-
corded from a working milling machine. The nonlinear
temperature-displacement functions, which are the basis for
thermal error modeling, were estimated first from learning
measurements using the ACE algorithm and then tested on
independent data sets. As it turned out to be very important
in this investigation, the support of the training measure-
ments, i.e., the temperature range passed, must be at least as
wide as that to be estimated later. Outside the range of values
of the training measurements the calculation accuracy is de-
creasing rapidly. However, in principle, the compensation al-
gorithm described above can be applied to all modular tool
systems whose temperature-deformation ratio has been pre-
viously determined in a learning trial. Moreover, the algo-
rithm may be immediately transferred to tool systems of
similar geometry and consistence. Summarizing the results
of this paper, we find that the ACE algorithm is a powerful
tool to estimate the transformationsu andf in the analyzed
models and thus enables a reliable prediction of thermal dis-
placements. Therefore, this approach seems to be very prom-
ising for the development of new modular tool systems.
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APPENDIX A: THE ACE ALGORITHM

In this appendix we provide a short description of the
ACE algorithm of Breiman and Friedman,21 the computer
programs used can be obtained from the authors
~http://tocsy.agnld.uni-potsdam.de/!. In the following the
same notations as introduced in Sec. II are used.

Generally, the estimation of functions that are optimal
for correlation is equivalent to the estimation of functions
that are optimal for regression. Therefore, another writing of
the problem,

C~S,T1 , . . . ,Tk!5max
u,f i

UrXu~S!,(
i 51

k

f i~Ti !CU, ~A1!

is the regression problem

EF S u~S!2(
i 51

k

f i~Ti !D 2G5
!

min. ~A2!

Here, the functionsu and f j ( j 51,...,k) are varied in
the space of Borel measurable functions, and the constraints
onto these functions are that they have vanishing expectation
and finite variances to exclude trivial solutions.

For the one-dimensional case (k51), the ACE algo-
rithm works as follows: Denoting the conditional expectation
of f1(T1) with respect toS by E@f1(T1)uS#, then the
function f̄0(S)5E@f1(T1)uS# minimizes ~A2! with
respect to u(S) for given f1(T1). Similarly,
f̄1(T1)5E@u(S)uT1#/iE@u(S)uT1#i , where the norm is de-
fined by iZi5Avar@Z#, minimizes ~A2! with respect to

f1(T1) for given u(S), keepingE@f1
2(T1)#51. Now the

ACE algorithm consists of the following iterative procedure:
Starting with the initial function

f1
(1)~T1!5E@SuT1#, ~A3!

from i 52 one calculates recursively

u ( i )~S!5E@f1
( i 21)~T1!uS# ~A4!

and

f1
( i )~T1!5E@u ( i )~S!uT1#/iE@u ( i )~S!uT1#i , ~A5!

until E@(f1
( i )(T1)2u ( i )(S))2# fails to decrease. The limit

values are then estimates for the optimal transformationsu
andf1 . For the minimization of the right hand side of Eq.
~A2! one uses a double-loop algorithm. In the additional in-
ner loop the functions

f j
( i )~Tj !5EFu ( i )~S!2(

pÞ j
fp

( i ,i 21)~Tp!UTj G
are calculated. In the sum, the superscript ‘‘.( i )’’ is used for
p, j and ‘‘. ( i 21)’’ for p. j . For k.1 the ACE algorithm
works similarly.

There are several possibilities to estimate conditional ex-
pectations from finite data sets. In our examples local
smoothing of the data is used. This smoothing can be
achieved with different kernel estimators. We use a simple
boxcar window, i.e., the conditional expectation value
E@yux# is estimated at each sitei via

Ê@yuxi #5
1

2N11 (
j 52N

N

yi 1 j ,

for a fixed half window sizeN. In all examples of this paper
N510 is used to account for a reliable estimate of the mean
value.

Furthermore, to allow for a better estimation in the case
of inhomogeneous distributions, prior to the application of
the ACE algorithm we transform the data to have rank-
ordered distributions@i.e., we sort the data setX in ascending
order resulting in the vectorY and all further calculation are
performed with the corresponding index vectorI , where
Y5X(I )]. This allows for a more precise estimation of ex-
pectation values, independently of the form of the data dis-
tribution, and simplifies the algorithm considerably. It is al-
lowed since the rank transformation is invertible and the
maximal correlation is, by definition, invariant under invert-
ible transformations. Proofs of convergence and consistency
of the function estimates are given in Ref. 21.

APPENDIX B: ALGORITHM FOR SELECTING OPTIMAL
MEASURING LOCATIONS

In the silent real experimental setup for three different
tool mountings~HSK 63 interface; collet chuck, hydraulic
expansion chuck and shrink chuck! the temperatures and the
displacements were recorded at different locations (Sj ,
j 51,..,3 for the displacements andTi , i 51,..,9 for the tem-
peratures!. For real working tools, however, the number of
temperature measurement locations are too high; thus we had
to reduce this number without any loss of information. With
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the maximal correlation value of a chosen model we also
have information about the quality of this ansatz. The higher
the maximal correlation value the lower the unexplained
variance in the model, i.e., the better the model. From
the given nine temperature locations we can form
( i 51

9 ( i
9)5511 measurement combinations. If we had to cal-

culate all these combinations for all measured data sets
(n523) and for all displacements we had to process 35 259
different models which would exceed our calculation capac-
ity. Hence, we limited our study to maximal three different
temperature locations, i.e., we are considering only
( i 51

3 ( i
9)5129 combinations~the maximal correlation for

temperature triples was.0.99; i.e., we did not have to con-
sider more than three temperature locations!. For each model
the maximal correlation was calculated for all measured data
sets and all displacements. Then, we identified equivalent
combinations for each displacement locationSj , j 51,...,3
separately. This was done in the following way: first the
temperature combination with the cumulative highest value
of the maximal correlation was determined~sum over all
measurements!, second all combinations were determined
which show nearly the same results using the nonparametric
Wilcoxon-test for paired samples. In this way we got 46
equivalent combinations forS1 , 7 for S2 and 27 for S3 .
Finally, we found only four different combinations which
were optimal for all displacements: $T1 ,T2 ,T8%,
$T2 ,T4 ,T8%, $T2 ,T5 ,T8%, $T2 ,T8 ,T9%. Note, the importance
of the locationsT2 andT8 : both are included in all combi-
nations. Without the information included in the third loca-
tion, however, this tuple would be significantly worse. The
last step was subjective: we decided to take the first combi-
nation$T1 ,T2 ,T8%.
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