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In this paper we show that two dynamical invariants, the second order Re´nyi entropy and the
correlation dimension, can be estimated from recurrence plots~RPs! with arbitrary embedding
dimension and delay. This fact is interesting as these quantities are even invariant if no embedding
is used. This is an important advantage of RPs compared to other techniques of nonlinear data
analysis. These estimates for the correlation dimension and entropy are robust and, moreover, can
be obtained at a low numerical cost. We exemplify our results for the Ro¨ssler system, the funnel
attractor and the Mackey–Glass system. In the last part of the paper we estimate dynamical
invariants for data from some fluid dynamical experiments and confirm previous evidence for low
dimensional chaos in this experimental system. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1667633#

We investigate a putatively intuitive method to represent
graphically the structures of the phase space of dynami-
cal systems called recurrence plot„RP…. We present evi-
dence that there are dynamical invariants„such as the
Rényi entropy of second order K2 and the correlation
dimensionD2… which can be estimated from the plot, and
that they are independent of the embedding parameters.
These invariants can even be computed if no embedding
is used. The application to prototypical systems„Rössler,
funnel attractor, Mackey –Glass…, and to experimental
flow data in the last part of the paper, shows that the
estimation of invariants by means of recurrence plots is
very robust and confirms previous evidence for low di-
mensional chaos for the flow.

I. INTRODUCTION

Recurrence plots~RPs! visualize the behavior of trajec-
tories in phase space.1,2 They are a graphical representation
of the matrix

Ri , j5Q~«2ixi2xj i !, i , j 51, . . . ,N, ~1!

wherexiPR d stands for the point in phase space at which
the system is situated at timei , « is a predefined threshold,
andQ(•) is the Heaviside function. One assigns a ‘‘black’’
dot to the value one and a ‘‘white’’ dot to the value zero. The
two dimensional graphical representation ofRi , j then is
called a RP.

To quantify the structures that occur in RPs, Webber and
Zbilut have proposed several measures in their seminal
paper,3 that constitute the recurrence quantification analysis
~RQA!. Basing on these measures, RPs have become very
popular and have been applied to various experimental data,

especially in physiology and earth science,3–8 A further po-
tential advantage of RPs is that they enable the computation
of well-known dynamical invariants, such as the correlation
entropy K2 and correlation dimensionD2 .9,10 One crucial
point is whether these estimates depend on the parameters
used in the computations. To calculate a recurrence plot, one
has to fix three parameters in advance. One of them is the
threshold«. Recently a lower bound for« in the presence of
noise has been calculated.11 It has been shown that, in order
to resolve fine structures,« should not be chosen too large
either.9,5 So upper and lower bounds for« are known, at least
theoretically.

In the case of experimental data there is often only one
component~i.e., a univariate time series! available. Hence,
the embedding dimensiond and the delayt needed for the
embedding of the time series

xi5~xi ,xi 1t ,...,xi 1(d21)t!
T ~2!

have additionally to be fixed.12 To estimate the ‘‘optimal’’
embedding dimensiond, the method of false nearest neigh-
bors or single value decomposition has usually been
applied.13,14 The choice of the delayt on the other hand is
still under debate. The most frequently applied methods for
the estimation oft are based on the autocorrelation function
or on the mutual information. The choice of the method is
rather arbitrary.15 There are further more sophisticated meth-
ods for the reconstruction of the phase space~e.g., differen-
tial embedding, integral embedding, etc.!, cf. Ref. 16 and
further references therein.

Figure 1 presents RPs for three different systems~uni-
formly distributed and independent noise, a sine function and
the chaotic Ro¨ssler system with standard parameters! and for
different embedding parameters. The left panel shows the
plots for embedding dimensiond51, i.e., no embedding is
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used. The right panel illustrates the same graphics ford
.1. The plots show that the embedding via Eq.~2! influ-
ences the structure in the RPs drastically. We will study in
this paper whether embedding changes the estimates of the
measures that are used to quantify the dynamics of the un-
derlying system.

The outline of the paper is as follows: In Sec. II we show
that the correlation entropy and dimension can be estimated
from RPs and that the estimation can be performed without
embedding. The results hold for discrete and continuous sys-
tems. In Sec. III A we estimate the entropy and dimension for
the Rössler system for standard parameters and in the funnel
regime. We then present~Sec. III B! results for the~infinite
dimensional! Mackey–Glass system. For all these different
attractors we obtain, at a low numerical cost, estimates that
are in accordance with literature. Finally, we analyze data
from fluid dynamical experiments and confirm previous re-
sults that indicate low dimensional chaos in the flow system
~Sec. IV!.

II. INDEPENDENCE OF THE EMBEDDING
PARAMETERS

We first summarize some results concerning the cumula-
tive distribution of the diagonalsP«

c( l ), i.e., the lines of at
least lengthl , in a RP. First we recall the definition of recur-
rence rate RATE, i.e., the probability to find a black or re-
currence point in the RP

RATE5
1

N2 (
i , j 51

N

Ri , j . ~3!

P«
c( l ) is the probability to find in the RP a diagonal line of at

least lengthl .3 Considering in Eq.~1! the maximum norm
(L` norm!, we get

P«
c~ l !5

1

N2 (
i , j 51

N

)
m50

l 21

Q~«2ixi 1m2xj 1mi`!. ~4!

To link P«
c( l ) to known dynamical measures, we start with

the correlation integral17

C~«!5 lim
N→`

1

N2 3$number of pairs~ i , j !

with ixi2xj i,«%. ~5!

There the Euclidean norm was used, but in principle the
choice is arbitrary. It is important to emphasize that the defi-
nition of the recurrence rate of a RP of lengthN coincides
with the definition of the correlation integral ifN tends to
infinity

C~«!5 lim
N→`

1

N2 (
i 51

N

Q~«2ixi2xj i !

5
Eq. ~1!

lim
N→`

1

N2 (
i , j 51

N

Ri , j5 lim
N→`

RATE. ~6!

FIG. 1. RPs for uniformly distributed noise~a!, the sine
function ~b!, and the Ro¨ssler system~c!. The left panel
shows the plots ford51. The right panel represents the
plots ford514, d52, andd53, respectively, from top
to bottom.« is chosen so that the recurrence rate~per-
centage of black point in the plot! is the same for the
embedded and nonembedded time series.
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This fact allows us to link the known results about the cor-
relation integral to the structures in RPs.

Suppose we have a trajectoryx(t) in the basin of attrac-
tion of an attractor in phase space and the state of the con-
tinuous system is measured at time intervalst. Let
$1,2,. . . ,M («)% be a partition of the attractor in boxes of
size «. Then p( i 1 , . . . ,i l) is the joint probability thatx(t
5t) is in box i 1 , x(t52t) is in box i 2 , . . . , andx(t5 l t) is
in box i l . The order-2 Re´nyi entropyK2 ~Refs. 18, 19! is
then defined as

K252 lim
t→0

lim
«→0

lim
l→`

1

l t
ln (

i 1 , . . . ,i l
p2~ i 1 , . . . ,i l !. ~7!

In order to estimate( i 1 , . . . ,i l
p2( i 1 , . . . ,i l), one considers

the number of pairs (xi ,xj ) such that

ixi 1k2xj 1ki,« for k51,...,l . ~8!

Grassberger and Procaccia claim20 that this is roughly
equivalent to demanding that the sets$xi 11 ,xi 12 ,...,xi 1 l%
and$xj 11 ,xj 12 ,...,xj 1 l% are pairwise in the same box of the
space–time mesh. They define

Cl~«!5 lim
N→`

1

N2 3$number of pairs~ i , j ! with

uxi 112xj 11u21¯1uxi 1 l2xj 1 l u2<«2% ~9!

and state that due to the exponential divergence of the tra-
jectories, requiring (k51

l uxi 1k2xj 1ku2<«2 is essentially
equivalent to the condition given by Eq.~8!. Therefore, up to
a factor of order unity one finds

Cl~«!. (
i 1 , . . . ,i l

p2~ i 1 , . . . ,i l ! ~10!

and the relationship

Cl~«!;«D2 exp~2 l tK2! ~11!

holds, whereD2 is the correlation dimension.21

Note that the conditionuxi 1k2xj 1ku,« for k51,...,l
coincides exactly with the definition of the cumulative dis-
tribution of diagonals in the RP of$xi% i 51

N . Hence, we can
infer also an interrelation of Eq.~11! with RPs

P«
c~ l !. (

i 1 , . . . ,i l
p2~ i 1 , . . . ,i l !

.Cl~«!;«D2 exp~2 l tK2!. ~12!

Therefore, if we represent ln(P«
c(l)) versus l we obtain a

straight line with slope2K̂2(«)t, whereK̂2(«) is an esti-
mator forK2 .

Next, we treat the case of a reconstructed phase space.
As we have shown, embedding can change the structure of
the RPs considerably~Fig. 1!. The question we want to
tackle is how the estimates ofK2 and also of the correlation
dimensionD2 depend on the embedding parameters.

Again we consider the cumulative distribution of diago-
nal linesP«

c( l ) in the RP. To make clear that we use the delay
reconstructed phase space—since we have only observed one
component—we write for the cumulative distributionP«,t

d

from now on, whered is again the embedding dimension and
t the delay used for the reconstruction. As we have decided
to choose the maximum norm in Eq.~1!, P«,t

d ( l ) is given by

P«,t
d ~ l !5

1

N2 (
i , j 51

N

)
m50

l 21

Q~«2 max
k50,...,d21

uxi 1m1kt

2xj 1m1ktu!. ~13!

Obviously,

)
m50

l 21

Q~«2 max
k50,...,d21

uxi 1m1kt2xj 1m1ktu!

5QS «2 max
m50,...,l 21
k50,...,d21

uxi 1m1kt2xj 1m1ktu D ~14!

holds. Equation~14! can be interpreted as testing whether the
conditions

uxi 1m1kt2xj 1m1ktu,« ;
m50,...,l 21
k50,...,d21 ~15!

are met. The terms on both sides of Eq.~14! are equal to one
if all conditions are simultaneously met and zero otherwise.
Hence,P«,t

d ( l ) in Eq. ~13! can be interpreted as an estimate
of the probability that all the conditions in Eq.~15! are si-
multaneously met.

Note that for the estimation of the correlation dimension
and entropy the Grassberger–Procaccia integral is frequently
used in the form

C«
d,t5P«,t

d ~1!

5
1

N2 (
i , j 51

N

Q~«2 max
k50,...,d21

uxi 1kt2xj 1ktu!, ~16!

which differs from Eq.~13!. The indices of subsequent en-
tries xn of the time series that enter analog conditions, as
given by Eq.~15!, are now separated byt steps.

Equations~15! are a set ofl •d conditions that are in
general not independent. If for examplem1kt5m81k8t,
one of the two conditions

«.uxi 1m1kt2xj 1m1ktu

or

«.uxi 1m81k8t2xj 1m81k8tu

is redundant. Ifl is sufficiently large, i.e.,l .t, we can con-
dense the conditions Eqs.~15! and find thel 1(d21)t rela-
tions

uxi 1m2xj 1mu,« ; m50,...,l 211~d21!t. ~17!

These conditions have to be met in order to find a line of at
least lengthl 211(d21)t if the time seriesxi is not em-
bedded, i.e.,

P«
1~ l 211~d21!t!

5
1

N2 (
i , j 51

N

)
m50

l 211(d21)t

Q~«2uxi 1m2xj 1mu!. ~18!
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Note, that the further conditionl .t has to be met. More
generally one finds

~19!

provided thatl ,l 8.t andd,d8>1. Equation~19! shows that
the decay ofP«,t

d ( l ) is essentially the same for different em-
bedding dimensions and delays. The curve is only shifted to
larger l ’s if the dimension is decreased. The condition for

P«,t
d ( l )5P«,t

d8 ( l 8) is

l 1~d21!t5 l 81~d821!t8. ~20!

This equality only holds~strictly! due to the special choice of
the maximum norm. However, for other choices of the norm
and other embeddings it still holds approximately. As only
the slope ofP«,t

d ( l ) for large l is relevant for the estimation
of K2 by means of RPs, the estimate does not depend ond
andt. The main consequence of this independence is that the
correlation entropy~and—as we will show—also the corre-
lation dimension! can be estimated even if no embedding is
used.

An estimator of the correlation dimensionD̂2 ~see Ref.
9! from the RP has also been derived

D̂2~«!5 lnS P«
c~ l !

P«1D«
c ~ l ! D S lnS «

«1D« D D 21

, ~21!

whereP«
c( l ) is the cumulative distribution of the real coor-

dinates. Using delay embedding and substituting Eq.~19! in
Eq. ~21!, we find

ln~P«1 ,t
d ~ l !!2 ln~P«2 ,t

d ~ l !!

5 ln~P«1 ,t
d8 ~ l 8!!2 ln~P«2 ,t

d8 ~ l 8!!,

i.e.,

lnS P«1 ,t
d ~ l !

P«2 ,t
d ~ l !D 5 lnS P«1 ,t

d8 ~ l 8!

P«2 ,t
d8 ~ l 8!

D ,

i.e., the estimateD2 is independent of the choice of the em-
bedding parameters and also applies if no embedding is used.

III. MODEL SYSTEMS

In this section we estimate the correlation entropy and
dimension from RPs for three different topological situa-
tions. First, we analyze the phase coherent Ro¨ssler system
with standard parameters. Second, we perform the analysis
for the nonphase coherent Ro¨ssler system in a funnel regime.
Then we consider the chaotic Mackey–Glass system. For
each of these cases we obtain robust estimates.

A. The Rö ssler system

We first exemplify our results for the case of the chaotic,
phase-coherent Ro¨ssler system22

ẋ52y2z,

ẏ5x1ay, ~22!

ż5b1~x2c!z,

setting a5b50.2 and c55.7. The integration step ish
50.01 and the sampling rateDt520, i.e., in absolute time
units two subsequent points are separated by a lag of 0.2.
The length of the time series isN510 000~after neglecting
the first 5 000 points!.

As we have shown in Sec. II, it is possible to define
measures to quantify the structures in RPs which are inde-
pendent of the embedding parameters. These quantities are
invariants known from the theory of dynamical systems and
can be estimated by the cumulative distribution of diagonals
P«

c( l ). Figure 2~a! representsN«
c( l )5N2

•P«
c( l ) resp.N«

c( l )
5N2

•P«,t
d ( l ) for both real and embedded coordinates of the

FIG. 2. ~a! Comparison of the cumulative number of diagonal lines of
length l (N«

c5N2
•P«,t

d ( l )) for the Rössler system with real coordinates
~dashed line! and embedded usingd53,t58 ~bold line! using the
x-component.~b! Local slope of the curves represented in~a!, for the real
coordinates~dashed! and for the embedded coordinates~bold!.

TABLE I. Estimates ofK2 andD2 estimated by RPs based on the original
coordinates of the Ro¨ssler system, on the embedded ones for arbitrary~!!
embedding parameters, and the same values estimated by the Grassberger–
Procaccia algorithm.

System K2 D2

‘‘Original coordinates’’ 0.067560.004 2.0760.01
Embedding,x-component, arbitraryd,t 0.06760.007 2.0660.06

G–P algorithm 0.07060.003 1.8160.02

237Chaos, Vol. 14, No. 2, 2004 Dynamical invariants by RPs

Downloaded 23 Feb 2006 to 141.89.176.72. Redistribution subject to AIP license or copyright, see http://chaos.aip.org/chaos/copyright.jsp



Rössler system. For smalll both curves behave quite differ-
ently, but for largerl their slopes become almost identical
@Fig. 2~b!#, as expected by Takens’ theorem. The slope in the
latter part corresponds, as we have shown in Sec. II, to the
second order Re´nyi entropy,K2 , of the Rössler system~see
also Ref. 9 for a more detailed analysis of the Ro¨ssler sys-
tem!.

A remarkable point is the occurrence of an additional
first slope ofN«

c( l ) ~Fig. 2! that is pronounced in the case of
the original coordinates. Thielet al. have recently reported
that the first slope may due to the nonhyperbolicity of the
attractor.9 They find that the first scaling region extends from

l 51 to l'84 ~i.e., 84•0.2516.8 in absolute time units!.
Comparing this with the distribution for the embedded coor-
dinates, we obtain three regions which are not so well pro-
nounced. The first one is found betweenl 51 andl'7 ~i.e.,
1.4 in absolute time units!, and the second one betweenl
58 and l'68 ~i.e., 13.6 in absolute time units!. The third
and last scaling region, which is parallel to the second part of
the distribution for the original coordinates, sets in atl
.68.

Also, using they- andz-components of the Ro¨ssler sys-
tem, the slopes of the second part of the logarithmic plot of
Pc( l ), i.e., the estimate ofK2 , are the same~to within nu-
merical errors!. Table I summarizes the results of the esti-
mates ofD2 andK2 based on the RP method for original and
embedded coordinates for the Ro¨ssler system~parameters
see Sec. III A!, and estimated by the Grassberger–Procaccia
algorithm. The values for the correlation entropy are identi-
cal within the error bounds, whereas the estimates of the
correlation dimension are slightly higher for the RP method
than for the G–P algorithm. Sprott and Rowlands report a
correlation dimension ofD251.98860.078 and a Kaplan–
Yorke dimension ofDKY52.031.23 The largest Lyapunov
exponent is reported to bel50.0714.24 The independence of
the embedding dimensiond and the delayt is a very impor-
tant point for the analysis of observed time series. Even
though the embedding dimensiond and the delayt may be
difficult to determine, the slope ofP«,t

d ( l ) for large l will be
independent of the special choice of the parameters. Hence,
the estimates forK2 andD2 do not depend on these param-
eters. Figure 3 shows the number of diagonalsN«

c( l )5N2

FIG. 3. Comparison of the cumulative number of diagonal lines of lengthl
(N«,t

d 5N2
•P«,t

d ( l )) for the Rössler system (a5b50.2, c55.7) for differ-
ent embedding parameters ($d51%, $d53,t56%, $d53,t58%, $d56,t
58%, and$d53,t525% from top to bottom!. For all cases thex-component
was used for the embedding.

FIG. 4. ~a! Sample of the time series of the Ro¨ssler attractor in the funnel regime (a50.25, b50.4, andc58.5); ~b! reconstructed attractor;~c! dependence
of correlation entropy on the recurrence rate;~d! dependence of correlation dimension on the recurrence rate.
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•P«
c(l) on a logarithmic scale for different embedding param-

eters ~see caption!. K2 is given by the slope ofN«
c( l ) for

large l . For l .100 the graphs are~approximately! parallel
and so the estimate ofK2 is independent of the special
choice of the embedding parameters in accordance with Eq.
~19!. Upon changing the parameters of the Ro¨ssler system to
a50.25, b50.4, andc58.5, the structure of the Ro¨ssler
attractor changes into a different, more complicated topol-
ogy; a funnel attractor as shown in Figs. 4~a! and 4~b!. Due
to the change of the parameters, the system loses its phase
coherency. Performing the upper analysis one findsK2

50.11260.050 nats/s andD252.2560.22. Figures 4~c!
and 4~d! also show that, without using any embedding, we
obtain a broad plateau, that allows the estimation of both
invariants. Therefore, the extent of the plateau has to be es-
timated. This estimation was—in this and the following
examples—performed by several independent scientists. The
resulting variations were taken into account for the estima-
tion of the errors. However, the error bars are reasonably
small. Based on the program ‘‘lyap–k’’ of the TISEAN pro-
gram package,28 one obtains an estimate for the largest
Lyapunov exponent ofl50.11360.002 nats/s, again in
very good agreement with our results and, using the program
D2 of the same package for the estimate of the correlation
dimension, one obtainsD251.9360.28. Note, that we rep-
resent in Figs. 4~c! and 4~d! the entropy and the dimension
versus the recurrence rate, not versus«. We obtain a plateau,
as the recurrence rate depends strictly monotonously on«.
However, this representation makes the plateau easier to de-
termine.

B. The Mackey–Glass system

The independence of the estimates of the correlation di-
mension and entropy are of special advantage for the analy-
sis of infinite dimensional systems. A dynamical system is
infinite dimensional if an infinite set of independent numbers
is required to specify an initial condition, i.e., its phase space
dimension is infinite. The Mackey–Glass equation,

d

dt
x~ t !5

ax~ t2t!

11xc~ t2t!
2bx~ t !, ~23!

is a prototypical example of such a system.25,27 It is used as
a model for the investigation of blood production. In this
study we seta50.2, b50.1, c510, andt517. The integra-
tion step ish50.01. Figure 5~a! shows a section of the time
series. Figure 5~b! represents a phase portrait of the attractor.
To estimate the correlation dimension and entropy one would
usually have to embed the time seriesx(t). Therefore, one
has to determine the embedding dimension. The embedding
dimension is not necessarily infinite. An embedding is a
smooth map f :X→Y that is, a diffeomorphism from a
smooth manifoldX to a smooth submanifoldY. The embed-
ding dimensiond is then defined as the minimum dimension
of a subset of Euclidean space into which a smooth manifold
containing the attractor can be ‘‘embedded,’’ i.e.,d variables
are sufficient to uniquely specify a point on the attractor. As
mentioned in the preceding section, the determination of the
embedding dimension is problematic for observed time se-

FIG. 5. ~a! Sample of the time series of the Mackey–Glass system fort517 ~chaotic regime!; ~b! reconstructed attractor;~c! correlation entropy in
dependence on the recurrence rate;~d! correlation dimension in dependence on the recurrence rate.
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ries. However, since the RP based method for the estimation
of K2 and D2 is independent of the embedding parameters,
we do not use any embedding in this study.

Figure 5~c! shows the estimates ofK2 for different re-
currence rates~we have obtained similar results for largert,
e.g.,t530). The plateau allows us to estimate the correla-
tion entropy for the Mackey–Glass system to beK256.66
•102361024 nats/s. This result is in good accordance with
values reported in the literature for its Lyapunov exponents
@0.007,0,20.071,20.15, . . .#,25 since the correlation en-
tropy is numerically close to the sum of the positive
Lyapunov exponents. The metric entropy for nonhyperbolic
systems is approximately the sum of the positive Lyapunov
exponents~slightly less! and the metric entropy is an upper
bound for the correlation entropy.26

The RP based estimate for the correlation dimension is
D252.1360.03. Farmer computesDF52.1360.03 for the
fractal dimension andDKY52.1060.02 for the Kaplan–
Yorke dimension, again in very good accordance with our
results.27

Our estimates were obtained from the scalar time series
without any embedding. However, if we had used embedding
we would have obtained the same estimates for all choices of
the embedding parameters.

Note that we also computed successfully estimates ofK2

andD2 for largert, e.g.,t530 andt5300.

IV. APPLICATION TO FLOW DATA

In this section we estimate invariants from the RP ob-
tained from an analysis of fluid flow data. The experiment

consists of a rotating, differentially-heated cylindrical annu-
lus, in which a fluid~a water–glycerol mixture! is contained
within the annular gap between two coaxial, brass cylinders
and horizontal, thermally-insulating base and lid. The appa-
ratus is rotated uniformly about its vertical axis of symmetry,
and motion is driven by differential heating of the cylindrical
sidewalls. Further details may be found in Ref. 29. The time
series consisted of temperatures measured in the fluid at in-
tervals of 2 s for periods of up to 83104 s, and were ob-
tained from copper–constantan thermocouples on fine-wire
probes located at mid-height and mid-radius in the convec-
tion chamber. The flows measured were in the baroclinically
unstable regime, and took the form of azimuthally-
propagating travelling waves with various quasiperiodic or
chaotic modulations. The particular time series investigated
here were taken from a single thermocouple probe for cases
~ii ! and~iii ! of Ref. 29; case~iii ! was identified as a quasip-
eriodic amplitude-modulated wavenumberm53 flow, while
case ~ii ! was identified as a low-dimensional chaotically-
modulated wave with bothm53 andm52 present.

Figure 6~a! shows a section of the time series from case
~ii ! and Fig. 6~b! the reconstructed attractor. To estimateK2

we compute the distribution of diagonalsP«
c( l ) and deter-

mine the slope for different thresholds« ~respectively versus
the recurrence rate! in the second scaling region. We also
included the Theiler correction30,31 based on the first zero of
the autocorrelation function which was determined to be at
t5118 s. Figure 6~c! shows the result. The plateau allows us
to estimateK2 reasonably unambiguously.

Based on Eq.~21! we then estimateD2 . Figure 6~d!

FIG. 6. ~a! Sample of the time series for the flow in chaotic regime;~b! reconstructed attractor;~c! dependence of correlation entropy on the recurrence rate;
~d! dependence of correlation dimension on the recurrence rate.
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represents the outcome for different recurrence rates. We ob-
tain for the correlation entropyK256.8•1023 bits/s62.5
•1024 bits/s and for the correlation dimensionD253.6
60.4. Our results are in accordance with previous results29

and indicate low dimensional chaos. Note that our results
were obtained from 40 000 data points without filtering and
without embedding.

We have also performed the analogous computation
based on the Grassberger–Procaccia algorithm~Fig. 7! and
found that the CPU time needed is about one or two orders
of magnitude higher. The values we have obtained for the
correlation entropy areK251.1•102365.0•1024 bits/s and
for the correlation dimensionD254.160.4.

The estimation of the correlation dimension and the en-
tropy is rather problematic as the scaling is not very well
pronounced for large embedding dimensions. The estimation
based on the RP method is more robust.

In the quasiperiodic case~iii ! we obtain for the correla-
tion entropy K254.63•102462.4•1025 bits/s and for the
correlation dimensionD252.3960.29 also in very good
agreement with previously reported results.29

V. EFFECTS OF NOISE

In this section we discuss the effects of noise on the
results of the analysis presented in this paper. A more de-
tailed discussion can be found in Ref. 11.

Naively speaking, both observational and dynamical
noise have two effects on the analysis. First, due to noise,

two points that are neighoring can be separated, and second,
two points that are not neighboring can become neighbors.

The first effect breaks long lines in smaller fractions and
hence increases the slope of2 ln(P(l)) and therefore the en-
tropy. Furthermore, it can be shown,11 that the slope of
ln(P(l)) versusl for a stochastic time series is not constant
with respect to« resp. the recurrence rate. Hence, especially
for small recurrence rates, the scaling region breaks down if
« is smaller than about 5 times the standard deviation of the
noise.11 However, this effect is at least partially corrected by
an appropriate choice of the scaling region in the ‘‘K2 versus
recurrence rate’’ diagram.

The second effect increases the number of short lines,
mainly single points. This effect is—under normal
conditions—nearly completely corrected when the scaling
region in the ln(P(l)) versusl diagram is fixed, as short lines
are ignored.

For practical purposes, a noise level of about 5%–10%
can be treated without denoising the data. Further, Ref. 11
also allows for a mathematical correction if the noise level
can be estimated.

Next, we exemplify the effects of noise on the analysis
for the Rössler system in the funnel regime~see Fig. 4!
which we have already studied in Sec. III A. We use the same
parameters for the integration and add 10% of observational
noise. Then, we perform the estimation based on the RP
method. The results are summarized in Fig. 8. We find for the
correlation entropyK250.13060.050, i.e., the value is
about 16% higher than in the case without observational
noise. This increase of the entropy is expected. Also the pla-
teau breaks down for small recurrence rates. However, the
scaling region is still reasonably broad.

For the estimation of the correlation dimension we ob-
tain a rather small plateau. Despite of this problem, we ob-
tain D252.2760.28 which is in a very good agreement with
the result for the case without noise. The deviation is less
than 1%. Note, that the error bars for both, the entropy and
the dimension, are larger than the deviations due to the ob-
servational noise.

VI. CONCLUSIONS

In this paper we have shown that it is possible to esti-
mateK2 andD2 from RPs and that these estimates are inde-
pendent of the choice of the embedding parameters. Even
without an explicit embedding, it is possible to estimate
these dynamical invariants directly. This fact is of consider-
able advantage, since means of making the optimal choice
for the embedding parameters is still under debate. Hence,
the method of RPs may be advantageous with respect to
other methods, as presented in Ref. 20.

These results are also hinged to a train of arguments by
Ivanski and Bradley on the one hand and Gao and Cai on the
other. Ivanski and Bradley reported that some measures do
not depend on the embedding.32 Gao and Cai then stated that
there the measures computed by Ivanski and Bradley are
rather independent from the embedding, but that some struc-
tures in RPs are linked to the Lyapunov exponents and en-
tropies, i.e., dynamical invariants. Then, in general, one has

FIG. 7. ~a! Correlation integral for the flow data. The estimation of the
invariants is problematic in this representation as there is no clear straight
line for large embedding dimensions.~b! Local slope of the curves repre-
sented in~a!.
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to embed the time series.33 We think that both groups are in
some sense right. However, we have shown analytically that
the correlation entropy and the correlation dimension are in-
dependent from the embedding. Some other invariants, such
as the mutual information, are not.

We also have estimatedK2 andD2 for prototypical sys-
tems with different types of attractors, such as the chaotic
and phase-coherent Ro¨ssler system with standard parameters,
the Rössler funnel attractor, which is nonphase-coherent, and
the Mackey–Glass system, which is infinite dimensional. For
all systems the estimates are in very good agreement with
results that are reported elsewhere in the literature.

For experimental flow data we were able to confirm the
previous results that the time series comes from a low-
dimensional chaotic system. The CPU time needed to obtain
these results is by a factor 2 or 3 lower than that needed to
apply the Grassberger–Procaccia algorithm. The benchmark
was performed with the programD2 from the TISEAN pack-
age. We find numerically that the estimates are very robust,
which may be due to the fact that the functions lnP(l) and
K2(RR) which we consider have rather clear scaling regions.
Furthermore, we exclude a first scaling region in lnP(l) for
short lines, which improves the robustness of our estimates.
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