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In this paper we show that two dynamical invariants, the second ordeyi Ratropy and the
correlation dimension, can be estimated from recurrence RB® with arbitrary embedding
dimension and delay. This fact is interesting as these quantities are even invariant if no embedding
is used. This is an important advantage of RPs compared to other techniques of nonlinear data
analysis. These estimates for the correlation dimension and entropy are robust and, moreover, can
be obtained at a low numerical cost. We exemplify our results for theslBosystem, the funnel
attractor and the Mackey—Glass system. In the last part of the paper we estimate dynamical
invariants for data from some fluid dynamical experiments and confirm previous evidence for low
dimensional chaos in this experimental system.2@4 American Institute of Physics.

[DOI: 10.1063/1.1667633

We investigate a putatively intuitive method to represent  especially in physiology and earth sciericE A further po-
graphically the structures of the phase space of dynami- tential advantage of RPs is that they enable the computation
cal systems called recurrence plo{RP). We present evi-  of well-known dynamical invariants, such as the correlation
dence that there are dynamical invariants(such as the entropy K, and correlation dimensio®,.%'° One crucial
Renyi entropy of second order K, and the correlation  point is whether these estimates depend on the parameters
dimensionD,) which can be estimated from the plot, and used in the computations. To calculate a recurrence plot, one
that they are independent of the embedding parameters. has to fix three parameters in advance. One of them is the
These invariants can even be computed if no embedding thresholde. Recently a lower bound far in the presence of

is used. The application to prototypical systemgRossler,  noise has been calculatédlt has been shown that, in order
funnel attractor, Mackey—Glasg, and to experimental to resolve fine structureg, should not be chosen too large
flow data in the last part of the paper, shows that the either®® So upper and lower bounds ferare known, at least
estimation of invariants by means of recurrence plots is theoretically.

very robust and confirms previous evidence for low di- In the case of experimental data there is often only one
mensional chaos for the flow. component(i.e., a univariate time seripgvailable. Hence,

the embedding dimensioth and the delayr needed for the
embedding of the time series

I. INTRODUCTION T
Xi=(Xi X4 750 Xit (d—1)7) 2

have additionally to be fixet?: To estimate the “optimal”
embedding dimensiod, the method of false nearest neigh-
bors or single value decomposition has usually been

R=0(e—Ix—x[), i,i=1...N, (1) applied.l3'14The choice of the delay on the other hand is

still under debate. The most frequently applied methods for
wherex; e R ¢ stands for the point in phase space at whichthe estimation of- are based on the autocorrelation function
the system is situated at time ¢ is a predefined threshold, or on the mutual information. The choice of the method is
and©(-) is the Heaviside function. One assigns a “black” rather arbitrary> There are further more sophisticated meth-
dot to the value one and a “white” dot to the value zero. Theods for the reconstruction of the phase spaxg., differen-
two dimensional graphical representation Bf; then is tial embedding, integral embedding, efccf. Ref. 16 and
called a RP. further references therein.

To quantify the structures that occur in RPs, Webber and  Figure 1 presents RPs for three different systeéoms-
Zbilut have proposed several measures in their semindbrmly distributed and independent noise, a sine function and
paper’ that constitute the recurrence quantification analysighe chaotic Resler system with standard parametensd for
(RQA). Basing on these measures, RPs have become vedjfferent embedding parameters. The left panel shows the
popular and have been applied to various experimental datajots for embedding dimensioti=1, i.e., no embedding is

Recurrence plot$RP9 visualize the behavior of trajec-
tories in phase spadé.They are a graphical representation
of the matrix
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FIG. 1. RPs for uniformly distributed noige), the sine
function (b), and the Resler systentc). The left panel
1000 shows the plots fod=1. The right panel represents the
plots ford=14, d=2, andd= 3, respectively, from top
to bottom.e is chosen so that the recurrence rgier-

500 / centage of black point in the plots the same for the

embedded and nonembedded time series.

c)
500 1000 1500 2000
used. The right panel illustrates the same graphicsdfor 1 N
>1. The plots show that the embedding via Ef). influ- RATE= WE Ri;- (3)

ences the structure in the RPs drastically. We will study in =1

this paper whether embedding changes the estimates of the(l) is the probability to find in the RP a diagonal line of at
measures that are used to quantify the dynamics of the uneast lengthl.®> Considering in Eq(1) the maximum norm
derlying system. (L.. norm), we get

The outline of the paper is as follows: In Sec. Il we show LN
that the correlation entropy and dimension can be estimated ¢,
from RPs and that the estimation can be performed without Pe(l)= Nzi,,zzl nl;lo O (e =%+ m=Xjmle). @)
embedding. The results hold for discrete and continuous sys- c ) )
tems. In Sec. Il A we estimate the entropy and dimension for© link Ps(l_) tq known dynamical measures, we start with
the Rasler system for standard parameters and in the funnd€ correlation integraf
regime. We then presefi§ec. Il B) results for the(infinite 1
dimensional Mackey—Glass system. For all these different ~ C(&)= lim 7 X {number of pairs(i,j)
attractors we obtain, at a low numerical cost, estimates that N—ee
are in qccordanqe with Iltgrature. Finally, we analyze data with [x,—x;[|<s}. (5)
from fluid dynamical experiments and confirm previous re-

sults that indicate low dimensional chaos in the flow systeml Nere the Euclidean norm was used, but in principle the
(Sec. V. choice is arbitrary. It is important to emphasize that the defi-

nition of the recurrence rate of a RP of lendthcoincides
with the definition of the correlation integral N tends to
IIl. INDEPENDENCE OF THE EMBEDDING infinity

PARAMETERS N

We first summarize some results concerning the cumula- C(g)= lim WZ (H)(s—”Xi—X]-H)
tive distribution of the diagonal®S(l), i.e., the lines of at N—eel T 1=l

least lengtH, in a RP. First we recall the definition of recur- Eq. (1) 1 N
rence rate RATE, i.e., the probability to find a black or re- = lim R; ;= lim RATE. (6)
currence point in the RP NeoNTiTTL Y L
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This fact allows us to link the known results about the cor-from now on, whereal is again the embedding dimension and

relation integral to the structures in RPs.
Suppose we have a trajectorft) in the basin of attrac-

tion of an attractor in phase space and the state of the con-

tinuous system is measured at time intervats Let

{1,2,...,M(e)} be a partition of the attractor in boxes of

size e. Thenp(iq,...,) is the joint probability thatx(t
=7) isin boxiqy, X(t=27) isin boxi,, ..., andx(t=17) is
in box i;. The order-2 Reyi entropyK, (Refs. 18, 19 is
then defined as

1
Ko=—1lim lim lim—=In > p%iy,...,i). (7)
7—0 £—0 |~>00| ET i
In order to estimateZ; . ;p*(i1,... ), one considers

the number of pairsx ,x;) such that

8

Grassberger and Procaccia cldinthat this is roughly
equivalent to demanding that the s, 1,X . 2,..-Xi|}

||Xi+k_Xj+k||<8 for k:].,,l

and{Xj ;1,Xj+2,....Xj1} are pairwise in the same box of the

space—time mesh. They define

1
Ci(e)= Iimmx{number of pairs(i,j) with
N— o

X1 X el X = X[ P<e?)

9)

and state that due to the exponential divergence of the tra-

jectories, requiring ELzllek—kaFs e? is essentially
equivalent to the condition given by E@). Therefore, up to
a factor of order unity one finds

Cie)= 2 pXiy,....i) (10)
i1, i
and the relationship
Ci(e)~ePzexp(—17K,) (1)

holds, whereD, is the correlation dimensicft.
Note that the conditior}x;,—Xj./<e for k=1,...]

7 the delay used for the reconstruction. As we have decided
to choose the maximum norm in E@), PS,T(I) is given by

) 1 N 1
PLAD=1z 2
i,j=1 m=0

O(e— max [Xiymikr
k=0,...d-1
~Xj+mike)- (13
Obviously,
-1
IT ©(e— max |Xi 4 mt k™ Xj 4 mkrl)
m=0 k=0,..d—1
=0[e— max |XiimikrXj+mrkdl (14
m=0,...|—-1
k=0,..d-1

holds. Equatior{14) can be interpreted as testing whether the
conditions

m=0,.../]—-1

k=0,...d—1 (15)

Xt mikr— Xjemikd <e ¥
are met. The terms on both sides of Etg) are equal to one
if all conditions are simultaneously met and zero otherwise.
Hence,PS’T(I) in Eq. (13) can be interpreted as an estimate
of the probability that all the conditions in E¢L5) are si-
multaneously met.
Note that for the estimation of the correlation dimension
and entropy the Grassberger—Procaccia integral is frequently
used in the form

Cy=PA1)

N
2 O(e— max XX, (16
ij=1 k=0,..d-1

1
N2
which differs from Eq.(13). The indices of subsequent en-
tries x, of the time series that enter analog conditions, as
given by Eq.(15), are now separated bysteps.
Equations(15) are a set ofl -d conditions that are in

coincides exactly with the definition of the cumulative dis- 9eneral not independent. If for exampie+ kr=m’+k'r,

tribution of diagonals in the RP dfx}\_,. Hence, we can
infer also an interrelation of Eq11) with RPs

PS(h= > P, .-y
17 i

.....

=C(e)~eP2zexp —17K,). (12

Therefore, if we represent IRf(I)) versusl we obtain a

straight line with slope-K,(g) 7, whereK,(&) is an esti-
mator forK,.

one of the two conditions

&> [Xi 4 mtkr— X+ m kel

or

e>Xivm +kr e~ Xj+m +k' ]

is redundant. If is sufficiently large, i.e.l>7, we can con-
dense the conditions Egdl5) and find thel + (d—1)7 rela-
tions

YV m=0,..)-1+(d-1)r. (17

|Xi+m_Xj+m|<8

Next, we treat the case of a reconstructed phase space.

As we have shown, embedding can change the structure gfhese conditions have to be met in order to find a line of at

the RPs considerablyFig. 1). The question we want to |east lengthl — 1+ (d—1)7 if the time seriesk; is not em-
tackle is how the estimates &f, and also of the correlation peqdded, i.e.,

dimensionD, depend on the embedding parameters.
Again we consider the cumulative distribution of diago- PX1—1+(d—1)7)
nal linesPS(1) in the RP. To make clear that we use the delay N
reconstructed phase space—since we have only observed one _ i 2
component—we write for the cumulative distributicﬁﬁj N?i 41

I—14(d—1)r

ngo O (e = |Xi+m—Xjsm|)- (18)

Downloaded 23 Feb 2006 to 141.89.176.72. Redistribution subject to AIP license or copyright, see http:/chaos.aip.org/chaos/copyright.jsp



Chaos, Vol. 14, No. 2, 2004 Dynamical invariants by RPs 237

Note, that the further conditioh>r has to be met. More 108
generally one finds (@) [¢5f ™ ]
Al el
P (H=P! (I-1+(d-1)7) _ oy
L 107 F el 1
=P, ([IF¥Ad-7]—1+([d+=Ad]- )7 Z
- -~ 0%k ]
I d’ E E
1
' 10" F El
=pd (I g
e 1) 100f | | |
(19) 100 200 300

provided that,|’>7 andd,d’=1. Equation(19) shows that
the decay oPS’T(I) is essentially the same for different em- {b)
bedding dimensions and delays. The curve is only shifted to
larger I's if the dimension is decreased. The condition for
P (1)=PZ (") is

l+(d—1)7=1"+(d'—1)7". (20)

local slope

This equality only holdsgstrictly) due to the special choice of
the maximum norm. However, for other choices of the norm :
and other embeddings it still holds approximately. As only 100 200 300
the slope oiPS’T(I) for largel is relevant for the estimation '
of K, by means of RPs, the estimate does not depend on FIG. 2. (a) Comparison of the cumulative number of diagonal lines of
and. The main consequence of this independence is that tH&ngth | (N;=N”-P (1)) for the Rissler system with real coordinates
correlation entropyand—as we will show—also the corre- (dashed ling and embedded usingi=3,7=8 (bold ling) using the

. . . . . . . x-component(b) Local slope of the curves represented(@, for the real
lation dimensioh can be estimated even if no embedding iScoordinatesdashed and for the embedded coordinatemld).
used.

An estimator of the correlation dimensid, (see Ref.
9) from the RP has also been derived

A. The Rossler system

We first exemplify our results for the case of the chaotic,

A Pe() i o hase-coherent Reler systert
Dz(s)—ln( P§+A£(I)> In v ) , 21y P . Yy
X=—-y—z,
where P{(1) is the cumulative distribution of the real coor- .
dinates. Using delay embedding and substituting (E6) in y=x+ay, (22)
Eqg. (21), we find z=b+(x—0)z,
In(PSlVT(I))—In(PSZVT(I)) setting a=b=0.2 andc=5.7. The integration step i&
=0.01 and the sampling rat®t=20, i.e., in absolute time
=In(PS;’T(I’))—In( PS;'T(I’)), units two subsequent points are separated by a lag of 0.2.
The length of the time series =10 000(after neglecting
ie., the first 5000 points
g 4 As we have shown in Sec. Il, it is possible to define
Pe, Al Pe.A17) measures to quantify the structures in RPs which are inde-
In PT () =In Pd—“,) pendent of the embedding parameters. These quantities are
c27 82:7 invariants known from the theory of dynamical systems and

i.e., the estimat®, is independent of the choice of the em- ¢an be estimated by the cumulative distribution of diagonals

bedding parameters and also applies if no embedding is useBs(!)- Izigure 2a) representN; (1) =N?-P(1) resp.Ng(1)
=N2.P¢ (1) for both real and embedded coordinates of the

11l. MODEL SYSTEMS TABLE |. Estimates ofK, andD, estimated by RPs based on the original
coordinates of the Resler system, on the embedded ones for arbit¢Bry

In this section we estimate the correlation entropy andgmbedding parameters, and the same values estimated by the Grassherger—
dimension from RPs for three different topological situa-"recaccia algorithm.
tions. First, we analyze the phase coherensdRer system System K, D,
with standard parameters. Second, We_perform the a_nalysis E——— 006750004 207 0.01
for the nonphas_e coherent mr system in a funnel regime. Embedding,?(-component, arbitrarg, 7 02067-_'- 0.607 2:06: 0:06
Then we consider the chaotic Mackey—Glass system. For G—P algorithm 0.0700.003  1.810.02
each of these cases we obtain robust estimates.
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I=1 to |=~84 (i.e.,, 840.2=16.8 in absolute time units
Comparing this with the distribution for the embedded coor-
dinates, we obtain three regions which are not so well pro-
nounced. The first one is found betwdenl andl~7 (i.e.,
1.4 in absolute time uniis and the second one betwekn
=8 and|~68 (i.e., 13.6 in absolute time unjtsThe third
and last scaling region, which is parallel to the second part of
the distribution for the original coordinates, sets inlat
‘ . . ‘ >68.
100 150 200 250 Also, using they- andz-components of the Risler sys-

| tem, the slopes of the second part of the logarithmic plot of
PS(l), i.e., the estimate oK,, are the saméto within nu-
merical errors Table | summarizes the results of the esti-
mates ofD, andK, based on the RP method for original and
embedded coordinates for the $ter system(parameters

N A1)

0] 50

FIG. 3. Comparison of the cumulative number of diagonal lines of lehgth
(N2, =N2.P¢ (1)) for the Rassler systemg=b=0.2, c=5.7) for differ-
ent embedding parameter¢dE 1}, {d=3,7=6}, {d=3,7=8}, {d=6,7
=8}, and{d=3,7=25} from top to botton. For all cases thg-component

was used for the embedding.

see Sec. Il A, and estimated by the Grassherger—Procaccia
algorithm. The values for the correlation entropy are identi-
cal within the error bounds, whereas the estimates of the

Rossler system. For smdllboth curves behave quite differ- correlation dimension are slightly higher for the RP method
ently, but for larger their slopes become almost identical than for the G—P algorithm. Sprott and Rowlands report a
[Fig. 2(b)], as expected by Takens’ theorem. The slope in theorrelation dimension ob,=1.988+0.078 and a Kaplan—
latter part corresponds, as we have shown in Sec. II, to th¥orke dimension ofDy,=2.0312% The largest Lyapunov

second order Reyi entropy,K,, of the R@sler systenfsee
also Ref. 9 for a more detailed analysis of thesBler sys-

tem).

exponent is reported to be=0.07142* The independence of
the embedding dimensiahand the delayris a very impor-
tant point for the analysis of observed time series. Even

A remarkable point is the occurrence of an additionalthough the embedding dimensidnand the delayr may be
first slope ofNS(1) (Fig. 2) that is pronounced in the case of difficult to determine, the slope (F?S’T(I) for largel will be

the original coordinates. Thiadt al. have recently reported

independent of the special choice of the parameters. Hence,

that the first slope may due to the nonhyperbolicity of thethe estimates foK, andD, do not depend on these param-
attractor’ They find that the first scaling region extends from eters. Figure 3 shows the number of diagoridfgl) = N2

o) ] 0 ] ;_
10 10F
LN
< 0f £ of
<
~10 -10F
—20f . . . . —20f
O 20 40 60 80 100 —-20
time(s)
0.5¢ ' ' ' ; ) 7
0.4F of
0 55-
303 ‘ N4:_
s E (]
E 02} Sk
S 2t
0.1 E ,]_ E
0.0 1 1 L 1 oé 1 1 1 1
0.0 02 04 06 08 1.0 0.0 02 04 06 08 1.0

Recurrence Rate

Recurrence Rate

FIG. 4. (a) Sample of the time series of the §gber attractor in the funnel regima+£0.25,b=0.4, andc=8.5); (b) reconstructed attractofg) dependence
of correlation entropy on the recurrence rdi); dependence of correlation dimension on the recurrence rate.
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o) [T 0)

1.0}

x(t+17)

0.5}

0.0l . . . . 0.0L . . . s
0] 100 200 300 400 500 04 06 08 1.0 1.2 1.4
time(s) x(t)

D,

1
CO0O—= N W U O

0.000¢ . . . ,
0.0 0.2 0.4 0.6 0.8 1.0 .0 0.2 0.4 0.6 0.8 1.0
Recurrence Rate Recurrence Rate

FIG. 5. (a) Sample of the time series of the Mackey—Glass systemrfofl7 (chaotic regimg (b) reconstructed attractofr) correlation entropy in
dependence on the recurrence rétg;correlation dimension in dependence on the recurrence rate.

-P¢(1) on a logarithmic scale for different embedding param-B. The Mackey—Glass system
eters(see captioh K, is given by the slope ofNZ(I) for
largel. For I>100 the graphs aréapproximately parallel
and so the estimate df, is independent of the special
choice of the embedding parameters in accordance with E

The independence of the estimates of the correlation di-
mension and entropy are of special advantage for the analy-
sis of infinite dimensional systems. A dynamical system is

hanaing th £ the Ghfinite dimensional if an infinite set of independent numbers
(19). Upon changing the parameters of thesBler system to is required to specify an initial condition, i.e., its phase space

a=0.25, b=0.4, andc=8.5, the structure of the Beler i onsi0n is infinite. The Mackey—Glass equation,
attractor changes into a different, more complicated topol-

ogy; a funnel attractor as shown in Figgagand 4b). Due

to the change of the parameters, the system loses its phase d ax(t—r7)

coherency. Performing the upper analysis one filds g Xv= m—bx(t), (23
=0.112+0.050 nats/s andD,=2.25+0.22. Figures &)

and 4d) also show that, without using any embedding, we

obtain a broad plateau, that allows the estimation of botlis a prototypical example of such a syst&hi’ It is used as
invariants. Therefore, the extent of the plateau has to be es model for the investigation of blood production. In this
timated. This estimation was—in this and the following study we sea=0.2,b=0.1,¢c=10, andr=17. The integra-
examples—performed by several independent scientists. TH®n step ish=0.01. Figure %) shows a section of the time
resulting variations were taken into account for the estimaseries. Figure ) represents a phase portrait of the attractor.
tion of the errors. However, the error bars are reasonablyo estimate the correlation dimension and entropy one would
small. Based on the program “lyaR” of the TISEAN pro-  usually have to embed the time serigg). Therefore, one
gram packagé® one obtains an estimate for the largesthas to determine the embedding dimension. The embedding
Lyapunov exponent of\=0.113+0.002 nats/s, again in dimension is not necessarily infinite. An embedding is a
very good agreement with our results and, using the prograremooth mapf:X—Y that is, a diffeomorphism from a
D2 of the same package for the estimate of the correlatiosmooth manifoldX to a smooth submanifoldl. The embed-
dimension, one obtain®,=1.93+0.28. Note, that we rep- ding dimensiord is then defined as the minimum dimension
resent in Figs. &) and 4d) the entropy and the dimension of a subset of Euclidean space into which a smooth manifold
versus the recurrence rate, not versugve obtain a plateau, containing the attractor can be “embedded,” i@ variables

as the recurrence rate depends strictly monotonously.on are sufficient to uniquely specify a point on the attractor. As
However, this representation makes the plateau easier to deentioned in the preceding section, the determination of the
termine. embedding dimension is problematic for observed time se-
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Recurrence Rate Recurrence Rate

FIG. 6. (a) Sample of the time series for the flow in chaotic regirfig;reconstructed attractofc) dependence of correlation entropy on the recurrence rate;
(d) dependence of correlation dimension on the recurrence rate.

ries. However, since the RP based method for the estimatioconsists of a rotating, differentially-heated cylindrical annu-
of K, andD, is independent of the embedding parametersjus, in which a fluid(a water—glycerol mixtureis contained
we do not use any embedding in this study. within the annular gap between two coaxial, brass cylinders
Figure 8c) shows the estimates &f, for different re-  and horizontal, thermally-insulating base and lid. The appa-
currence rategwe have obtained similar results for larger  ratus is rotated uniformly about its vertical axis of symmetry,
e.g., 7=30). The plateau allows us to estimate the correlaand motion is driven by differential heating of the cylindrical
tion entropy for the Mackey—Glass system toKg=6.66  sidewalls. Further details may be found in Ref. 29. The time
-1073+10"* nats/s. This result is in good accordance withseries consisted of temperatures measured in the fluid at in-
values reported in the literature for its Lyapunov exponentseryals ¢ 2 s for periods of up to & 10* s, and were ob-
[0.007,0-0.071;-0.15,.. .],% since the correlation en- tained from copper—constantan thermocouples on fine-wire
tropy is numerically close to the sum of the positive prohes located at mid-height and mid-radius in the convec-
Lyapunov exponents. The metric entropy for nonhyperboliGjon chamber. The flows measured were in the baroclinically
systems is a_pprommately the sum qf the positive Lyapunoy,nstable regime, and took the form of azimuthally-
exponentgslightly less and the metric entropy is an UpPer ronagating travelling waves with various quasiperiodic or
bound for the correlation entrop§. o . chaotic modulations. The particular time series investigated
The RP based estimate for the correlation dimension igq e \ere taken from a single thermocouple probe for cases
D,=2.13+0.03. Farmer computeB=2.13+0.03 for the 4 4y i) of Ref. 20; casdiii) was identified as a quasip-

fractal Q|men§|on anO!DKYZZ'lOiO'OZ for the Kaplz?m— eriodic amplitude-modulated wavenumbee= 3 flow, while
Yorke dimension, again in very good accordance with our

7 case (ii) was identified as a low-dimensional chaotically-
results’ :
. . . ._modulated wave with botm=3 andm=2 present.
Our estimates were obtained from the scalar time series . . . .
Figure Ga) shows a section of the time series from case

without any embedding. However, if we had used embedding.. . .
we would have obtained the same estimates for all choices g’f’ ) and Fig. §b) the_ re_con_structed_ attractor. To estimitie
we compute the distribution of diagona (1) and deter-

the embedding parameters. _ . .
Note that we also computed successfully estimatdé,of mine the slope for different thresholdgrespectively versus
the recurrence ratein the second scaling region. We also

andD, for largerr, e.g.,7=30 andr=300. . ) 2031 :
included the Theiler correctidh® based on the first zero of
the autocorrelation function which was determined to be at
IV APPLICATION TO FLOW DATA t=118 s. Figure &) shows the result. The plateau allows us

In this section we estimate invariants from the RP ob-to estimateK, reasonably unambiguously.
tained from an analysis of fluid flow data. The experiment  Based on Eq(21) we then estimatd,. Figure &d)
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two points that are neighoring can be separated, and second,
two points that are not neighboring can become neighbors.

The first effect breaks long lines in smaller fractions and
| hence increases the slope-efn(P(l)) and therefore the en-
tropy. Furthermore, it can be showhthat the slope of
In(P(l)) versusl for a stochastic time series is not constant
] with respect tce resp. the recurrence rate. Hence, especially
for small recurrence rates, the scaling region breaks down if
€ is smaller than about 5 times the standard deviation of the
noise'! However, this effect is at least partially corrected by
an appropriate choice of the scaling region in th&, ‘versus
recurrence rate” diagram.

The second effect increases the number of short lines,
mainly single points. This effect is—under normal
conditions—nearly completely corrected when the scaling
region in the InP(l)) versusl diagram is fixed, as short lines
] are ignored.

] For practical purposes, a noise level of about 5%—-10%
] can be treated without denoising the data. Further, Ref. 11
also allows for a mathematical correction if the noise level

can be estimated.

Next, we exemplify the effects of noise on the analysis
for the Rasler system in the funnel reginisee Fig. 4
which we have already studied in Sec. IIl A. We use the same
_FIG. _7. (a)_ Correlation_in_tegre_ll for the ﬂow_ data. The e_stimation of th_e }Parameters for the integration and add 10% of observational
invariants is problematic in this representation as there is no clear straight . . .
line for large embedding dimensiong) Local slope of the curves repre- noise. Then, we perform the e_StlmE_mOn based (?n the RP
sented in(a). method. The results are summarized in Fig. 8. We find for the

correlation entropyK,=0.130+0.050, i.e., the value is

about 16% higher than in the case without observational
represents the outcome for different recurrence rates. We ofpoise. This increase of the entropy is expected. Also the pla-
tain for the correlation entropK,=6.8-10"2 bits/s+2.5  teau breaks down for small recurrence rates. However, the
-10"* bits/s and for the correlation dimensiop,=3.6  scaling region is still reasonably broad.
+0.4. Our results are in accordance with previous reSults ~ For the estimation of the correlation dimension we ob-
and indicate low dimensional chaos. Note that our resultéain a rather small plateau. Despite of this problem, we ob-
were obtained from 40000 data points without filtering andtain D,=2.27+0.28 which is in a very good agreement with
without embedding. the result for the case without noise. The deviation is less

We have also performed the analogous Computatioﬁhan 1%. Note, that the error bars for both, the entropy and
based on the Grassberger—Procaccia algorithig. 7) and the dimension, are larger than the deviations due to the ob-
found that the CPU time needed is about one or two order§ervational noise.
of magnitude higher. The values we have obtained for the
correlation entropy ar&,=1.1-10 3+5.0- 104 bits/s and
for the correlation dimensioB,=4.1+0.4. VI. CONCLUSIONS

The estimation of the correlation dimension and the en- | this paper we have shown that it is possible to esti-

tropy is rather problematic as the scaling is not very wellmateK, andD, from RPs and that these estimates are inde-
pronounced for large embedding dimensions. The estimatioaendent of the choice of the embedding parameters. Even
based on the RP method is more robust. without an explicit embedding, it is possible to estimate
In the quasiperiodic casi@i) we obtain for the correla- these dynamical invariants directly. This fact is of consider-
tion entropyK,=4.63 10" *+2.4.10"° bits/s and for the aple advantage, since means of making the optimal choice
correlation dimensionD,=2.39+0.29 also in very good for the embedding parameters is still under debate. Hence,
agreement with previously reported resdfts. the method of RPs may be advantageous with respect to
other methods, as presented in Ref. 20.
These results are also hinged to a train of arguments by
V. EFFECTS OF NOISE Ivanski and Bradley on the one hand and Gao and Cai on the
other. Ivanski and Bradley reported that some measures do
In this section we discuss the effects of noise on thenot depend on the embeddiffgGao and Cai then stated that
results of the analysis presented in this paper. A more dethere the measures computed by Ivanski and Bradley are
tailed discussion can be found in Ref. 11. rather independent from the embedding, but that some struc-
Naively speaking, both observational and dynamicaltures in RPs are linked to the Lyapunov exponents and en-
noise have two effects on the analysis. First, due to noisdropies, i.e., dynamical invariants. Then, in general, one has

C1(E)

1.5
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